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Abstract 
NanoSplicer (Yupei You et al, 2022) is a program that accurately identifies splice junctions 

using Oxford Nanopore Sequencing data. It performs well on cDNA data but suffers when 

direct RNA (dRNA) data is used. This project identifies failure modes and frequencies of 

NanoSplicer on dRNA by classifying NanoSplicer alignments. Future research will 

examine methods to tackle these errors. 

 

1 Introduction 
 

Splicing is the process of joining exons together after transcription to form mature 

messenger RNA. This allows genes to code for multiple different mRNA strings which is 

known as “alternative splicing”. Almost 95% of human genes undergo alternate splicing 

(Pan et al., 2008), allowing a diverse array of transcript isoforms. These diverse isoforms 

are translated into different proteins, controlling cell function. 

 

Although short reads can be used to identify some forms of alternate splicing (LeGault and 

Dewey, 2013; Steijger et al., 2013), this approach is inherently challenging; a ‘bag’ of exon 

short reads with limited coverage of splice junctions makes it difficult to quantify the 

isoforms present or even identify them.  

 

Alternatively, methods based on long-read sequencing data have found some success in 

identifying expressed isoforms. Oxford Nanopore Sequencing is a long-read sequencing 

technique that works by measuring changes in electric current density as a DNA or RNA 

molecule passes through a nanoscopic pore in a membrane. This can be completed 

without needing PCR amplification, producing a raw electrical signal (squiggle) that is then 

basecalled in software – the magnitude of electric current density corresponds to a specific 

polynucleotide sequence occupying the pore. However, nanopore sequencing has a 

higher basecalling error rate (~1-10%) than short-read sequencing, making it challenging 

to differentiate true splice junctions from mapping errors. (Yupei You et al, 2022) 
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Methods to identify isoforms from long-read sequencing data include FLAIR (Tang et al, 

2020) and TranscriptClean (Wyman et al, 2018), which require a set of splice junction 

candidates from annotations or matched short reads. However, these may not be 

practically available. Other methods, including StringTie2 (Kovaka et al, 2019), TAMA (Kuo 

et al, 2020), and 2passtools (Parker et al, 2021), use information like nearby splice 

junctions supported by high read counts. However, this may lead to suppression of rare 

splice junctions. (Yupei You et al, 2022) 

 

This project works with NanoSplicer, a method that generates candidate alignments for 

‘Junction within Reads’ (JWRs) in a set of mapped long-reads. A Junction within Read is a 

subsequence in the mapped reads that splits and maps to different exons, NanoSplicer 

operates as follows: 

1. A JWR is selected  

2. A theoretical squiggle is generated for each candidate  

3. Dynamic Time Warping is then applied to best align these to the raw JWR  

4. A mixture model is used to calculate which candidate best fits the JWR 
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Figure 1: NanoSplicer workflow (Yupei You et al, 2022) 

 

Although NanoSplicer performs well on complementary DNA (cDNA - DNA produced by 

reverse-transcribing RNA), the project examines its performance on direct RNA (dRNA). 

dRNA sequencing can involve less library preparation and chemistry (Wongsurawat et al., 

2022), removing a source of experimental variation. 

 

1.1 Statement of Authorship 
The project idea and approach was formulated by Heejung Shim based on preliminary 

investigations done by Yupei You. The analysis was performed by Patrick Grave under 

supervision by Heejung Shim with additional guidance given by Yupei You. Some analysis 

code was contributed by Yupei You. Project funding was provided by AMSI. Computing 

resources owned by the University of Melbourne were used in conducting the analysis. 

 

2 Method 

2.1 Data 
A dataset of direct RNA Sequins reads obtained from human SH-SY5Y cells by Gleeson et 

al, 2020. 

2.2 Data Preparation 
To prepare the data, the following steps were taken: 

1. The raw Fast5s were aligned to a Sequins reference genome using minimap2 

2. NanoSplicer was run on the mapped reads 

a. JAQ=0.8 setting for JWR selection 

3. Analysis was run on the NanoSplicer output 

2.3 Analysis 
Three kinds of analysis were conducted: 

1. Squiggle information quality (SIQ) calculations for NanoSplicer on dRNA data 
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• Squiggle information quality (SIQ) is calculated as in the original NanoSplicer 

paper. Alignment quality is calculated for each candidate squiggle by taking 

the average log-likelihood over the nucleotides. SIQ is the maximum average 

log-likelihood across all the candidates tested 

2. Comparison with ground truth  

• As Sequins data is comprised of artificial, known nucleotide sequences, the 

‘true’ mappings of Sequins reads to the Sequins reference genome are 

known 

• Performance is evaluated by counting the cases in which minimap2 

3. Visual analysis of failure modes 

• Based on NanoSplicer’s operation and the workflow used, 5 failure modes 

were hypothesized: 

o Poor base-calling for direct RNA nanopore data 

o Poor ‘resquiggle’ performance by tombo 

o NanoSplicer choosing poor candidates 

o NanoSplicer failing to align successfully 

o NanoSplicer selecting the wrong candidate 
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Figure 2: Flowchart used during visual analysis to label images. Five main categories 

were identified: Simply bad candidates, candidates with a good visual fit, very flat junction 

squiggles, fits with very dense regions, and JWRs with good-looking but low-scoring 

candidates 

4 Results 
 

Total JWRs 1536 

Mapped JWRs 1541 

Table 1: Counts of JWRs analysed. (Produced by Yupei You’s analysis code) 

 
Figure 3: SIQ (Maximum average log-likelihood across candidates for a JWR) distribution 

for dRNA JWRs analysed with NanoSplicer. (Produced by Yupei You’s analysis code) 

 

 NanoSplicer 
correct 

NanoSplicer 
Incorrect 

Total 

Minimap 
correct 

191 189 380 

Minimap 
Incorrect 

5 113 118 
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Total 196 302 498 

 

Unclassified 15 

Table 1: JWR categorization of Sequins reads vs. Ground Truth 

 

Bad Candidates 49 

Good Visual Fit 114 

‘Semi-Flat’ junction squiggle 5 

Dense regions 18 

Visually better candidate with low prob. 3 

Total 189 

 
Table 2: Counts of error type by category. Visual analysis was performed on candidates 

which minimap2 correctly labelled (vs. ground truth) but NanoSplicer failed on 

5 Analysis 
The results were notable in a few ways: 

1. The very low fraction of JWRs for which minimap2 was incorrect but NanoSplicer 

was correct against the ground truth. This makes some sense as NanoSplicer 

includes the minimpa2 mapping as a candidate. However, the very large share (189 

JWRs) for which NanoSplicer failed but minimap2 succeeded. In these instances, 

minimap2 selected the correct mapping (vs. ground truth) but NanoSplicer chose 

another candidate which didn’t match the ground truth. These cases are the subject 

of further analysis 

2. A large number of NanoSplicer candidates, which were incorrectly chosen over 

minimap2’s mapping (according to the ground truth) had visually good fits (114). 

Naturally, many were simply bad candidates (49). However, many looked to match 

the junction squiggle. This could have a couple of explanations: 

a. My visual analysis could be biased to favour candidates that match long, flat, 

sections of the junction squiggle – rather than those that match short, varying 

sections. This may be exacerbated by dRNA’s different dwell time properties 
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vs. cDNA and by Dynamic Time-Warping fitting long, flat, squiggle sections 

more aggressively. 

b. Tombo’s ‘re-squiggle’ algorithm may be producing the wrong junction 

squiggle for many JWRs. This may occur more frequently for dRNA than for 

cDNA. 

 

Some examples of cases where NanoSplicer failed to choose the ground-truth candidate 

but minimap2 succeeded: 

 

• A candidate with good visual fit. The candidate’s predicted squiggle (dark 

blue) appears to fit the junction squiggle (light glue) much better than the 

minimap2 predicted squiggle (orange) 

 

 
Figure 4: A NanoSplicer candidate with ‘good’ visual fit  that doesn’t match the ground 

truth 

 

• Two candidates for the same JWR. One with a higher average log-likelihood 

and post probability (seq prior ratio) but a seemingly worse visual fit than the 

candidate with lower scores 
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Figure 5: NanoSplicer candidates with scores that don’t relatively reflect their visual 

accuracy vs. junction squiggle 

 

• A candidate with many nucleotides mapped to a relatively small region. The 

underlying junction squiggle does not reflect this high variation over such a 

small period. 

 

 
Figure 6: NanoSplicer candidate with lots of nucleotides mapped to a very small period 

 

• A high-scoring candidate which only seems to fit the long and flat sections of 

the junction squiggle  
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Figure 7: NanoSplicer candidate fitting only long and flat sections of the junction squiggle 

 

• Finally, a JWR whose junction squiggle appears to be flat. This reflects a 

long sequence of one nucleotide, a very short sequence, or a re-squiggle 

error 

 

 
Figure 8: JWR with a very short junction squiggle 
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6 Conclusion 
In Conclusion, NanoSplicer produces very poor results when used on dRNA data. Notably, 

minimap2 was able to match the ground truth far more frequently than NanoSplicer. This 

may be due to the much larger variations in dwell-time observed during direct RNA 

sequencing (potentially causing issues with tombo’s re-squiggle algorithm). 

 

Further research should examine the performance of tombo against other ‘re-squiggle’ 

tools on direct RNA data, in-case this is causing failed ‘re-squiggles which would lead to 

NanoSplicer generating poor candidates. Alternatively, a base-caller that also provides an 

alignment to the raw squiggle would eliminate the need for a ‘re-squiggle’ tool like tombo 

so a search should be conducted for such a tool. 

7 References 
Yupei You, Michael B Clark, Heejung Shim, NanoSplicer: accurate identification of splice junctions using Oxford 

Nanopore sequencing, Bioinformatics, Volume 38, Issue 15, 1 August 2022, Pages 3741–

3748, https://doi.org/10.1093/bioinformatics/btac359 

 

Pan, Q., Shai, O., Lee, L. et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-

throughput sequencing. Nat Genet 40, 1413–1415 (2008). https://doi.org/10.1038/ng.259 

 

LeGault LH, Dewey CN. Inference of alternative splicing from RNA-Seq data with probabilistic splice graphs. 

Bioinformatics. 2013 Sep 15;29(18):2300-10. doi: 10.1093/bioinformatics/btt396. Epub 2013 Jul 11. PMID: 23846746; 

PMCID: PMC3753571. 

 

Steijger, T., Abril, J., Engström, P. et al. Assessment of transcript reconstruction methods for RNA-seq. Nat 

Methods 10, 1177–1184 (2013). https://doi.org/10.1038/nmeth.2714 

 

Josie Gleeson, Tracy A. Lane, Paul J Harrison, Wilfried Haerty, Michael B Clark. Nanopore direct RNA sequencing 

detects differential expression between human cell populations, bioRxiv 2020.08.02.232785; doi: 

https://doi.org/10.1101/2020.08.02.232785 

 

Tang, A.D., Soulette, C.M., van Baren, M.J. et al. Full-length transcript characterization of SF3B1 mutation in chronic 

lymphocytic leukemia reveals downregulation of retained introns. Nat Commun 11, 1438 (2020). 

https://doi.org/10.1038/s41467-020-15171-6 



 

13 

 

 

Dana Wyman, Ali Mortazavi, TranscriptClean: variant-aware correction of indels, mismatches and splice junctions in 

long-read transcripts, Bioinformatics, Volume 35, Issue 2, January 2019, Pages 340–

342, https://doi.org/10.1093/bioinformatics/bty483 

 

Kovaka, S., Zimin, A.V., Pertea, G.M. et al. Transcriptome assembly from long-read RNA-seq alignments with 

StringTie2. Genome Biol 20, 278 (2019). https://doi.org/10.1186/s13059-019-1910-1 

 

Kuo, R.I., Cheng, Y., Zhang, R. et al. Illuminating the dark side of the human transcriptome with long read transcript 

sequencing. BMC Genomics 21, 751 (2020). https://doi.org/10.1186/s12864-020-07123-7 

 

Parker, M.T., Knop, K., Barton, G.J. et al. 2passtools: two-pass alignment using machine-learning-filtered splice 

junctions increases the accuracy of intron detection in long-read RNA sequencing. Genome Biol 22, 72 (2021). 

https://doi.org/10.1186/s13059-021-02296-0 

 

Wongsurawat, T., Jenjaroenpun, P., Wanchai, V. and Nookaew, I. (2022). Native RNA or cDNA Sequencing for 

Transcriptomic Analysis: A Case Study on Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 

10. https://doi.org/10.3389/fbioe.2022.842299 

 

 

 


