Xiaojuan He
Supervised by Dr Sergey Polyakovskiy

Deakin University

Contents

1 Introduction 2
1.1 Statement of Authorship L 2
2 Problem Formulation 2
3 Dual Bounds 3
4 Matheuristic approach 4
5 Bin decomposition 7
5.1 Cut Positions e e 8
5.2 Assignment MIP L 8
5.3 Decomposition Heuristic o . L e 9
6 Discussion and Conclusion 10

Abstract

In manufacturing industries, the process of cutting variable-sized materials into required different sized
smaller pieces is a critical step in production. This task involves solving the 2-dimensional bin packing prob-
lem, where items of different sizes and quantities need to be packed into a limited space. Finding optimal
cutting patterns that minimize material waste and maximize production efficiency is of vital importance in
industrial practice. In recent years, researchers have developed various optimization algorithms to address
this problem, ranging from exact methods to heuristic approaches. However, there is still room for improve-
ment, and new techniques are continuously being developed to further enhance the cutting efficiency and
reduce costs. In this paper, we propose an approximate decomposition-based approach to solve the variable-
sized 2-dimensional bin packing problem (VS-2D-BPP) efficiently. We adopt the Dantzig-Wolfe approach,
which is a linear programming-based formulation that decomposes the problem into smaller subproblems.
The idea is if we have a set of feasible packings, we can reduce the problem to select a subset of the packings
that covers each item at least once and also minimize the total cost. However, there exist exponentially many
feasible single bin packings that make this model too big to solve. To overcome this limitation, we propose a
matheuristic approach that applies Mixed Integer Programming to find patterns heuristically. Specifically,
we search for a set of patterns that can efficiently cover the items in the problem instance, and use these

patterns to reduce the number of packings that need to be considered in the Dantzig-Wolfe model.

1 Introduction

The two-dimensional variable-sized bin packing problem (VS-2D-BPP) is an important optimization problem
that arises in various industries, such as guillotine glass cutting and furniture production. The problem requires
selecting a collection of bins of minimum total cost so that all items are packed without overlap and exceeding
the boundaries of the bins.

In the manufacturing industry, optimizing the use of materials is crucial to keep production costs low and
maintain competitiveness in the market. One of the most challenging problems that manufacturers face is the
2-dimensional bin packing problem, where they need to pack a variety of rectangular items with different sizes
into a limited number of rectangular sheets of materials, such as paper, wood, glass or metal.

Consider the case of a furniture manufacturer that specializes in producing drawers of various sizes. The
manufacturer receives orders for different quantities and sizes of drawers every day, and they need to cut the
sheets of materials into the correct sizes and shapes to fulfill these orders. However, due to the varying sizes
and shapes of the drawers, it is not always easy to find the optimal cutting pattern that minimize the waste of
materials.

The problem is challenging due to the fact that each item can have many alternative positions within the bins,
and there can be many solutions with equal costs. In this paper, we propose an approximate decomposition-

based approach to solve the VS-2D-BPP efficiently.

1.1 Statement of Authorship

The work on this project was divided among the team as follows:

e Xiaojuan He was responsible for conducting the matheuristic part of the project.

e Adam McGregor, who is also a student at Deakin University, conducted the bin decomposition portion of

the project.

e Dr Sergey Polyakovskiy provided supervision throughout the project, offering guidance and insights as

needed.

2 Problem Formulation

The VS-2D-BPP is defined by a set T' of m rectangular bin types, where each bin of type t is characterized by
its width W;, height H;, and cost Cy for t = 1,...,m. Additionally, a set I of n items is to be packed into/cut
from these bins, where each item i is associated with its width w;, height h;, and area a; = w;h; fori =1,...,n.
The objective is to select a collection of bins of the minimum total cost such that all items are packed without
overlap and exceeding the boundaries of the bins.

There are many formulations for the VS-2D-BPP. In this paper, we adopt the Dantzig-Wolfe decomposi-

tion[1], which is a linear programming-based formulation that decomposes the problem into smaller subproblems.

This formulation has been shown to be effective in solving large-scale instances of the problem, and can provide
valuable insights into the structure and properties of the solution space. The basic idea is if we have a set
of feasible packings, we can reduce the problem to select a subset of packings which covers each item for at
least once and minimize the total cost. In the following, we provide a detailed description of the Dantzig-Wolfe
formulation for the VS-2D-BPP, and discuss its strengths and limitations.

In the formulation, we define P; as a set of all feasible packings of bin type t and P = [J;~, P; to denote all
feasible packings. Let x,, be a binary variable; z,, = 1 if packing p € P; is selected in the solution, and let 67 be
a binary constant; 67 = 1 if packing p € P contains item ¢ € I. The Dantzig-Wolfe formulation of the problem

is as follows:

minimize Z Z Cizp (1)
t=1 peP;

subject to Z Z Hap,>1, i€l (2)
t=1 peP,

z, €{0,1} pePr (3)

Eq. (1) defines the objective function of the MIP, which minimizes the total cost of the solution. This total cost
is obtained by summing the cost of selected packing. Eq. (2) ensures that each item is packed in at least one of
the selected packings in the solution. Eq. (3) declares the types of the decision variable.

One of the advantages of the Dantzig-Wolfe method is that the LP relaxation (i.e., 0 < z, < 1) of this
formulation is tight. However, there exist exponentially many feasible single bin packings that make this model

too big to solve. Fortunately, we only need to find those packings of P that constitute an optimal solution.

3 Dual Bounds

The Dantzig-Wolfe formulation provides an efficient approximate approach to find patterns heuristically in a
reasonable time and still obtain a tight primal bound. Moreover, we can achieve a tight dual bound by applying
the Column Generation approach. Specifically, we can follow the steps proposed by Pisinger and Sigurd[2] as
follows:

Step 1. Solve the dual problem of the Restricted Master Problem (RMP):

maximize Z e (4)

el

subject to ZéfmgCt, t=1,....m, pePpb (5)
il
>0, iel (6)

Eq. (4) defines the objective function of the dual problem of the RMP. It maximizes the sum of dual variables
m; over all items 4 in I. Eq. (5) and (6) are the dual constraints of the RMP. They ensure that the sum of dual

variables of items in each packing p does not exceed the capacity of the corresponding bin ¢.

Step 2. Solve the Pricing Problem: Find a feasible packing for each type ¢ that maximizes

il
The pricing problem is a 2D single bin packing problem that we solve exactly via a constraint programming
approach. If C; — Z; > 0, then the linear program of the Dantzig-Wolfe model is solved to optimality and
we have found the dual bound. Otherwise, we have found a violating constraint that we add to the RMP by
extending the set P;. We then need to resolve the RMP (Step 1) and the pricing problem again.
While iteratively solving the dual problem and the pricing problem may lead to finding feasible packings and
improving the total cost, the process can be very time-consuming. As such, to address this issue, we propose

to develop a matheuristic approach that can efficiently solve the problem at hand.

4 Matheuristic approach

Our approach aims to achieve a futuristic vision of reserving a free space for all unpacked items while exploring
possible item-to-bin assignments. This allows us to focus on only potentially feasible packing alternatives, make
the packing procedure less greedy, and decrease the number of iterations necessary to pack all items.

To guide the search process and enable current decisions to account for their impact on future ones, we
propose using mixed-integer programming (MIP) augmented with redundant feasibility constraints. These
constraints prohibit partial solutions that would lead to infeasible solutions in the future and enforce bounds
on the objective function value, imposing an upper bound on the total packing cost.

Moreover, we aim to forbid the use of new bins when the sum of their costs plus the cost of already used bins
exceeds the bound. This approach allows us to achieve a feasible packing and reduce the number of iterations
required to find the optimal packing solution.

The matheuristic algorithm, as shown in Algorithm 1, is designed to solve the VS-2D-BPP through an
iterative process that involves exploring a set of feasible packings and adjusting their configuration to optimize
the cost function. The algorithm takes a VS-2D-BPP as input and initializes a feasible packings dataset using
Dantzig-Wolfe decomposition. Then, it defines ceiling and floor ratios based on the dataset to identify the
optimal packings and those that need to be released. Next, the algorithm generates a Pool of all non-optimal
packings and iterates over all possible combinations of packings in the pool. For each combination, the algorithm
computes the current cost of released packings and tentatively assigns the released items to new packings to
generate a new tentative cost. If the tentative cost is less than the current cost, the tentative assignments
guide the construction of a feasible packing. If any optimal packing found for the released items, the algorithm
explores the Pool recursively to find better packings until no more improvements can be made.

As the number of combinations in a set of size n is 2", it can be computationally expensive to explore all
possible combinations. Therefore, it is recommended to incorporate a timer parameter to halt the exploration

process after a certain amount of time has passed.

o VACATIONRESEARCH

= SCHOLARSHIPS 2022-23

Figure 1 illustrates one of the key steps in our matheuristic approach, which tentatively assigns the free

items to bins while keeping the partial feasible solution fixed.

Cost of the tentative assignment must be 2C; + C, <ub* —C; —C3—1

¥ v

Capacity constraint: Capacity constraint: Capacity constraint:

as+ag+ay <SWiH, | ap+a, SWH, a; + a3 <WpH,
assigned items assigned items assigned items

5 8 11 12 14 7 13

Pattern 1 (bin type 1) Pattern 2 (bin type 3) Bin 1 (bin type 1) Bin 2 (bin type 1) Bin 3 (bin type 2)

Partially constructed feasible solution Tentative items-to-bins assignment
of cost C; + C3 of cost 2C; + C;

Figure 1: An example of matheuristic approach’s repacking step

To ensure that the results of our algorithm can be used for future optimization purposes, we save all the
feasible packings we found to our feasible packing dataset. These packings will be used in the Dantzig-Wolfe

decomposition technique, allowing for even more efficient optimization in future iterations.

NAMS|

o VACATIONRESEARCH

= SCHOLARSHIPS 2022-23

Algorithm 1 Matheuristic Algorithm
1: function SOLVE(Problem)

2: feasible_packings < DW.init(Problem) > Initialize feasible packings dataset with Dantzig
Decomposition.
3: ceiling_ratio, floor_ratio + compute_ratios(feasible_packings) > Define ceiling and floor ratios based

on the dataset.
4 Pool < ||

5: for packing in feasible_packings do

6: if packing.ratio > ceiling Ratio then

7: Fix(packing)

8: else if packing.ratio < floor Ratio then
9: Release(packing)

10: else

11: Pool.append(packing)

12: end if

13: end for

14: EXPLORE(Pool, ceiling Ratio)

15: end function

16: function EXPLORE(Pool, ceilingRatio)

17: n < Pool.size

18: for i in range(1,n) do

19: for comb in all_combinations(Pool, i) do

20: RELEASEALL(comb)

21: end for

22: currentCost < GETCURRENTCOST(released_packings)
23: tentativeCost, tentative Assignment <— TENTATIVEASSIGN(released_items)
24: if tentativeCost < currentCost then

25: PAcCK(tentative Assignment, tentative Packing.items)
26: end if

27: UNRELEASEALL(comb)

28: end for

29: end function

By setting an upper bound ub* on the cost of new solution, we can obtain a tentative assignment of items
to bins by solving the following MIP. Although ensuring optimality for this model is not required, it provides a
useful initial configuration. To speed up the overall computation time, we may tolerate an MIP optimality gap

of approximately 5%.

NAMS|

To formulate the model, we define two sets of decision variables: zf, and yf. The binary variable z}, indicates
whether item i is assigned to bin b of type ¢, while the binary variable y indicates whether bin b of type ¢t is
used in the solution.

To restrict the items that can be assigned to a bin of type ¢ based on their size and the capacity of the bin,

we define the set I*, as shown in Eq. (8).
It:{ZGIwZSWt/\hZSHf} (8)

To determine the number of bins of type ¢ that will be used in the packing solution, we set the value of n?

using Eq. (9).

nt = min(Tt’, ') (9)
m TLt
minimize ub= Z Ciyt (10)
t=1 b=1
subject to Z wihirly < Wi Hyyh, b=1,....,n", teT (11)
ielt
S al =1, iel (12)
tielt b=1
iy taly <1, i €1 (witw; > W) A(hi+hy > Hy) (13)
ub < ub* —1 (14)
yb<yt , b=2,....n" teT (15)
vs € {0,1} (17)
(18)

In Eq. (10), the objective function minimizes the total cost of new bins used in the solution, where C; denotes
the cost of a bin of type ¢t. Eq. (11) ensures that the sum area of items assigned to a bin do not exceed the
area of the bin. Eq. (12) ensures that each item is assigned to exactly one bin. Eq. (13) ensures that two items
cannot be assigned to the same bin if their combined weight and height exceed the capacity of the bin. Eq. (14)
sets an upper bound on the cost of new solution. Eq. (15) enforces the use of bins in increasing order of their
indices, which breaks symmetries and simplifies the search process by avoiding the consideration of equivalent
solutions that differ only in the ordering of the bins. Finally, Eqgs.(16) and (17) declare the types of the decision

variables.

5 Bin decomposition

The tentative assignment MIP model provides a useful starting point for packing individual bins but is limited

by its consideration of only the area of items and bins, which can result in generated assignments that are not

feasible. In order to address this limitation, we focus on finding a feasible arrangement for a subset of rectangular
items that maximizes the packed item’s total area while minimizing waste, which is known as the 2D Knapsack
Problem (2DKP). Our state-of-the-art constraint programming (CP) approach provides a precise solution for
this problem by relying on propagation, inference, and domain reduction mechanisms intrinsic to constraint
programming, along with cumulative scheduling relaxations and symmetry breaking constraints. While our
approach has demonstrated high competitiveness on benchmark instances with up to 30 items, the use of CP as
part of a heuristic solution may still result in slow processing. To overcome this challenge, we have developed a
divide and conquer branching scheme that cuts the bin into several base case regions. Each base case region is
assigned a subset of items that can be efficiently solved by the CP model. We acknowledge that tuning the base
case figure is a topic of ongoing research, as balancing the work between the heuristic and the CP model affects
both the quality and performance of the solution. Nonetheless, the advantage of our decomposition heuristic is
that it effectively breaks down a complex cutting problem into several smaller, more manageable problems that
can be efficiently solved using our CP approach.

There are many questions to consider when designing a decomposition heuristic. How might one choose
which cutting positions to try? Furthermore, what positions should be considered valid/effective? The bin is
being split into two regions, then those regions are potentially being split further, how might one choose which
region to target for cutting? How are the items to be assigned to regions? Finally, how should one branch and

descend in the search tree to get good bounds faster?

5.1 Cut Positions

Consider a region r of size (W,., H,.) there are W,., H,. possible cuts that can be made on r and all its sub-regions,
of course that would leave W, H, 1x1 regions which would have limited utility except in a trivial edge case. In
reality only one cut will be made on any region, then those sub regions can be further cut, so given a region r
there would be W, + H,. possible positions to try, although not all those cuts will be worth considering.

For a cut to be useful each of the new regions must be able to fit some of the items. Since each of the items
have their own spatial dimensions, it makes sense to choose cutting positions relative to those dimensions, such
a method could guarantee that at least one item fits in each new region. To eliminate symmetrical cuts, each
cut position to try should be less than half or equal to the respective dimension (width/height), this effectively
halves the search positions without losing generality of solutions. To fulfil these requirements, one might use a

Forward Dynamic Programming Algorithm to determine valid potential cut positions.

5.2 Assignment MIP

Through an assignment MIP we can allocate items into several regions to generate upper and lower bounds
for each branching node to ensure faster solution converge. Our MIP makes use of Dual Feasible Functions as
they are a proven effective way to generate faster lower bounds and valid inequalities for MIPs with knapsack

constraints [3].

o VACATIONRESEARCH

= SCHOLARSHIPS 2022-23

5.3 Decomposition Heuristic

Figure 2 illustrates the decomposition heuristic descending a tree to find solutions. The process which governs

the actions taken at any given node is demonstrated in Figure 3. At some node we are given a set of regions

and a set of items, if there is a target already defined, then simply proceed to the next cut, provided the next

cut exists. The target is only pre-defined in the event of backtracking. The MIP tells us whether we can rely

on our CP model to solve the problem, or that more cutting is required to determine a solution. To select a

target simply choose the largest region. Cuts are obtained by the Forward Dynamic Programming Algorithm.

Within Figure 2 it is shown that the items get shuffled around as the tree is descended. Figure 2 only

shows 2 possible cuts; however, the number of cuts is usually proportional to the number of items in the region.

Upper bounds are produced by the assignments. As a solution is discovered a new lower bound is discovered,

we enforce in our MIP that any assignment is better than these bounds to prune the search space.

possible cuts

cuta
2 5
3 4

branch: cutb branch:
cut a selected cut b selected

1 cutc cute

3
T 2 4
6 5
4 cutf
branch: cutd branch: 3

cut ¢ selected 2 cut d selected 5 6

Figure 2: Bin decomposition with limited branching

YA

MSI

Input:
—set of regions
—set of items

Is the target
region defined?

Solve MIP to
assign items to
regions

Each regions has
only a few
assigned items

Each region has
a feasible
packing

Exit: Incumbent
solution found

YES

Exit: Infeasible
solution found

—Select a target region to split
—Determine valid cut positions

Exit: Proceed with
backtracking

Are all cuts
tried?

Exit:
>| —Create a child node
—Continue splitting the plate

—Select the next cut
—Split the target region

Figure 3: Node Selection for Bin Decomposition

6 Discussion and Conclusion

The computed dual bounds have revealed that the state-of-the-art primal bounds are not optimal, indicating
potential for further improvement. Our preliminary computational experiments on the test benchmark in-
stances have shown that the approximate solutions generated by our approach outperform those reported in
the literature, and often achieve optimality.

However, the scalability of our approach remains a challenge, particularly for larger problem instances. We
need to strike a balance between the time spent on MIP subroutines and the time allocated for heuristic search.

In order to enhance the performance of our matheuristic, we aim to develop a learning mechanism that can
capture the dependency between decision variables and preserve the packing of items into a single bin whenever
such items exhibit synergy. Although an exact solution to this problem is unattainable, we plan to extend
our ongoing work by incorporating a branch-and-price algorithm, which can be initialized using the solutions
obtained from our heuristic approach.

In this paper, we proposed an approximate decomposition-based approach to efficiently solve the variable-
sized 2-dimensional bin packing problem (VS-2D-BPP), which arises in various industries where materials
need to be cut into smaller pieces of different sizes. We adopted the Dantzig-Wolfe decomposition, a lin-
ear programming-based formulation that decomposes the problem into smaller subproblems, and developed a

matheuristic approach that applies Mixed Integer Programming to find patterns heuristically. Our method

10

o VACATIONRESEARCH

= SCHOLARSHIPS 2022-23

searches for a set of patterns that can efficiently cover the items in the problem instance and reduces the
number of packings that need to be considered in the Dantzig-Wolfe model. Our approach showed promising
results in terms of reducing total cost and increasing time efficiency, demonstrating its potential to be applied
in real-world industrial settings. Further research can be done to improve the accuracy and scalability of the

proposed method and to investigate its applicability in other related optimization problems.

References

[1] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operations Research, vol. 8,

pp. 101-111, 1960.

[2] D. Pisinger and M. Sigurd, “Using decomposition techniques and constraint programming for solving the
two-dimensional bin-packing problem,” INFORMS Journal on Computing, vol. 19, pp. 36-51, Feb. 2007.
DOI: 10.1287/1joc.1060.0181.

[3] J. Rietz, C. Alves, J. Valério de Carvalho, and F. Clautiaux, “Constructing general dual-feasible functions,”
Operations Research Letters, vol. 43, no. 4, pp. 427-431, 2015, 1SSN: 0167-6377. DOL: https://doi.org/10.
1016/j.0rl.2015.06.002. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0167637715000759.

11

NAMS|

