
Investigating spontaneous symmetry

breaking of spatial Kerr solitons in

fractional spatial dimensions using

Fourier spectral methods

Brenton Horne
Supervised by Associate Professor Dmitry Strunin

University of Southern Queensland

Abstract

The aim of this study is to use coupled nonlinear fractional Schrödinger equations (NFSE)

to investigate spontaneous symmetry breaking of Kerr solitons. This was achieved using

numerical integration in MATLAB R2022b. Fast Fourier transforms were used to approx-

imate spatial derivatives using spatial grid point values and a fourth-order Runge-Kutta

scheme was used to integrate the solution on time. The model generated showed the

conditions under which spontaneous symmetry breaking of Kerr solitons occurred. It al-

lowed for collisions of humps and stable solitons to be simulated and the behaviour of

the post-collision solitons to be examined. It also allowed for collisions of asymmetric

solitons to be simulated and their post-collision behaviour to be examined. Additionally,

the collision of tall and short solitons was also simulated and the post-collision behaviour

examined.

Introduction

Spontaneous symmetry breaking (SSB) is the spontaneous transformation of symmetric

and antisymmetric states into asymmetric states (Li et al., 2020). It is a ubiquitous

phenomenon and hence its study is immensely useful (Li et al., 2020). In this study, SSB

of Kerr solitons were studied using coupled nonlinear fractional Schrödinger equations.

The dimensionless coupled nonlinear fractional Schrödinger equations used in this

project were (Driben and Malomed, 2011):

i
∂u1
∂t

− 1

2

(
− ∂2

∂x2

)α/2

u1 + |u1|2u1 + u2 = 0, (1)

i
∂u2
∂t

− 1

2

(
− ∂2

∂x2

)α/2

u2 + |u2|2u2 + u1 = 0. (2)

Equations (1) and (2) are a particular case of Equation (1) in Driben and Malomed

(2011) when γ = Γ = 0 and κ = 1. Here u1(x, t) and u2(x, t) are scaled versions of

the wave function; their magnitude is proportional to the probability density function

for the particle they describe. In this report, Equations (1) and (2) were solved using

a combination of fast Fourier transforms for approximating spatial derivatives and the

Runge-Kutta fourth-order method for integrating the solution on time. Several different

initial conditions (including those corresponding to stable solitons by themselves, stable

1

solitons on collision courses with humps, asymmetric solitons on collision courses with

each other and tall and short solitons on collision courses with each other) were tried

with the results visualised using waterfall plots in order to study SSB in a few different

circumstances.

Statement of authorship

Dmitry Strunin supervised this project, provided Equations (1) and (2) and the ξ = x−ct

transformation (and mentioned how this transformation would affect the partial deriva-

tives in Equations (1) and (2)), suggested possible experiments that should be conducted,

provided information about how the results should be interpreted, proofed this report and

provided the data files (for the initial conditions) used for the simulations described in

this report. He also provided the code to import these data files into MATLAB. The code

used to perform the analysis was based on Program 2 found on page 329 of Yang (2010)

although adapted by Brenton Horne to meet the requirements of this project. This report

was written by Brenton Horne.

Method

Equations (1) and (2) were transformed to (ξ, t) coordinates using ξ = x− ct, where c is

the constant propagation velocity of the soliton. The partial derivatives became:

∂

∂t
(old formulation) =

∂

∂t
(new formulation) +

∂ξ

∂t

∂

∂ξ
, (3)

∂

∂x
=

∂

∂ξ
. (4)

Here
∂ξ

∂t
= −c and hence

∂

∂t
(old formulation) is:

∂

∂t
(old formulation) =

∂

∂t
(new formulation)− c

∂

∂ξ
. (5)

Consequently, Equations (1) and (2) become:

2

i
∂u1
∂t

− ic
∂u1
∂ξ

− 1

2

(
− ∂2

∂ξ2

)α/2

u1 + |u1|2u1 + u2 = 0, (6)

i
∂u2
∂t

− ic
∂u1
∂ξ

− 1

2

(
− ∂2

∂ξ2

)α/2

u2 + |u2|2u2 + u1 = 0. (7)

The Runge-Kutta fourth-order (RK4) integration scheme is most easily applicable

when a system of partial differential equations is written in the form:

∂u1
∂t

= F1(ξ, t, u1, u2), (8)

∂u2
∂t

= F2(ξ, t, u1, u2). (9)

Spatial partial derivatives of u1 and u2 can be included in F1 and F2 so long as they can

be efficiently approximated from u1 and u2 (such as using a fast Fourier transform). To

rewrite Equations (6) and (7) in the form of Equations (8) and (9) first divide Equations

(6) and (7) by i and then move every term that does not involve partial derivatives with

respect to time to the right-hand side:

∂u1
∂t

= c
∂u1
∂ξ

− i

2

(
− ∂2

∂ξ2

)α/2

u1 + i|u1|2u1 + iu2, (10)

∂u2
∂t

= c
∂u2
∂ξ

− i

2
,

(
− ∂2

∂ξ2

)α/2

u2 + i|u2|2u2 + iu1. (11)

Spatial partial derivatives in Equations (10) and (11) were approximated using a fast

Fourier transform (FFT), namely as:

∂u1

∂t
= cifft(ikfft(u1))−

i

2
ifft(|k|αfft(u1)) + i|u1|2u1 + iu2, (12)

∂u2

∂t
= cifft(ikfft(u2))−

i

2
ifft(|k|αfft(u2)) + i|u2|2u2 + iu1. (13)

Where fft(.) is a FFT, ifft(.) is an inverse FFT, k is the wavenumber and u1 and u2 are

vectors comprised of functions (of time) representing the value of u1 and u2, respectively,

at each grid point. Let the right-hand side of Equation (12) be called RHS(c, k, α, u1,

u2). Consequently, the right-hand side of Equation (13) can be written as RHS(c, k, α,

u2, u1) due to the symmetry of the coupled nonlinear fractional NFSEs. Let u1,j denote

a vector of spatial u1 values for the jth time point in the simulation, u2,j denote a vector

3

of spatial u2 values for the jth time point in the simulation and dt denote the increment

between time steps (which is assumed to be constant). Therefore the RK4 approximation

to Equations (12) and (13) is:

l1 = dt× RHS(c, k, α,u1,j ,u2,j), (14)

m1 = dt× RHS(c, k, α,u2,j ,u1,j), (15)

l2 = dt× RHS

(
c, k, α,u1,j +

1

2
l1,u2,j +

1

2
m1

)
, (16)

m2 = dt× RHS

(
c, k, α,u2,j +

1

2
m1,u1,j +

1

2
l1

)
, (17)

l3 = dt× RHS

(
c, k, α,u1,j +

1

2
l2,u2,j +

1

2
m2

)
, (18)

m3 = dt× RHS

(
c, k, α,u2,j +

1

2
m2,u1,j +

1

2
l2

)
, (19)

l4 = dt× RHS (c, k, α,u1,j + l3,u2,j +m3) , (20)

m4 = dt× RHS (c, k, α,u2,j +m3,u1,j + l3) , (21)

u1,j+1 = u1,j +
1

6
(l1 + 2l2 + 2l3 + l4) , (22)

u2,j+1 = u2,j +
1

6
(m1 + 2m2 + 2m3 +m4) . (23)

Equations (14)–(23) were used in this study to approximate u1 and u2. The time

step, dt, was usually set to 0.001, except when simulations had to be performed over

longer periods of time (that is, when tmax > 40, where tmax is the time length of the

simulation) or when multiple simulations had to be performed quickly (like when the

Asech(Bξ) initial condition was tested for multiple different A and B values). A variable

called L was defined as equalling 30 and ξ ranged from −L

2
to

L

2
− dξ where dξ is the

size of the increments in ξ (which is L divided by the number of spatial steps, which was

called N and was set to 600 for each simulation). t ranged from 0 to tmax.

Several different initial conditions for u1 and u2 were tried; the specifics are mentioned

later. They were then added to the first column of matrices called u1data and u2data,

respectively. These matrices were of size N × (nmax + 1), where nmax is the number of

time steps used in the simulation (an additional column is required to store the initial

conditions). A row vector was also created of size nmax + 1 that was called tdata and its

purpose was to store values of time corresponding to the values of u1 and u2 in u1data and

u2data, respectively. The first entry of tdata was zero (corresponding to t = 0 which is the

4

time for the initial conditions). The different columns of the u1data and u2data matrices

corresponded to different time points in the simulation and the different rows to different

ξ values. Then over a loop Equations (14)–(23) were used to approximate u1,j and u2,j

for each value of j in the simulation. These vectors were stored in the appropriate column

of u1data and u2data. Although due to the limitations in the waterfall graph (namely

that it can only show so many time steps in a single graph) and to maximise how quickly

the simulation ran only a set number of equally-spaced (in time) u1,j and u2,j vector pairs

were added to these matrices (and only the time values corresponding to these pairs were

added to the tdata vector).

Waterfall plots (with ξ on the x-axis, t on the y-axis and |u| on the z-axis) for the

absolute values of both u1 and u2 were generated with a black colour map, axes appropri-

ately labelled (font size chosen for the labels was 15 pt) and axis limits set appropriately

(namely to −L

2
to

L

2
for the x-axis, 0 to tmax for the y-axis and 0 to 2 for the z-axis).

The initial azimuth angle for the camera was set to 10◦ and the initial elevation angle for

the camera was set to 60◦.

Using this script the evolution of soliton pairs with various different parameter values

was examined.

Initially, the initial conditions of u1(ξ, t = 0) = Asech(Bξ) and u2(ξ, t = 0) =

Asech(Bξ) were tried with A and B varied between (and including) 0.5 and 10 in in-

crements of 0.5 with α = 1.6 and c = 0.4. The goal of this simulation was to identify A

and B values for which the solitons were stable.

Data files containing stable solitons were then used to provide the initial condition for

the simulation, with α = 1.6 and c = 0.4. The simulation was also conducted with c = 0.

The aforementioned stable soliton of u1 was then moved to the left of the centre of

the graph (x = 0) and a hump was added to the right of the centre of the graph for

the initial condition. The solitons were moved to the left by deleting some of the initial

condition data that pertained to negative ξ values and extrapolating the function to the

right by multiplying its right-most value (corresponding to highest ξ value) by a decreasing

exponential function of ξ. Specifically the MATLAB code:

l e f t s h i f t = 2 ;

u1 = [u1 o r i g (l e f t s h i f t ∗N/L+1:end) ;

u1 o r i g (end)∗exp(−dxi ∗ (1 : l e f t s h i f t ∗N/L) ’)] ;

5

where u1 orig contained the stable soliton imported from the data file and left shift

is how far to the left (of ξ = 0) the soliton was shifted, was used.

The humps were of the form

h1(ξ, t = 0) = b1 exp

[
−(ξ − ξ0)

2

c21

]
, (24)

h2(ξ, t = 0) = b2 exp

[
−(ξ − ξ0)

2

c22

]
. (25)

Where b1, b2, ξ0, c1 and c2 are constants. This was done for the purpose of simulating

a collision between the solitons and the humps. For these simulations c was set to 0.4.

Another simulation was conducted using asymmetric soliton pairs that were imported

from data files. The goal was to observe a collision and observe the post-collision behaviour

of the solitons, specifically to determine whether it was periodic or oscillatory.

Additionally, an initial condition wherein for u1 there was a tall soliton on a collision

course with a short soliton (with the tall soliton on the left-hand side of the graph, that is

centred on negative ξ values, and the short soliton centred on the right-hand side of the

graph). u2 had a similar initial condition, except with the locations of the tall and short

solitons reversed (tall on the right, short on the left). This simulation was run with two

different wave speeds (that is, c values) namely c = 0.5 and c = 0.8. The initial conditions

were also perturbed by adding sine waves to both u1 and u2 (of the form a sin ξ, where a

is a specified amplitude).

Results and discussion

The Asech(Bξ) initial conditions lead to solitons that move to the left (negative ξ direc-

tion) before starting again at the far-right (highest ξ values) of the graph when A and B

were the same and equal to 0.5 or 1. These solitons become slightly flatter and wider with

time, although as this effect is reduced by reducing dt it is possible this is due to numerical

error. Other A and B values yielded very unstable waves that quickly degenerated into

random noise. A = 9 and B ≤ 6.5, and A ≥ 9.5 (regardless of B) lead to u1 and u2

becoming undefined immediately after t = 0.

6

Figure 1: Time evolution of u1 when A = 1 and B = 1. The u2 graph looks more or less

identical with the same initial condition. dt = 0.006 and tmax = 100 for this simulation.

Figure 2: Time evolution of u1 when A = 1 and B = 2. The u2 graph looks more or less

identical with the same initial condition. dt = 0.006 and tmax = 100 for this simulation.

When the stable solitons were imported and simulated the solitons remained stable,

although they moved to the right (towards higher ξ values) when c = 0.

7

Figure 3: Stable soliton evolution over time when α = 1.6 and c = 0. dt = 0.001 and tmax = 30

for this simulation. This graph is for u1 but u2’s graph looks the same.

When the stable solitons were moved to the left (negative ξ direction) and humps

were added to the right of the centre of the graph (corresponding to ξ0 > 0), the expected

collisions occurred. The new soliton formed by the collision was not as stable as the

original and seemed to oscillate.

Figure 4: Stable soliton and hump, both centred 2 units from ξ = 0, colliding. All other hump

parameters are set to 1. Plot shown is of u1; u2 has a similar plot.

8

When asymmetric soliton pairs were collided u2 solitons usually did not survive the

collision, whilst u1 solitons continued with roughly the same height as the original solitons

(although their height oscillated slightly).

Figure 5: Plot of u1 after asymmetric soliton collision. c = 0 and dt = 0.003 in this collision

(tmax = 100).

Figure 6: Plot of u2 after asymmetric soliton collision. c = 0 and dt = 0.003 in this collision

(tmax = 100).

9

When tall and short solitons were collided without any perturbations with c = 0.5, u1

degenerated into what seemed like random noise whilst u2 became a tall (sometimes with

a second smaller peak to the left of the main peak) soliton that was moving in the left

direction (negative ξ direction).

Figure 7: Plot of u2 before, during and after tall and short soliton collision. c = 0.5 and

dt = 0.003 in this collision (tmax = 100).

When sine waves of amplitude 0.01 were added to the initial conditions there was

no obvious changed to the collision observed. When the amplitude was increased to 0.1

similar behaviour was observed, although the tall soliton was at times wider and shorter

than it was without the perturbation. After this the amplitude was increased to 0.5 and

no collision occurred.

10

Figure 8: Plot of u1 before, during and after tall and short soliton collision when u1 and u2

have both had 0.1 sin ξ added to their initial conditions. c = 0.5 and dt = 0.003 in this collision

(tmax = 100).

Figure 9: Plot of u2 before, during and after tall and short soliton collision when u1 and u2

have both had 0.1 sin ξ added to their initial conditions. c = 0.5 and dt = 0.003 in this collision

(tmax = 100).

11

Figure 10: Plot of u1 before, during and after tall and short soliton collision when u1 and u2

have both had 0.5 sin ξ added to their initial conditions. c = 0.5 and dt = 0.003 in this collision

(tmax = 100).

Figure 11: Plot of u2 before, during and after tall and short soliton collision when u1 and u2

have both had 0.5 sin ξ added to their initial conditions. c = 0.5 and dt = 0.003 in this collision

(tmax = 100).

12

Similar patterns were noticed when c = 0.8 was used. This includes when perturbations

were added to the initial conditions.

Figure 12: Plot of u1 before, during and after tall and short soliton collision. c = 0.8 and

dt = 0.003 in this collision (tmax = 100).

Figure 13: Plot of u2 before, during and after tall and short soliton collision. c = 0.8 and

dt = 0.003 in this collision (tmax = 100).

13

Discussion and conclusion

This hybrid method of using Fourier spectral methods to approximate spatial derivatives

combined with the Runge-Kutta fourth-order method to numerically integrate the prob-

lem on time proved effective and useful in solving the coupled NFSEs. It was also useful

in modelling the behaviour of Kerr solitons. One issue in this report was that it was

sometimes unclear whether what was seen in the graphs was the result of numerical errors

or the actual behaviour of the solution. Consequently, future studies should probably try

using an adaptive method of time integration such as the Runge-Kutta-Fehlberg method

with a set error tolerance. Alternatively, a non-adaptive scheme could be used with mul-

tiple different values of dt tried. Multiple different values of dt were not tried in this

research due to how slowly the scripts used executed and using multiple different time

increments would likely exacerbate this problem. To fix this issue future research could

use programs written in higher-performance programming languages like C++, Fortran

or Julia.

Acknowledgements

Dmitry Strunin provided guidance for the project, provided the data files required for it

as well as the code to import them and proofed this report. Program 2 of Yang (2010)

served as the template of the code used.

References

R. Driben and B. A. Malomed. Stability of solitons in PT-symmetric couplers. Optics

Letters, 36(22):4323, Nov. 2011. ISSN 0146-9592, 1539-4794. doi: 10.1364/OL.36.0043

23.

P. Li, B. A. Malomed, and D. Mihalache. Symmetry breaking of spatial Kerr solitons

in fractional dimension. Chaos, Solitons & Fractals, 132:109602, Mar. 2020. ISSN

0960-0779. doi: 10.1016/j.chaos.2020.109602.

J. Yang. Nonlinear Waves in Integrable and Non-integrable Systems. SIAM, Dec. 2010.

ISBN 978-0-89871-705-1.

14

