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Abstract

Pipe flow is a common fluid dynamics application in transportation engineering. Inspired by Lord

Reynolds [3], we investigate a steady fluid flow moving through a two-dimensional channel. The critical

Reynolds number can help us understand the behaviour of the fluid flow in the pipe, whether it is a stable

or an unstable flow. The approach to obtain the critical conditions for unstable behaviour is based on a

linear stability analysis using the Navier–Stokes equation [1] and numerical methods based on Chebyshev

approximations [7].
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1 Introduction

The Navier–Stokes equations describe the motion of fluid flow with respect to time and position, and were first

introduced by Claude-Louis Navier in 1822 and developed by George Gabriel Stokes during 1842-1850. These

equations enable us to compute the velocity and pressure characteristics of fluid flow and allow us to explore

the fluid movement inside a pipe.

When a fluid flows through a pipe, it can display different behaviour, and may be described as a smooth

laminar flow or a chaotic turbulent flow (see figure(1)).

Figure 1: (a) Laminar flow, (b) Turbulent flow. (d = 2h, where h is the half-width) The turbulent flow is chaotic

with random movement. [5]

From Lord Reynolds [3], the state of the flow can be determined by the dimensionless Reynolds number

Re =
Ud

ν
,

where U is the velocity of the fluid, d is the diameter of the pipe and ν is the kinematic viscosity of the fluid.

Laminar flow is smooth and stable, the velocity of each component of the fluid follows the direction of the flow.

The flow will remain in a laminar state when it has a sufficiently low Reynolds number. When the Reynolds

number gets larger, and exceeds a critical Reynolds number, the flow is going to mix and become unstable.

This is called laminar-turbulent transition. The flow will gradually transition to a turbulent state with higher

velocity and random movement.

In this paper, we model the fluid flow in a two-dimensional channel, with a few assumptions as a simplification

of the flow in a pipe. We obtain the laminar flow by revisiting the Naiver–Stokes equations and apply the no-slip

condition. The laminar flow is known as Poiseuille flow. For the linear stability analysis, we perturb the laminar

flow with a small normal-mode perturbation to derive the Orr–Sommerfeld equation [2] [6]. We undertake a

temporal linear stability analysis of the flow to determine the conditions for the flow to become linearly unstable,

which is known as the critical Reynolds number. We obtain the neutral curve by solving the Orr–Sommerfeld

equation using Chebyshev derivative matrix approximations.

In the next section, we present the formulation, including the model, base flow, linear stability analysis and
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the Orr-Sommerfeld equation. In section 3, the temporal stability analysis and the corresponding numerical

results are illustrated. And in the last section we draw conclusions for the report.

2 Formulation

2.1 Model

The two-dimensional channel flow model is clearly described by the diagram shown in figure 2.

y = h

y = −h

y = 0
Pressure gradient

constant dP
dx ̸= 0

u

v

Figure 2: Two dimensional channel flow

We proceed to derive the model for channel flow with the following set up:

• A two dimensional channel with height 2h. h is the channel half-width.

• The velocity field acting in the x-direction is defined by u and the velocity in the y-direction is defined by

v.

• A constant pressure gradient dP
dx is applied at the front of the channel and drives the flow. The constant

pressure gradient is applied along the x- direction. This pressure-driven flow is known as Poiseuille flow.

2.2 Base flow

The Navier–Stokes equations in two-dimensions are given as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
, (1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
, (2)

and the continuity equation [1] is
∂u

∂x
+

∂v

∂y
= 0, (3)

where ν is the kinematic viscosity and ρ is the fluid density.

We can simplify equations (1)-(3) to obtain Poiseuille flow UB by making the following assumptions [1]:
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1. Laminar flow UB is steady, which implies ∂u
∂t = 0.

2. The flow moves along the x-direction only,

VB = 0 and UB = (UB , 0).

3. The no-slip condition is applied on the channel walls, i.e. UB = 0 on y ± h.

4. At the channel centre y = 0, the flow achieves the maximum velocity, UB = U0.

From assumption 2, we know that VB = 0, and equation (3) becomes

∂UB

∂x
= 0 =⇒ UB = UB(y).

The base flow UB is a function of y only.

Similarly, equation (2) becomes

1

ρ

∂P

∂y
= 0 =⇒ P = P (x).

The pressure P is independent of y. Also from our model, dP
dx is a constant.

Now we can look at equation (1), based on the steady flow assumption, we have

−1

ρ

dP

dx
+ ν

d2UB

dy2
= 0,

d2UB

dy2
=

1

ρν

dP

dx
.

Recall that dP
dx is a constant, and so this is an ODE for UB . We can solve this ODE with the following boundary

conditions.

From the no-slip assumptions

UB(h) = 0 and UB(−h) = 0.

The following expression for the base flow UB is obtained

UB(y) =
Px

2ρν

(
y2 − h2

)
.

We can also obtain U0 by substituting in y = 0,

U0 = −h2Px

2ρν
.

Thus, the base flow can be simplified as

UB(y) = U0

(
1− y2

h2

)
.

Hence, the velocity vector is given by

UB =

(
U0

(
1− y2

h2

)
, 0

)
. (4)
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2.3 Non-Dimensionalisation

Introducing the dimensionless parameters,

û =
u

U0
, x̂ =

x

h
, t̂ =

U0t

h
, v̂ =

v

U0
, ŷ =

y

h
, P̂ =

P

ρU2
0

,

and substituting into equations (1)-(3), gives the dimensionless Navier–Stokes equations,

∂û

∂t̂
+ û

∂û

∂x̂
+ v̂

∂û

∂ŷ
= −∂P̂

∂x̂
+

1

Re

(
∂2û

∂x̂2
+

∂2û

∂ŷ2

)
, (5)

∂v̂

∂t̂
+ û

∂v̂

∂x̂
+ v̂

∂v̂

∂ŷ
= −∂P̂

∂ŷ
+

1

Re

(
∂2v̂

∂x̂2
+

∂2v̂

∂ŷ2

)
, (6)

∂û

∂x̂
+

∂v̂

∂ŷ
= 0, (7)

where the Reynolds number for this channel flow is given as

Re =
U0h

ν
.

The non-dimensional Navier–Stokes equations are governed by one parameter, the Reynolds number. We can

control the flow behaviour by varying the value of the Reynolds number.

2.4 Linear Stability

We then perform linear stability analysis by adding a linear perturbation to the Poiseuille flow(4),

u = UB + ϵu′, v = ϵv′, P = PB + ϵP ′, (8)

where ϵ ≪ 1.

The behaviour of the total flow depends on the perturbation. Recall (8), for u = (u, v), if u′ → ∞, the

flow is linearly unstable, and turbulence ensures. If u′ → 0, the total flow will return to the base flow UB , and

the flow is linearly stable. To investigate the behaviour of the perturbations, we derive the Orr–Sommerfeld

equation.

On substituting equation(8) into the scaled Navier–Stokes equation (5) gives

∂

∂t
(UB + ϵu′) + (UB + ϵu′)

∂

∂x
(UB + ϵu′) + ϵv′

∂

∂y
(UB + ϵu′) =

− ∂

∂x
(PB + ϵP ′) +

1

Re

(
∂2

∂x2
(UB + ϵu′) +

∂2

∂y2
(UB + ϵu′)

)
.

The non-linear ϵ2 term will vanish due to the small value of ϵ, giving

ϵ
∂u′

∂t
+ ϵUB

∂u′

∂x
+ ϵv′

∂UB

∂y
= −ϵ

∂P ′

∂x
+ ϵ

1

Re

(
∂2u′

∂x2
+

∂2u′

∂y2

)
,

and on cancelling ϵ from both sides, we obtain

∂u′

∂t
+ UB

∂u′

∂x
+ v′

∂UB

∂y
= −∂P ′

∂x
+

1

Re

(
∂2u′

∂x2
+

∂2u′

∂y2

)
. (9)
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Similarly, we can obtain the following equations from (6) and (7):

∂v′

∂t
+ UB

∂v′

∂x
= −∂P ′

∂y
+

1

Re

(
∂2v′

∂x2
+

∂2v′

∂y2

)
, (10)

∂u′

∂x
+

∂v′

∂y
= 0. (11)

(Note that all quantities have been scaled into their dimensionless form, i.e. UB =
(
1− y2

h2

)
and −1 ≤ y ≤ 1.)

2.5 Orr–Sommerfeld equation

We will now introduce our normal mode assumption for the linear perturbations:

u′ = û(y) exp (i (αx− ωt)) , (12)

v′ = v̂(y) exp (i (αx− ωt)) , (13)

P ′ = P̂ (y) exp (i (αx− ωt)) , (14)

where α is the wavelength and ω is the frequency of the wavelike perturbation.

In addition, we introduce the stream function ϕ′ that satisfies equation (11), where

u′ =
∂ϕ′

∂y
and v′ = −∂ϕ′

∂x
,

and ϕ′ is defined as

ϕ′ = ϕ̂(y) exp (i (αx− ωt)) .

On taking the y-derivative of equation (9) and x-derivative of equation (10), we can eliminate the pressure P ′

term:

∂u′

∂t∂y
+

∂UB

∂y

∂u′

∂x
+ UB

∂2u′

∂x∂y
+

∂UB

∂y

∂v′

∂y
+ v′

∂2UB

∂y2
− ∂v′

∂t∂x
− UB

∂2v′

∂x2
=

1

Re

(
∂3u′

∂x2∂y
+

∂3u′

∂y3
− ∂3v′

∂x3
− ∂3v′

∂y2∂x

)
.

Then, on substituting our stream function ϕ′, we obtain

1

Re
D4ϕ̂+

(
2α2

Re
+ iω − UB iα

)
D2ϕ̂+

(
UB iα

3 +
∂2UB

∂y2
− iωα2 +

α4

Re

)
ϕ̂ = 0,

and on multiplying both sides by i we obtain the Orr–Sommerfeld equation(
i

Re
D4 +

(
αUB − 2α2i

Re

)
D2 +

(
iα4

Re
− UBα

3 − ∂2UB

∂y
α

))
ϕ̂ = ω

(
D2 − α2

)
ϕ̂, (15)

where Dn represents the nth order derivative with respect to y.

2.6 Boundary Conditions

In section 2.5, we developed the Orr–Sommerfeld equation (15), which is a 4th order ordinary differential

equation for the stream function ϕ̂. Hence, we require four conditions on ϕ̂ to solve this equation.
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Recall the no-slip condition, on the boundary wall, requires the velocity be zero in both the x-direction and

the y-direction. That is, when y = ±1, we obtain

u′ = 0 =⇒ ∂ϕ′

∂y
= 0 =⇒ Dϕ̂ = 0,

and

v′ = 0 =⇒ −∂ϕ′

∂x
= 0 =⇒ ϕ̂ = 0.

Therefore, ϕ̂ = 0 and Dϕ̂ = 0 for y ± 1 are the four boundary conditions.

3 Results

Using the Orr–Sommerfeld equation and the corresponding boundary conditions, we use computational methods

to obtain the numerical solution.

3.1 Temporal Stability Analysis

Recall our assumption on the wavelike perturbation (equation (12) to (14)) and how the perturbation determines

the behaviour of the total flow. We apply a temporal linear stability analysis, where we let the wavelength α ∈ R

and frequency ω ∈ C for ω = ωr + iωi. Thus, we have the exponential part of the perturbation (equation (12)

to (14)) becomes

exp (i (αx− ωt)) = exp (i (αx− ωrt)) exp (ωit).

The first exponential represents the wavelike part with imaginary exponents, while the second exponential

determines the magnitude of the perturbation.

As t → ∞, if ωi > 0, then exponential growth occurs and the perturbation will approach infinity leading to

linearly unstable behaviour. In another way, if ωi < 0, then exponential decay happens and the perturbation

approaches zero, leading to linearly stable behaviour.

Therefore, the case when ωi = 0 is what we are interested in, where the flow transitions from being linearly

stable to linearly unstable. We aim to investigate the corresponding conditions (i.e. Re, α and ωr) for the

critical point.

3.2 Compute ω

Recall the Orr–Sommerfeld equation (15), which we can write as

Aϕ̂ = ωBϕ̂, (16)

where A and B are matrices made up of the derivatives of ϕ̂.
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The physical derivatives with respect to y are replaced by Chebyshev matrix approximations developed by

Trefethen [7]. We can then solve equation (16) by treating it as an eigenvalue problem where ω is considered

as the eigenvalues of the matrices A and B, and ϕ̂ are the corresponding eigenvectors.

For the Chebyshev matrix approximation, the size of the matrix is equal to the number of points used to

fit in the Lagrange interpolation denoted by N , which could control the accuracy of the approximation on the

physical derivative. The higher rank of the matrix, the more accuracy the approximation is, however the more

expensive on computational cost. The numerical result with different N -value approximation is given in the

table 1. N = 100 is chosen with consideration of trade-off between precision and costs.

N ω Re

200 0.2612 + 0.00000935i 5815

100 0.2612+0.00000935i 5815

50 0.2612 + 0.00000943i 5815

20 0.2613 + 0.00000201i 5530

Table 1: Numerical result for different matrix size.

3.3 Numerical Result

Initially, we consider the case where the wavenumber α = 1.01 and the Reynolds number Re = 5784. The

eigenvalues of equation (16) are computed using MATLAB (see appendix). The resulting frequency ω are

plotted in the (ωr, ωi)-plane in figure 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

i

Dominant mode

Figure 3: Eigenvalues for α = 1.01 and Re = 5784

We notice that there is a continuous spectrum on the right-hand side and the discrete spectrum on the

left-hand side. According to our temporal stability analysis, the eigenvalue with the least negative imaginary
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part will dominate the exponential growth of the linear perturbation. In this case the dominate mode is

ω = 0.265245708327375 + 0.000010632451683i, which is unstable with positive imaginary part.

Once we have the eigenvalue of the dominate mode, we can obtain the corresponding eigenvectors, which

are the stream functions ϕ̂ plotted in figure 4. The stream functions are plotted using absolute value |ϕ̂| and

they are normalised to have a maximum of unity. Our boundary conditions can be verified, as at the boundary

wall y = ±1, ϕ̂′ = 0 and the gradient Dϕ̂′ = 0.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Absolute value of the stream function ϕ̂ for α = 1.01 and Re = 5784.
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The absolute value of the perturbations u′ = Dϕ̂ and v′ = iαϕ are shown in figure 5 and figure 6 respectively.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

|u
'|

Figure 5: Absolute value of perturbation u′ for α = 1.01 and Re = 5784.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

|v
'|

Figure 6: Absolute value of perturbation v′ for α = 1.01 and Re = 5784.

Notice that at the boundary walls, both u′ = 0 and v′ = 0, which verifies the no-slip conditions. In figure

5, at y = 0, we have the minimum perturbation on x-direction, and it reaches maximum at y = ±0.67. And in

figure 6, we can find a scaled stream function ϕ̂ with same shape.
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We repeat the above analysis to determine neutral conditions (Re, α, ωr) for linear stability. For a fixed

wavenumber α, the Reynolds number Re is increased until the eigenvalue with least negative imaginary part

exceeds zero. We then use linear interpolation to compute the Reynolds number matched to ωi = 0. We apply

this method for wavenumbers α ∈ [0.6, 1.1], with stepsize ∆α = 0.001, to determine the corresponding Reynolds

number and contruct a neutral curve where ωi = 0, as shown in figure 7 and figure 8.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Re 10
4

0

0.2

0.4

0.6

0.8

1

1.2

Unstable

5772.2

1.021

Stable

Figure 7: Neutral curve in the (Re, α) plane.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Re 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

r

Unstable

Stable

0.2694

5772.2

Figure 8: Neutral curve in the (Re, ωr) plane.

For wavenumber α, frequency ωr and Reynolds number Re, located inside the curve, the flow is recognized

as linearly unstable, while outside the curve the flow is stable. The critical condition is obtained at αc = 1.021,

ωr,c = 0.2694 and Rec = 5772.2. We obtained similar results as Schmid and Henningson [4] as, where the

Reynolds numbers are identical, the wavenumbers and the real parts of frequency are slightly larger, shown in

table 2.
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Source αc Rec ωr,c

Our result 1.021 5772.2 0.2694

Schimid and Henningson 1.020 5772.2 0.2639

Table 2: Compared result for critical Reynolds number.

4 Conclusion

The linear stability of the two-dimensional channel flow was modelled using the Navier–Stokes equations. With

no-slip conditions imposed, the base flow was computed. Using linear stability analysis, the Orr–Sommerfeld

equation was obtained and solved via Chebyshev matrix approximations for the derivatives. Critical conditions

were found and presented in a neutral curve. The critical Reynolds number was found as Rec = 5772.2 and

the corresponding wavenumber αc = 1.021 and frequency ωr,c = 0.2694. These critical conditions are close to

Schmid and Henningson’s result [4]. In conclusion, the channel flow is laminar and stable when the Reynolds

number is sufficiently small (Re < 5772.2) but as the Reynolds number grows, the channel flow becomes

turbulent and unstable (Re > 5772.2) for some specific α.

For further research, a change of geometry might be considered, such as the flow in a cylindrical pipe.

Interesting thing is this flow is linear stable for all Reynolds numbers.
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5 Appendix

% CHEB compute D = differentiation matrix , x = Chebyshev grid

function [x,D] = cheb(N)

if N==0, D=0; x=1; return , end

x = cos(pi*(0:N)/(N)) ';

c = [2; ones(N-1,1); 2].*( -1) .^(0:N) ';

X = repmat(x,1,N+1);

dX = X-X';

D = (c*(1./c) ')./(dX+(eye(N+1))); % off -diagonal entries

D = D - diag(sum(D')); % diagonal entries

14



% This code solves the Orr -Sommerfeld equation for the Poiseuille flow in a

% channel , and determines neutral stability conditions

clear;

format long;

% Specify initial conditions

N = 100; % Chebyshevs

as = 1.01; % Initial alpha

ae = 1.01; % Final alpha

da = 0.001; % alpha stepsize

Res = 5000; % Initial Reynolds number

delR = 10; % Reynolds number stepsize

[Y,D] = cheb(N-1); % Call cheb.m to setup derivative matrices

D2 = D^2; % d2/dy2

D4 = D^4; % d4/dy4

% Base flow

U = 1 - Y.^2;

D2U = -2;

% Imaginary value

ci = complex (0,1);

% We want to store neutral conditions

ntcrv = [];

% Loop through range of alpha values

for alpha = as:da:ae

alpha

Re = Res

% Initial guess for dominant eigenvalue

eval = -ci;

% Store all eigenvalues for each alpha - allows us to determine neutral

15



% conditions

feval = [];

% Solve Orr -Sommerfeld equation if imag(omega) <)

while imag(eval)<0

% Setup matrices for Orr -Sommerfeld equation

L = zeros(N);

K = zeros(N);

for i = 1:N

for j = 1:N

L(i,j) = [( alpha*U(i) - 2*ci*alpha ^2/Re)*D2(i,j) + ci*D4(i,j)/Re];

K(i,j) = D2(i,j);

if i==j

L(i,j) = L(i,j) + [ci*alpha ^4/Re - U(i)*alpha ^3 - D2U*alpha ];

K(i,j) = K(i,j) - alpha ^2;

end

end

end

% Setup boundary conditions

for j = 1:N

L(1,j) = 0;

L(2,j) = 0;

L(N-1,j) = 0;

L(N,j) = 0;

K(1,j) = 0;

K(2,j) = D(1,j);

K(N-1,j) = D(N,j);

K(N,j) = 0;

end

K(1,1) = 1;

K(N,N) = 1;

% Determine eigenvalues 'e' and eigenvectors 'f' of the Orr -Sommerfeld
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% equaition

[d,e] = eig(L,K);

% Determine the dominant mode

e = diag(e);

ind = 0;

for i = 1:N

if imag(e(i)) > imag(eval)&&( real(e(i)) >0.01)

eval = e(i);

ind = i;

end

end

% Store eigenvalue

feval = [feval;Re eval];

% Update Reynolds number

Re = Re+delR

end

eval = -ci;

% While loop has ended , so determine critical Reynolds number via linear

% interpolation

Ren = Re -delR *(2* imag(feval(end))-imag(feval(end -1)))/(imag(feval(end))-imag

(feval(end -1)));

% Determine critical real part of omega (again via linear interpolation)

fevaln = real(feval(end)) -(real(feval(end))-real(feval(end -1)))*(Ren -Re)/

delR;

% Store neutral conditions

ntcrv = [ntcrv; alpha Ren real(fevaln)]

% Update Reynolds number for next alpha value

17



Res = Re -100;

end
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