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Abstract

In this paper, we study a class of simple bilevel optimisation problem whose goal is to minimise a function

over the set of minimisers of another convex function over a compact and convex feasible region. Although

some methods have been developed to tackle this problem, they rely on projections onto the feasible region

which, for some applications is computationally expensive or intractable. In addition, adapting work of Braun

et al, we provide an analysis using a relaxed linear optimisation oracle, which can ease the computational

burden further.

1 Introduction

1.1 Problem Description

Simple bilevel optimisation aims to minimise a function subject to a solution set of minimizing problem. Pre-

cisely, the set up of the problem is as follows:

min
x∈Rn

fupper(x)

s.t. x ∈ argmin
z∈S

flower(z),
(1)

where S is a compact and convex set and flower, fupper : Rn 7→ R are continuously differentiable functions on S.

In this paper, the flower is assumed to be convex but strong convexity is not a must so that the set of minimisers

of lower level optimisation problem may be different from a singleton.

Practically, simple bilevel optimisation plays a critical role in various applications such as hyper-parameter

optimization, meta-learning, deep reinforcement learning as mentioned by Liu et al. [12]. Furthermore, as the

big data is widely recognised and utilised, spending high computational resources for training statistical models

is inevitable. Therefore, a cost-effective algorithm for this class of optimisation problem should be developed.

1.2 Related Literature

Recently, Jiang et al. [9] developed an algorithm based on the Frank-Wolf algorithm or conditional gradient

(CG) method [4]. The key idea of Jiang et al is to approximate the solution set of the lower level problem

by adopting a cutting plan approach. However, their convergence analysis failed to establish a result that can

guarantee either the sequence or any subsequence of optimality gaps would converge to zero for both flower and

fupper. In this case, it is possible that the sequence generated by the algorithm may converge to point which

does not belong to the exact solution of the simple bilevel optimisation problem.

Furthermore, even when the convergence issue is ignored, the most expensive step of the well-known con-

ditional gradient method [4] as well as CG-BiO method [9] is the linear optimisation problem which may be

expensive to compute if the feasible region is complex. To further relieve the computational burden, Braun et al.

[3] recommended a method called lazifying conditional gradient for single-level convex optimisation problems.
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1.3 Contribution and Outline

As indicated above, we establish the convergence rate for both upper-level and lower-level problems and decrease

the computational expense from linear oracle. To be more specific, three primary goals of this paper are:

1. Firstly, we propose the adaptive conditional gradient-based bilevel optimisation (ACG-BiO) method based

on the study of Jiang et al. [9]. to establish the convergence rate of O( 1
K ), where K is number of

iterations, for both upper-level and lower-level problem under the assumptions of convexity and Lipschitz

differentiability for both upper-level and lower-level objective functions. Additionally, under Holderian

error bound Assumption 2, a more reliable convergence result can be achieved for the upper level.

2. Secondly, we introduce a relaxed version of ACG-BiO method, which is the relaxed adaptive condi-

tional gradient-based bilevel optimisation (RACG-BiO) method, by integrating the weak separation oracle

(LPsep) devised by Braun et al. [3] to replace the linear optimisation step. The key point of this oracle is

that data from past iterations can be reused without calling the linear optimisation. Furthermore, we also

prove that under the same assumptions as above, the same convergence rate for upper-level and lower-level

problems can be established.

3. Thirdly, we propose a modification for ACG-BiO method, which is the unbounded adaptive conditional

gradient-based bilevel optimisation (UACG-BiO) method, to relax the assumption of boundedness of

the feasible region S. Moreover, we prove that such adjustment can bring about a convergence rate of

O(1/K1−p) for any p ∈ (0, 1).

To convey those ideas, we will firstly go through some relevant concepts and properties in Section 2. In

the same section, some discussion about the foundation of this study, the conditional gradient (CG) method

[4] for solving single-level optimisation problem as well as the short-coming of the conditional gradient-based

bilevel optimization (CG-BiO) method [9] and the cost-effectiveness of the weak separation oracle [3] will be

discussed together with a motivating example of simple bilevel optimisation from regression. In Section 3, the

ACG-BiO method and its convergence analysis will be presented. Afterwards, the relaxed version of ACG-BiO

method and relevant convergence results will be shown in Section 4. Subsequently, the more generalized version

of ACG-BiO to allow unboundedness of feasible region is analysed in Section 5. Finally, the efficiency of the

proposed algorithm will be compared with CG-BiO method [9] via a numerical experiment in Section 6.

2 Preliminaries

2.1 Assumptions and Definitions

Definition 1. A set S ⊆ Rn is called convex if for every a, b ∈ S, we also have ta + (1 − t)b ∈ S, for every

0 ≤ t ≤ 1.
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Definition 2. Given that S is a convex subset of Rn, function f : S → R is convex if and only if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),∀x, y ∈ S, ∀λ ∈ [0, 1]

Proposition 2.1 (Wright and Recht [16]). Given that S is a convex subset of Rn and f : S → R is a

differentiable function, then f is convex if and only if

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩,∀x, y ∈ S

Definition 3. Let ∥ · ∥ be an arbitrary norm on Rn and ∥ · ∥∗ be its dual norm. A function is Lipschitz over

some set S if and only if

∥f(x)− f(y)∥∗ ≤ L∥x− y∥,∀x, y ∈ S.

Proposition 2.2 (Wright and Recht [16]). If a function f : S → R has Lipschitz gradient over S, then

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2,∀x, y ∈ S

The assumptions illustrated below will be used for convergence analysis of ACG-BiO method and the relaxed

version of ACG-BiO method in sections (3), (4).

Assumption 1. Let ∥ · ∥ be an arbitrary norm on Rn and ∥ · ∥∗ be its dual norm. We assume

1. S ⊂ Rn is convex and compact with diameter D, i.e, ∥x− y∥ ≤ D,∀x, y ∈ S.

2. flower is convex, continuously differentiable on S, and its gradient is Lipschitz with constant Llower.

3. fupper is convex, continuously differentiable on S, and its gradient is Lipschitz with constant Lupper.

Definition 4. 1. χ∗
1 := argminx∈S flower(x)

2. χ∗
2 := argmin{fupper(x)|x ∈ χ∗

1}

3. f∗
lower := minx∈S flower(x)

4. f∗
upper := min{fupper(x)|x ∈ χ∗

1}

Lemma 2.3. Under Assumption 1, χ∗
1 is non-empty, convex and compact. Therefore, χ∗

2 is also non-empty,

convex and compact.

Proof. Under Assumption 1, since S is compact and flower is continuous over S, flower should have a minimum.

Therefore, χ∗
1 is nonempty. On the other hand, since χ∗

1 is a subset of S and χ∗
1 = f−1

lower(f
∗
lower), which is the

pre-image of a closed set, it is bounded and relatively closed in S and in fact, it is compact since S is also closed.

Furthermore, for any v1, v2 ∈ χ∗
1, f

∗
lower ≤ flower(λv1 + (1− λ)v2) ≤ λflower(v1) + (1− λ)flower(v2) = f∗

lower,∀λ ∈

[0, 1]. Therefore, χ∗
1 is convex and compact. Following similar reasoning, χ∗

2 is also non-empty, convex and

compact.
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Although Assumption 1 is sufficient for us to establish some convergence guarantees for both lower and

upper objective functions, it will be shown later that fupper(xk) − f∗
upper, where xk is an output generated by

ACG-BiO method, may be negative, which means we may have superoptimal solution. Under that case, we

need some other assumptions to come up with a stronger convergence result for upper level objective function

and Holderian error bound turns out to be the solution.

Assumption 2. The function flower satisfies Holderian error bound for some α > 0 and r ≥ 1, i.e,

α

r

(
inf

x′∈χ∗
1

∥x′ − x∥
)r

≤ flower(x)− f∗
lower.

In fact, it is known that this condition holds generally when the function flower is analytic and the feasible

region S is bounded [13] or when flower is a piecewise convex polynomial and S is a polyhedron [11].

Theorem 2.4. Let {an}n and {bn}n be two sequences of real numbers. Assume that {bn}n is a strictly monotone

and divergent sequence (i.e. strictly increasing and approaching∞ , or strictly decreasing and approaching −∞)

and the following limit exists:

lim
n→∞

an+1 − an
bn+1 − bn

= l

then the limit:

lim
n→∞

an
bn

= l.

2.2 Conditional Gradient Method

The conditional gradient (CG) method [4] can be used to solve the following problem:

min
x∈S

f(x)

under the following assumptions:

• S is convex, compact with diameter D.

• f is convex, continously differentiable over S.

• ∇f is Lipschitz with constant L.

Different from any projection-based method such as projected gradient descent or its accelerated version fast

iterative shrinkage-thresholding algorithm [2], CG method [4] does not require the access to the projection oracle

onto S. Instead, it assumes that we can access to any linear minimisation oracle over S, which is generally less

expensive than projection. In fact, if S is a polyhedra then such oracle is reduced to a linear programming

problem. Turning to the method itself, the specific steps are shown in Algorithm 1.

In terms of convergence guarantee, it can be showed that CG method [4] can obtain a convergence rate of

O(1/K). Such claim is discussed in Theorem 2.5.
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Algorithm 1: [Frank and Wolfe [4]] Conditional gradient method for single-level optimisation problem

(CG-BiO) .

Data: stepsizes {αk}k
Result: sequence {xk}k

1 Initialize x0 ∈ S for k = 0, 1, . . . ,K do

2 Compute sk ← argmins∈S⟨∇f(xk), s⟩

3 Compute xk+1 ← xk + αk(sk − xk)

Theorem 2.5 (Frank and Wolfe [4]). Under stepsizes αk = 2
k+2 ,∀k ∈ N, let {xk}k=0,1,...,K be the sequence

generated by Algorithm 1, we have that

0 ≤ f(xK)− f∗ ≤ 2LD2

K + 2
,

where f∗ is the minimum of f over S.

2.3 Conditional Gradient-based Bilevel Optimization Method

Algorithm 2: [Jiang et al. [9]] Conditional gradient-based bilevel optimization (CG-BiO) .

Data: stepsizes {αk}k, target accuaracies ϵ1, ϵ2 > 0

Result: sequence {xk}k
1 Initialize x0 ∈ S such that 0 ≤ flower(x0)− f∗

lower ≤
ϵ1
2 ;

2 for k = 0, 1, . . . ,K do

3 Compute sk ← argmins∈χk
⟨∇fupper(xk), s⟩ where

χk := {s ∈ S | ⟨∇flower(xk), s− xk⟩ ≤ flower(x0)− flower(xk)};

4 if ⟨∇fupper(xk), xk − sk⟩ < ϵ2 and ⟨∇flower(xk), xk − sk⟩ < ϵ1
2 then

5 return xk and STOP;

6 else

7 Compute xk+1 ← xk + αk(sk − xk);

Before examining the convergence results of Algorithm 2, it is not obvious that the sequence of regions {χk}k
is non-empty at each iteration. Therefore, the validity of such sub linear minimisation problem can be ensured

by Theorem 2.6 proven in Jiang et al. [9].

Lemma 2.6 (Jiang et al. [9]). For any k ∈ N, we have χ∗
1 ⊆ χk.

Along with Algorithm 2, Jiang et al. [9] came up with the following convergence guarantees under Assumption

1 for the sequence generated by the algorithm.
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Theorem 2.7 (Jiang et al. [9]). Suppose that Assumption 1 holds, under stepsizes αk = 2
k+2 ,∀k ∈ N, let

{xk}k=1,...K , which is the sequence generated by Algorithm 2, we have that

fupper(xK)− f∗
upper ≤

2LupperD
2

K + 2

flower(xK)− f∗
lower ≤

2LlowerD
2

K + 2
+

1

2
ϵ1

From Theorem 2.7, when K approaches infinity, the optimality gap of flower does not neccessarily converge

to 0 and therefore, it is possible that the sequence does not contain any accumulation point that is exact solution

of the simplie bilevel optimisation problem (1). One cause for this undesirable property is the approximation χk

for χ∗
1 proposed by Jiang et al. [9] involves flower(x0). This allows the positive gap ϵ1 to appear in the optimality

gap of flower in the convergence result.

2.4 Weak Separation Oracle

Algorithm 3: [Braun et al. [3]] Weak separation oracle - LPsepS(c, x,Φ,K).

Data: linear objective c ∈ Rn, point x ∈ S, accuracy K ≥ 1, objective value Φ > 0

Result: Either vertex y ∈ S with ⟨c, x− y⟩ > Φ
K , or false : ⟨c, x− z⟩ ≤ Φ for all z ∈ S

1 if there exists y ∈ S cached with ⟨c, x− y⟩ > Φ
K then

2 return y;

3 else

4 y ← argmin{⟨c, z⟩|z ∈ S} (add to cache);

5 if ⟨c, x− y⟩ > Φ
K then

6 return y;

7 else

8 return false

As claimed by Braun et al. [3], Algorithm 3 is much weaker than the approximate minimisation mentioned

in the study done by Jaggi [8]. Precisely, the primary idea of this relaxation is the allowance of storing previous

solutions and reusing them rather than calling for linear minimisation problem every iterations. In the worst

case, i.e when none of linear gap values evaluated at current iteration’s data and the previous solutions does

not have sufficient improvement as defined by Φ, Algorithm 3, only has to call the linear minimisation in the

same manner as the standard conditional gradient method [4] does.

2.5 Motivating Example - Over-parameterized Regression

An example involved solving simple bi-level optimisation problem is over-parameterized regression. Rather

than unconstrainedly minimising the training loss function Ltrain(β), which depends on the training data set

Dtrain, this type of regression restricts the coefficient parameter β over some conditions, which are represented
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by some set S. In this paper, we adopt an example where S is {β ∈ Rd|∥β∥1 ≤ λ} for some λ > 0. In

general, if the covariate matrix Xtrain fails to have its columns linearly independent, then we expect there are

multiple solutions for the over-parameterized problem. Despite having the same training loss, those solutions

do potentially bring different outcomes on the loss Lvalid(β) of validation data set. Hence, it is natural for one

to consider minimising another objective function such as the loss over validation data set Dvalid. As it is the

case, we have the following bilevel optimisation problem.

min
β

Lvalid(β)

s.t. β ∈ argmin
ξ∈S

Ltrain(ξ).
(2)

When the loss function is chosen to be convex and L-smooth, both the upper-level and lower-level objectives

are smooth and convex. Such situation is considered in a subproblem in hyperparameter selection problems

proposed by Gao et al. [5]

3 Adaptive Conditional Gradient-based Bilevel Optimisation Method

3.1 Proposed Method

Despite such short coming in convergence guarantees as discussed in Section 2.3, the idea of approximating

implicit feasible region by the cutting plane still plays critical role in our proposed algorithm. Indeed, rather

than using flower(x0) in the right hand side of the equation of the plane, which is fixed, we need something

more dynamic and adaptive to induce the optimality gap of flower converge to 0 as K goes to infinity. Hence,

such goal can be achieve by introduing a sequence {βk}k satisfying some properties, which will be discussed in

Theorem 3.7.

Algorithm 4: Adaptive conditional gradient-based bilevel optimisation method - ACG-BiO.

Data: stepsizes {αk}k, supports {βk}k ∈ Rn , residuals {γk}k
Result: sequence {xk}k

1 Initialize x0 ∈ S;

2 for k = 0, 1, . . . ,K do

3 Compute sk such that

⟨∇fupper(xk), sk⟩ ≤ min
s∈χ1,k

⟨∇fupper(xk), s⟩+ γk

where χ1,k := {s ∈ S | ⟨∇flower(xk), s− xk⟩ ≤ βk − flower(xk)};

4 Compute xk+1 ← xk + αk(sk − xk);

Note that in the linear oracle step of Algorithm 4, only one option should be done throughout the process

and the second option can be considered as an approximation of the first option.
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Before dicussing the convergence analysis of Algorithm 4, we will guarantee the appropriateness of the linear

minimisation step by proving that the sequence {χ1,k}k is non-empty and in fact, convex and compact under

some restriction on supports.

Lemma 3.1. If the supports {βk}k satisfy

0 ≤ βk − f∗
lower,∀k ∈ N,

we have χ∗
1 ⊆ χ1,k, for all k ∈ N in Algorithm 4. Consequently, χ1,k is nonempty, compact, and convex for all

k ∈ N.

Proof. We have that for any x∗
1 ∈ χ∗

1, we have that ⟨∇flower(xk), x
∗
1 − xk⟩ ≤ flower(x

∗
1) − flower(xk) ≤ βk −

flower(xk). Therefore, x∗
1 ∈ χ1,k, which implies χ∗

1 ⊆ χ1,k. Eventually, the compactness and convexity of the

sequence can be justified by seeing that the closed half-planes are closed, convex and S is compact and convex

as well.

3.2 Convergence Analysis

Lemma 3.2. Suppose that Assumption (1) holds, under stepsizes αk = 2
k+2 , supports {βk}k such that βk ≥

f∗
lower, and residuals {γk} such that γk ≥ 0,∀k ∈ N, let {xk}k=1,...K be the sequence generated by the algorithm

(4) we have that

0 ≤ flower(xK)− f∗
lower ≤

2

(K + 1)K

K∑
i=1

(
i(βi−1 − f∗

lower) +
LD2i

i+ 1

)
.

Proof. We have that flower(xK+1) ≤ flower(xK) + ⟨∇flower(xK), xK+1− xK⟩+ Llower

2 ||xK+1− xK ||2 and we also

obtain that ⟨∇flower(xK), xK+1 − xK⟩ = αK⟨∇flower(xK), sK − xK⟩ ≤ αK(βK − flower(xK)). Hence, we have

flower(xK+1) ≤ flower(xK) + αK⟨∇flower(xK), sK − xK⟩+
Llower

2
α2
K∥sK − xK∥2

⇒ flower(xK+1) ≤ flower(xK) + αK(βK − flower(xK)) +
LlowerD

2

2
α2
K

⇒ flower(xK+1)− f∗
lower ≤ (1− αK)(flower(xK)− f∗

lower) + αK(βK − f∗
lower) +

LlowerD
2

2
α2
K

⇒ flower(xK+1)− f∗
lower ≤

K

K + 2
(flower(xK)− f∗

lower) +
2

K + 2
(βK − f∗

lower) +
2LlowerD

2

(K + 2)2

⇒ (K + 2)(K + 1)[flower(xK+1)− f∗
lower] ≤ (K + 1)K(flower(xK)− f∗

lower) + 2(K + 1)

(
βK − f∗

lower +
LlowerD

2

K + 2

)
⇒ (K + 1)K[flower(xK)− f∗

lower] ≤ 2

K∑
i=1

(
i(βi−1 − f∗

lower) +
LlowerD

2i

i+ 1

)

⇐⇒ flower(xK)− f∗
lower ≤

2

(K + 1)K

K∑
i=1

(
i(βi−1 − f∗

lower) +
LlowerD

2i

i+ 1

)
.
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Corollary 3.3. Suppose that Assumption (1) holds, under stepsizes αk = 2
k+2 , supports {βk}k such that

βk ≥ f∗
lower, and residuals {γk} such that γk ≥ 0,∀k ∈ N, let {xk}k=1,...K be the sequence generated by the

algorithm (4), if βk → f∗
lower then flower(xK)→ f∗

lower.

Proof. By applying Theorem 2.4 for the right hand side of the last inequality, we have that if βk → f∗
lower then

lim
K→∞

2

(K + 1)K

K∑
i=1

(
i(βi−1 − f∗

lower) +
LlowerD

2i

i+ 1

)
= lim

K→∞

2

(K + 2)(K + 1)− (K + 1)K

[
(K + 1)(βK − f∗

lower) +
LlowerD

2(K + 1)

K + 2

]
= lim

K→∞

[
(βK − f∗

lower) +
LlowerD

2

K + 2

]
= 0

By squeeze theorem, we have that

lim
K→∞

(flower(xK)− f∗
lower) = 0.

Proposition 3.4. Suppose that Assumption (1) holds, under stepsizes αk = 2
k+2 , supports {βk}k such that

βk ≥ f∗
lower, and residuals {γk} such that γk ≥ 0,∀k ∈ N, let {xk}k=1,...K be the sequence generated by the

algorithm (4) we have that

fupper(xK)− f∗
upper ≤

2

(K + 1)K

K∑
i=1

(
iγi−1 +

LupperD
2i

i+ 1

)
.

Proof. We have that

⟨∇fupper(xk), xk+1 − xk⟩ =αk⟨∇fupper(xk), sk − xk⟩

≤αk (⟨∇fupper(xk), x
∗
2 − xk⟩+ γk)

≤αk(f
∗
upper − fupper(xk) + γk),

for any x∗
2 ∈ χ∗

2. In addition, we have that

fupper(xK+1) ≤ fupper(xK) + ⟨∇fupper(xK), xK+1 − xK⟩+
Lupper

2
||xK+1 − xK ||2

⇒ fupper(xK+1) ≤ fupper(xK) + αK(f∗
upper − fupper(xK) + γK) +

LupperD
2

2
α2
K

⇒ fupper(xK+1)− f∗
upper ≤

K

K + 2
(fupper(xK)− f∗

upper) +
2

K + 2
γK +

2LupperD
2

(K + 2)2

Similar to the proof of proposition (3.2), we have that

fupper(xK)− f∗
upper ≤

2

(K + 1)K

K∑
i=1

(
iγi−1 +

LupperD
2i

i+ 1

)
.

Since |∥∇fupper(x)∥∗ − ∥∇fupper(y)∥∗| ≤ ∥∇f(x)−∇f(y)∥∗ ≤ Lupper∥x− y∥, the function ∥∇fupper(x)∥∗ is

continuous over S and since S is compact, there exists a maximum of this function over S.
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Proposition 3.5. Suppose that Assumption (1) holds, under stepsizes αk ∈ (0, 1), supports {βk}k such that

βk ≥ f∗
lower, and residuals {γk} such that γk ≥ 0,∀k ∈ N, let {xk}k=1,...K be the sequence generated by the

algorithm (4), we have that if Assumption (2) also holds, then

fupper(xK)− f∗
upper ≥ −G

( r
α
(flower(xK)− f∗

lower)
) 1

r

,∀K ∈ N,

where G := maxx∈S ∥∇fupper(x)∥∗.

Proof. Under assumption (2), we have that

α

r
∥xK − vK∥r ≤ flower(xK)− f∗

lower ⇐⇒ ∥xK − vK∥ ≤
( r
α
(flower(xK)− f∗

lower)
) 1

r

where vk ∈ argminx′∈χ∗
1
∥x′ − xK∥. Thus, we have that

fupper(xK)− f∗
upper ≥ fupper(xK)− fupper(vK) ≥ ⟨∇fupper(vK), xK − vK⟩

≥ −∥fupper(vK)∥∗∥xK − vK∥

≥ −G
( r
α
(flower(xK)− f∗

lower)
) 1

r

.

Corollary 3.6. Suppose that Assumption (1) and Assumption (2) hold, under stepsizes αk = 2
k+2 , supports

{βk}k such that βk ≥ f∗
lower, βk → f∗

lower, and residuals {γk} such that γk ≥ 0,γk → 0,∀k ∈ N, let {xk}k=1,...K

be the sequence generated by the algorithm (4), we have that

fupper(xK)→ f∗
upper.

Theorem 3.7. Suppose that Assumption (1) holds, under stepsizes αk = 2
k+2 , supports βk such that 0 ≤

βk − f∗
lower ≤ O

(
1
k

)
, 0 ≤ γk ≤ O

(
1
K

)
,∀k ∈ N, let {xk}k=1,...K be the sequence generated by the algorithm (4)

we have that

fupper(xK)− f∗
upper ≤ O

(
1

K

)
,

flower(xK)− f∗
lower ≤ O

(
1

K

)
,

and thus, {xk}k admits a subsequence that converges to a point in χ∗
2. In fact, any accumulation point of {xk}k

is a solution of problem (1). In addition, under assumption (2), we have

fupper(xK)− f∗
upper ≥ −O

[(
1

K

) 1
r

]
,∀K ∈ N,

and thus, flower(xK)− f∗
lower, fupper(xK)− f∗

upper → 0 as K →∞.

Remark 3.1. In theorem (3.7), the sequence {βk}k satisfying the stated conditions can be generated by running

the conditional gradient method [4] for lower-level problem and obtain the sequence {yk}k such that

0 ≤ flower(yk)− f∗
lower ≤

2LlowerD
2

tk + 2
≤ O

(
1

k

)
,

where tk is the smallest integer such that the right most inequality is true. Then, let βk := flower(yk),∀k ∈ N.

Similarly, the sequence {γk}k satisfying properties in Theorem 3.7 can be generated in the same way.
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4 Application of LPsep to ACG-BiO Method

4.1 Proposed Method

Turning to the relaxed version of the adaptive conditional gradient-based bilevel optimisation method (5), the

RACG-BiO method, we adopt the same recursive rule for {Φk}k as Braun et al. [3], which is described in

Algorithm 5. Noticably, there is no circumstances in which xk is assigned to xk+1 as in the lazy conditional

gradient algorithm due to the minor change discussed in the above paragraph. Indeed, such inconvenience

also comes from the fact although we can make the reasoning fupper(xK+1) − f∗
upper = fupper(xK) − f∗

upper ≤

⟨fupper(xK), xK−x∗⟩ ≤ ΦK as Braun et al. [3] do in the negative call case as we can prove x∗ ∈ χ1,k in the next

theorem, we cannot make the same estimate for flower. As it is the case, the update rule xk+1 ← xk+αk(sk−xk)

is a must for both positive and negative call to establish that both flower(xk) − f∗
lower and fupper(xk) − f∗

upper

must not strictly greater than Φk−1 for all positive integer k as in Theorem 4.2.

Algorithm 5: Relaxed adaptive conditional gradient-based bilevel optimisation method.

Data: stepsizes {αk}k, supports {βk}k, initial optimality gap Φ0 > 0, target accuaracies ϵ1, ϵ2 > 0

Result: sequence {xk}k
1 Initialize x0 ∈ S;

2 for k = 0, 1, . . . ,K do

3 Compute sk ← LPsepχ1,k
(∇fupper(xk), xk,Φk, 1), where

χ1,k := {s ∈ S | ⟨∇flower(xk), s− xk⟩ ≤ βk − flower(xk)};

4 Compute xk+1 ← xk + αk(sk − xk);

5 Compute Φk+1 ←
Φk+

LD2

2 α2
k+1

1+αk+1
, where L := max{Llower, Lupper};

Before jumping to the convergence analysis of Algorithm 5, Theorem 4.1 illustrates some properties of

sequence {Φk}k defined in Algorithm 5 as these properties will play central roles in proving important results

summarised in Theorem 4.2.

Proposition 4.1. When αk = 2
k+2 ,∀k ∈ N, the sequence {Φk}k defined in the algorithm (5) satisfies the

following inequalities

2LD2k

(k + 3)(k + 4)
≤ Φk ≤

3max{Φ0, LD
2}

k + 3
,∀k ∈ N+

Proof. By substituting αk = 2
k+2 to the recursive formula of {Φk}k, we have that

Φk =
k + 2

k + 4

[
Φk−1 +

2LD2

(k + 2)2

]
⇐⇒ (k + 4)(k + 3)Φk = (k + 3)(k + 2)Φk−1 +

2LD2(k + 3)

k + 2

⇐⇒ (k + 4)(k + 3)Φk = 12Φ0 + 2LD2
k∑

i=1

i+ 3

i+ 2
.

11



Considering the left hand side inequality, we have that

(k + 4)(k + 3)Φk ≥ 2LD2
k∑

i=1

1

⇐⇒ (k + 4)(k + 3)Φk ≥ 2LD2k

⇐⇒ Φk ≥
2LD2k

(k + 4)(k + 3)
.

Turning to the right inequality, we have that

(k + 4)(k + 3)Φk ≤ 12max{Φ0, LD
2}+ 2max{Φ0, LD

2}
k∑

i=1

3

2

⇐⇒ (k + 4)(k + 3)Φk ≤ 3max{Φ0, LD
2}(k + 4)

⇒ Φk ≤
3max{Φ0, LD

2}
k + 3

4.2 Convergence Analysis

Now, we have enough tools to establish some critical results which are summarized in the theorem (4.2).

Noticably, despite the relaxation of the linear oracle, we successfully maintain the suboptimal convergence rate

of O( 1
K ) for both objective functions.

Theorem 4.2. Suppose that

Φi ≥ max{max{fupper(x)|x ∈ S} −min{fupper(x)|x ∈ S},max{flower(x)|x ∈ S} −min{flower(x)|x ∈ S},

∀0 ≤ i ≤ 4, and Assumption 1 hold, under stepsizes αk = 2
k+2 , supports βk such that 0 ≤ βk − f∗

lower ≤

O
(
1
k

)
,∀k ∈ N, let {xk}k=1,...K be the sequence generated by the Algorithm 5 we have that

fupper(xK)− f∗
upper ≤ O

(
1

K

)
,

flower(xK)− f∗
lower ≤ O

(
1

K

)
,

and thus, {xk}k admits a subsequence that converges to a point in χ∗
2. In fact, any accumulation point of {xk}k

is a solution of problem (1). In addition, under Assumption 2, we have

fupper(xK)− f∗
upper ≥ −O

[(
1

K

) 1
r

]
,∀K ∈ N,

and thus, flower(xK)− f∗
lower, fupper(xK)− f∗

upper → 0 as K →∞.

Proof. We only prove that

fupper(xK)− f∗
upper ≤ O

(
1

K

)
,

12



since the remaining claim can be proved by using similar arguments in Theorem 3.7. To do so, we use induction

to prove that

fupper(xK)− f∗
upper ≤ ΦK−1,∀K ∈ N+

From the assumption with respect to Φ0,Φ1,Φ2,Φ3, we have that the both inequalities are true for base

cases k = 1, 2, 3, 4 and now we assume that such inequality is true up to k = K > 4. Firstly, we consider the

case of positive call.

fupper(xK+1) ≤ fupper(xK) + ⟨∇fupper(xK), xK+1 − xK⟩+
L

2
||xK+1 − xK ||2

⇒ fupper(xK+1) ≤ fupper(xK) + αK⟨∇fupper(xK), sK − xK⟩+ α2
K

L

2
∥sK − xK∥2

⇒ fupper(xK+1)− f∗
upper ≤ fupper(xK)− f∗

upper − αkΦK +
LD2

2
α2
K ≤ ΦK−1 − αkΦK +

LD2

2
α2
K = ΦK

Under the negative call, we have ⟨∇fupper(xK), sK⟩ ≤ ⟨∇fupper(xK), x∗⟩ since x∗ ∈ χ∗
1 ⊆ χ1,k. Hence, we have

that

fupper(xK+1) ≤ fupper(xK) + αK⟨∇fupper(xK), x∗ − xK⟩+
LD2

2
α2
K

fupper(xK+1) ≤ fupper(xK) + αK(f∗
upper − fupper(xK)) +

LD2

2
α2
K

fupper(xK+1)− f∗
upper ≤

K

K + 2
(fupper(xK)− f∗

upper) +
2LD2

(K + 2)2
≤ K + 2

K + 4
ΦK−1 +

2LD2

(K + 2)2
≤ ΦK

Where the last inequality comes from

K

K + 2
ΦK−1 +

2LD2

(K + 2)2
≤ ΦK ⇐⇒

K

K + 2
ΦK−1 +

2LD2

(K + 2)2
≤ K + 2

K + 4

[
ΦK−1 +

2LD2

(K + 2)2

]
⇐⇒ 4LD2

(K + 2)2(K + 4)
≤ 4

(K + 2)(K + 4)
ΦK−1 ⇐⇒ ΦK−1 ≥

LD2

K + 2

and the most right inequality can be sufficently justified by observing the following inequality, where the left

term is the lower bound of ΦK−1, which we obtain in the Theorem 4.1.

2LD2(K − 1)

(K + 3)(K + 2)
≥ LD2

K + 2
⇐⇒ (K − 5)

(K + 2)(K + 3)
≥ 0,∀K ≥ 5

Besides, from Theorem 4.1, we have that ΦK ≤ O
(

1
K

)
. Therefore, the claim is true.

Remark 4.1. The assumption Φ0,Φ1,Φ2,Φ3 ≥ max{fupper(x)|x ∈ S}−min{fupper(x)|x ∈ S}, max{flower(x)|x ∈

S}−min{flower(x)|x ∈ S} can be satisfied by appropriately setting Φ0. Specifically, we should note the following

estimate for any x ∈ S

flower(x) ≥ flower(x0) + ⟨∇flower(x0), x− x0⟩

≥ flower(x0)− ∥∇flower(x0)∥∗∥x− x0∥

≥ flower(x0)− ∥∇flower(x0)∥∗D := m1.

Following the same reasoning, we also obtain

fupper(x) ≥ fupper(x0)− ∥∇fupper(x0)∥∗D := m2,∀x ∈ S

13



In addition, we have that for all x ∈ S

flower(x) ≤ flower(x0) + ⟨∇flower(x0), x− x0⟩+
Llower

2
||x− x0||2

≤ flower(x0) + ∥∇flower(x0)∥∗∥x− x0∥+
Llower

2
||x− x0||2

≤ flower(x0) + ∥∇flower(x0)∥∗D +
Llower

2
D2 := M1

Similarly, we have that fupper(x) ≤ fupper(x0) + ∥∇fupper(x0)∥∗D +
Lupper

2 D2 := M2,∀x ∈ S. In the proof

of Theorem 4.1, we have the following estimate

Φk ≥
12Φ0

(k + 4)(k + 3)
,∀k ∈ N

By setting Φ0 such that

Φ0 ≥
(3 + 4)(3 + 3)

12
max{M2 −m2,M1 −m1},

we have the following consequences by noting that M1 ≥ max{flower(z)|z ∈ S},M2 ≥ max{fupper(z)|z ∈ S}

and m1 ≤ min{flower(z)|z ∈ S},m2 ≤ min{fupper(z)|z ∈ S}

Φ3,Φ2,Φ1,Φ0 ≥ max{M2 −m2,M1 −m1}

⇒ Φ2,Φ1,Φ0 ≥ max {max{fupper(x)|x ∈ S} −min{fupper(x)|x ∈ S},max{flower(x)|x ∈ S} −min{flower(x)|x ∈ S}}

5 ACG-BiO Method under The Relaxation of The Boundedness of

Feasible Region

5.1 Proposed Method

In this section, we consider the feasible region S that is not necessarily bounded, closed and convex and we

assume in this section that the bilevel problem still has solutions over the feasible region S, which is possibly

unbounded.

Lemma 5.1. Let {∆k}k be a sequence of compact sets in Rn with diameters {σk}k such that ∆k ⊂ ∆k+1,∀k ∈ N

such that given any point a in Rn, there exist some integer ka that ∆ka
contains a, then there exists k0 ∈ N such

that x∗ ∈ χ1,k and f∗
1,k = f∗

lower,∀k ≥ k0, where χ1,k is defined as in Algorithm 6, and f∗
1,k := min{flower(x)|x ∈

S ∩∆k}. Consequently, χ1,k is nonempty, closed, and convex for all k ∈ N, k ≥ k0.

Proof. Under construction of {∆k}k, there exists k0 ∈ N such that σk0
≥
√
n∥x0 − x∗∥ > σk0−1. In fact, it is

sufficient to set k0 :=
⌈
σ−1 (

√
n∥x0 − x∗∥)

⌉
. Therefore, x∗ ∈ ∆(x0, σk0

/
√
n) and as a result, for every k ≥ k0,

x∗ ∈ S∩∆(x0, σk/
√
n). Furthermore, since ⟨flower(xk), x

∗−xk⟩ ≤ flower(x
∗)−flower(xk) ≤ βk−flower(xk),∀k ∈

N, we have that x∗ ∈ χ1,k,∀k ≥ k0. As a consequence, min{flower(x)|x ∈ S∩∆(x0, σk/
√
n)} = min{flower(x)|x ∈

S} for every k ≥ k0, which implies that f∗
1,k = f∗

lower,∀k ≥ k0.
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Algorithm 6: Unbounded adaptive conditional gradient-based bilevel optimisation method.

Data: stepsizes {αk}k, supports {βk}k, residuals {γk}k, regions {∆k}k
Result: sequence {xk}k

1 Initialize x0 ∈ S;

2 for k = 0, 1, . . . ,K do

3 if χ1,k := {s ∈ S ∩∆(x0, σk/
√
n) : ⟨∇flower(xk), s− xk⟩ ≤ βk − flower(xk)} = ∅ then

4 Compute sk ← xk

5 else

6 Compute sk such that

⟨∇fupper(xk), sk⟩ ≤ min
s∈χ1,k

⟨∇fupper(xk), s⟩+ γk

7 Compute xk+1 ← xk + αk(sk − xk);

5.2 Convergence Analysis

Proposition 5.2. Suppose that Assumption 1 holds, under stepsizes αk = 2
k+2 , supports {βk}k such that βk ≥

f∗
lower, and residuals {γk} such that γk ≥ 0, regions {∆k}k satisfy conditions in Theorem 5.1, let {xk}k=1,...K

be the sequence generated by Algorithm 6 we have that

0 ≤ flower(xK)− f∗
lower ≤

(k0 + 1)k0[flower(xk0
)− f∗

lower]

(K + 1)K
+

2

(K + 1)K

K∑
i=1

(
i(βi−1 − f∗

lower) +
Llowerσ

2
i−1i

i+ 1

)
.

Proof. We have that flower(xK+1) ≤ flower(xK) + ⟨∇flower(xK), xK+1− xK⟩+ Llower

2 ||xK+1− xK ||2 and we also

obtain that ⟨∇flower(xK), xK+1 − xK⟩ = αK⟨∇flower(xK), sK − xK⟩ ≤ αK(βK − flower(xK)). Hence, we have

flower(xK+1) ≤ flower(xK) + αK⟨∇flower(xK), sK − xK⟩+
Llower

2
α2
K∥sK − xK∥2

⇒ flower(xK+1) ≤ flower(xK) + αK(βK − flower(xK)) +
Llowerσ

2
K

2
α2
K

⇒ flower(xK+1)− f∗
lower ≤ (1− αK)(flower(xK)− f∗

lower) + αK(βK − f∗
lower) +

Llowerσ
2
K

2
α2
K

⇒ flower(xK+1)− f∗
lower ≤

K

K + 2
(flower(xK)− f∗

lower) +
2

K + 2
(βK − f∗

lower) +
2Llowerσ

2
K

(K + 2)2

⇒ (K + 2)(K + 1)[flower(xK+1)− f∗
lower] ≤ (K + 1)K(flower(xK)− f∗

lower) + 2(K + 1)

(
βK − f∗

lower +
Llowerσ

2
K

K + 2

)
⇒ (K + 1)K[flower(xK)− f∗

lower] ≤ (k0 + 1)k0[flower(xk0)− f∗
lower]

+ 2

K∑
i=k0+1

(
i(βi−1 − f∗

lower) +
Llowerσ

2
i−1i

i+ 1

)
⇐⇒ flower(xK)− f∗

lower ≤
(k0 + 1)k0[flower(xk0

)− f∗
lower]

(K + 1)K

+
2

(K + 1)K

K∑
i=k0+1

(
i(βi−1 − f∗

lower) +
Llowerσ

2
i−1i

i+ 1

)
.
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Corollary 5.3. Suppose that Assumption 1 holds, under stepsizes αk = 2
k+2 , supports {βk}k such that βk ≥

f∗
lower, and residuals {γk} such that γk ≥ 0, regions {∆k}k satisfy conditions in Theorem 5.1, let {xk}k=1,...K

be the sequence generated by Algorithm 6, if βk → f∗
lower and σ2

k/k → 0 then flower(xK)→ f∗
lower.

Proof. By applying Theorem 2.4, we have that if βk → f∗
lower and σ2

k/k → 0 then

lim
K→∞

2

(K + 1)K

K∑
i=k0+1

(
i(βi−1 − f∗

lower) +
Llowerσ

2
i−1i

i+ 1

)

= lim
K→∞

2

(K + 2)(K + 1)− (K + 1)K

[
(K + 1)(βK − f∗

lower) +
Llowerσ

2
K(K + 1)

K + 2

]
= lim

K→∞

[
(βK − f∗

lower) +
Llowerσ

2
K

K + 2

]
= 0

By squeeze theorem, we have that

lim
K→∞

(flower(xK)− f∗
lower) = 0.

Proposition 5.4. Suppose that Assumption (1) holds, under stepsizes αk = 2
k+2 , supports {βk}k such that βk ≥

f∗
lower, and residuals {γk} such that γk ≥ 0, regions {∆k}k satisfy conditions in Theorem 5.1, let {xk}k=1,...K

be the sequence generated by the algorithm (6) we have that

fupper(xK)− f∗
upper ≤

(k0 + 1)k0[fupper(xk0
)− f∗

upper]

(K + 1)K
+

2

(K + 1)K

K∑
i=1

(
iγi−1 +

Lupperσ
2
i−1i

i+ 1

)
.

Proof. We have that

⟨∇fupper(xk), xk+1 − xk⟩ =αk⟨∇fupper(xk), sk − xk⟩

≤αk (⟨∇fupper(xk), x
∗
2 − xk⟩+ γk)

≤αk(f
∗
upper − fupper(xk) + γk),

for any x∗
2 ∈ χ∗

2. In addition, we have that

fupper(xK+1) ≤ fupper(xK) + ⟨∇fupper(xK), xK+1 − xK⟩+
Lupper

2
||xK+1 − xK ||2

⇒ fupper(xK+1) ≤ fupper(xK) + αK(f∗
upper − fupper(xK) + γK) +

Lupperσ
2
K

2
α2
K

⇒ fupper(xK+1)− f∗
upper ≤

K

K + 2
(fupper(xK)− f∗

upper) +
2

K + 2
γK +

2Lupperσ
2
K

(K + 2)2

Similar to the proof of Theorem 3.2, we have that

fupper(xK)− f∗
upper ≤

(k0 + 1)k0[fupper(xk0)− f∗
upper]

(K + 1)K
+

2

(K + 1)K

K∑
i=1

(
iγi−1 +

Lupperσ
2
i−1i

i+ 1

)
.
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Proposition 5.5. Suppose that Assumption 1 holds, under stepsizes αk ∈ (0, 1), supports {βk}k such that βk ≥

f∗
lower, and residuals {γk} such that γk ≥ 0, regions {∆k}k satisfy conditions in Theorem 5.1, let {xk}k=1,...K

be the sequence generated by Algorithm 6, we have that if Assumption 2 also holds, then ∀K ≥ k0,K ∈ N

fupper(xK)− f∗
upper ≥− (∥∇fupper(x0)∥∗ + 2LupperσK)

[ r
α
(flower(xK)− f∗

lower)
] 1

r

− Lupper

[ r
α
(flower(xK)− f∗

lower)
] 2

r

.

Proof. Under assumption (2), we have that

α

r
∥xK − vK∥r ≤ flower(xK)− f∗

lower ⇐⇒ ∥xK − vK∥ ≤
[ r
α
(flower(xK)− f∗

lower)
] 1

r

where vk ∈ argminx′∈χ∗
1
∥x′ − xK∥. Thus, we have that

fupper(xK)− f∗
upper ≥ fupper(xK)− fupper(vK) ≥ ⟨∇fupper(vK), xK − vK⟩

⟨∇fupper(vK), xK − vK⟩ ≥ −∥∇fupper(vK)∥∗∥xK − vK∥ ≥ −(∥∇fupper(xK)∥∗ + Lupper∥xk − vK∥)∥xK − vK∥

⇒ ⟨∇fupper(vK), xK − vK⟩ ≥ −(∥∇fupper(x0)∥∗ + Lupper∥xk − x0∥+ Lupper∥xk − vK∥)∥xK − vK∥

⇒ ⟨∇fupper(vK), xK − vK⟩ ≥ −(∥∇fupper(x0)∥∗ + 2LupperσK + Lupper∥xk − vK∥)∥xK − vK∥

Therefore, we have that

fupper(xK)− f∗
upper ≥− (∥∇fupper(x0)∥∗ + 2LupperσK)

[ r
α
(flower(xK)− f∗

lower)
] 1

r

− Lupper

[ r
α
(flower(xK)− f∗

lower)
] 2

r

.

Corollary 5.6. Suppose that Assumption 1 and Assumption 2 hold, under stepsizes αk = 2
k+2 , supports {βk}k

such that βk ≥ f∗
lower, βk → f∗

lower, and residuals {γk} such that γk ≥ 0,γk → 0, regions {∆k}k satisfy conditions

in Theorem 5.1 and diameters {σk}k such that σ2+r
k /k → 0, ∀k ∈ N, let {xk}k=1,...K be the sequence generated

by Algorithm 6, we have that

fupper(xK)→ f∗
upper.

Theorem 5.7. Suppose that Assumption 1 holds, under stepsizes αk = 2
k+2 , supports βk such that 0 ≤ βk −

min{flower(x)|x ∈ S ∩∆(x0, σk/
√
n)} ≤ O(σ2

k/k), if χk ̸= ∅, residuals {γk}k such that γk ≤ O
(
1
k

)
, and regions

{∆k}k satisfy conditions in Theorem 5.1. For {xk}k=1,...K be the sequence generated by Algorithm 6, then

∀K ≥ k0

fupper(xK)− f∗
upper ≤ O

(
σ2
K

K

)
,

flower(xK)− f∗
lower ≤ O

(
σ2
K

K

)
.
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In addition, under Assumption 2, we have that

fupper(xK)− f∗
upper ≥ −O

[(
σ2+r
K

K

) 1
r

]
,∀K ≥ k0,K ∈ N,

Furthermore, if σ2+r
k /k → 0, then flower(xK)− f∗

lower, fupper(xK)− f∗
upper → 0 as K →∞.

Remark 5.1. To generate supports {βk}k satisfy conditions in theorem (5.7), given an integer k, we run the CG

method [4] on flower over χ1,k for tk iterations and obtain yk ∈ S such that

flower(yk)−min{flower(x)|x ∈ S ∩∆(x0, σk/
√
n)} ≤ 2Llower(2σk)

2

tk + 2
≤ O

(
σ2
k

k

)
.

Then, we set βk := flower(yk).

6 Computational Experiment

6.1 Experiment Description and Data Preprocessing

In this section, we aim to solve a sparse linear regression problem on the Wikipedia Math Essential dataset

mentioned in the study conducted by Rozemberczki et al. [14]. Specifically, the data set consists of 731 attributes

including numerical variables only. In such case, we select the attribute ’0’, which is the daily number of visits

on page ’Mathematics’ as the response variable, which resulted in data matrix D ∈ Rn×d in which n = 1068

observations and d = 730 characteristics and an outcome vector y ∈ Rn. In details, 60 % of the dataset is

randomly assigned to training dataset (Xtrain, ytrain), another 20 % of the dataset is chosen to be validation

dataset (Xvalid, yvalid) and the test dataset (Xtest, ytest)is made up of the final 20 % of the data set. In addition,

we also performed a division of 104 for every elements of D and y to avoid numerical instability.

As squared loss function is adopted, the lower level objective function is the training error flower(β) =

1
2∥Xtrainβ − ytrain∥22, the upper-level objective function is the validation error fupper(β) =

1
2∥Xvalidβ − yvalid∥22

and the feasible region in this case is S = {β ∈ Rd|∥β∥1 ≤ λ} for λ = 1 to induce sparsity in β. The performance

of our training and validation procedure will be evaluated based on the test error 1
2∥Xtestβ − ytest∥22. These

statistics of ACG-BiO will be compared to those of CG-BiO [9], the minimal norm gradient (MNG) method

devised by Beck and Sabach [1], the bilevel gradient sequential averaging (BiG-SAM) method proposed by

Sabach and Shtern [15], and averaging iteratively regularized gradient (a-IRG) method by Kaushik and Yousefian

[10] to assess the efficiency.

6.2 Mathematical Formulation

With the above description, we have the following simple bilevel optimisation set up:

min
β∈Rd

1

2
∥Xvalidβ − yvalid∥22

s.t. β ∈ arg min
ξ∈Rd,∥ξ∥1≤λ

1

2
∥Xtrainξ − ytrain∥22,

(3)
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Under this formulation, we have that S = Sλ := {β ∈ Rd | ∥β∥1 ≤ λ} is convex and compact with a diameter

of D = λ
√
2. Furthermore, we also have

∇flower(β) = (Xtrain)
T (Xtrainβ − ytrain)⇒ D2

βflower(β) = (Xtrain)
TXtrain ⪰ 0,∀β ∈ S

Hence, flower is a convex function over S. Similarly, we can see that fupper is also a convex function over S.

In addition, we also have

∥∇flower(β1)−∇flower(β2)∥2 = ∥(Xtrain)
TXtrain(β1 − β2)∥2 ≤ λmax

(
(Xtrain)

TXtrain

)
∥(β1 − β2)∥2

Thus, ∇flower and ∇fupper are Lipschit-continuous with Llower = λmax

(
(Xtrain)

TXtrain

)
and Lupper =

λmax

(
(Xvalid)

TXvalid

)
respectively. Therefore, both ACG-BiO and CG-BiO can be used to solve problem (3).

6.3 Implementation Details

6.3.1 Solving for optimal values.

To obtain the values of f∗
lower and f∗

upper, we solve the following two quadratic programming problems using

CVX [6] [7]:

min
β∈Rd

1

2
∥Xtrainβ − ytrain∥22

s.t. ∥β∥1 ≤ λ,

(4)

and

min
β∈Rd

1

2
∥Xvalidβ − yvalid∥22

s.t. ∥β∥1 ≤ λ,

1

2
∥Xtrainβ − ytrain∥22 ≤ f∗

lower.

(5)

For all methods, we run them for no more than K = 5×104 iterations. Before, entering the primary method, we

would like to discuss a accelerated proximal gradient method known as the fast iterative shrinkage-thresholding

algorithm (FISTA) by Beck and Teboulle [2], which has convergence rate of O
(
1/K2

)
as it will be used in imple-

menting ACG-BiO method 4 and a projection oracle invented for this problem, which can save computational

cost as it does not require solving any quadratic programming problem.

6.3.2 Fast Iterative Shrinkage-Thresholding Algorithm

To begin with, FISTA [2] can tackle to following problem

min
x∈Rn

f(x) := g(x) + h(x),

where g is a convex, differentiable function and h is a convex function. In addition, the proximal function with

respect to a function h and a step parameter t can be defined as follows:

proxh,t = arg min
z∈Rn

(
1

2t
∥x− z∥2 + h(z)

)
.
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Algorithm 7: [Beck and Teboulle [2]] Fast iterative shrinkage-thresholding algorithm (FISTA).

Data: stepsizes {tk}k
Result: sequence {xk}k

1 Initialize x0 = x−1 ∈ Rn;

2 for k = 1, . . . ,K do

3 Compute v ← xk−1 +
k−2
k−1 (xk−1 − xk−2);

4 Compute xk = proxh,tk (v − tk∇g(v));

Along the Algorithm 7, Beck and Teboulle [2] also came up with the following result for the convergence

guarantee for the method.

Theorem 6.1 (Beck and Teboulle [2]). Assuming that g is convex, L−smooth with L > 0, has an effective

domain of Rn while h is convex, and the proximal is easy to evaluate. Under the constant stepsizes tk = t ≤

1/L,∀k ∈ N, the sequence {xk}k generated by Algorithm 7 satisfies the following estimate:

f(xk)− f∗ ≤ 2∥x∗ − x0∥2

t(k + 1)2
.

In this example, we observe that f := flower with L := Llower > 0, and h := IS , which is the indicator of the

convex feasible region S and therefore, is also convex. In this case, the proximal is reduced to be the projection

onto the set S, which will be discussed in the next section.

6.3.3 Projection Oracle

We devote this section to devise an inexpensive algorithm to solve exactly the following problem:

min
x∈Rd

∥x− v∥22

s.t. ∥x∥1 ≤ λ,

(6)

where v is a given vector in Rd, and λ is a given non-negative number. To begin with, in case ∥v∥1 ≤ λ, the

solution will be v itself. Therefore, we consider ∥v∥1 > λ. Under such case, we have the following minimisation

problem:

min
y∈Rd

+

∥y − vabs∥22

s.t. ⟨1d, y⟩ ≤ λ,

(7)

where vabs is the vector such that [vabs]i = |vi|,∀i = 1, . . . , d.

Lemma 6.2. Let x+ be the solution of the problem (6) and y+ be the solution of problem (7) then we have:

[x+]i = sign (vi) [y
+]i,∀i = 1, . . . , d
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Algorithm 8: Projection oracle on set S-ProjSλ
(v).

Data: vector v ∈ Rd

Result: projection of v onto S

1 Set g := −1d;

2 Compute l← dim(v);

3 if ∥v∥1 ≤ λ then

4 return v;

5 else

6 Compute vabs ← (|v1|, . . . , |vd|)T ;

7 while l > 0 do

8 Compute vabs ← ProjPl
(vabs);

9 Compute vector r composed by the indices of negative elements in g;

10 if there exists any non-positive element in vabs then

11 for i = 1, . . . , dim(vabs) do

12 if [vabs]i ≤ 0 then

13 gri = 0;

14 end

15 Compute vabs such that it contains only positive elements of the current vabs;

16 Compute l← dim(vabs);

17 else

18 for i = 1, . . . , dim(vabs) do

19 gri = [vabs]i;

20 end

21 Compute ProjS(v)← (g1sign(v1), . . . , gdsign(vd));

22 Set l := 0;

23 return ProjS(v);

24 end

25 end

26 end
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Proof. Let z ∈ Rd
+ such that zi = sign (vi) [y

+]i,∀i = 1, . . . , d then ∥z∥1 = ∥x+∥1 ≤ λ. We have the following

estimate

∥z − v∥22 ≥ ∥x+ − v∥22

On the other hand, we have that

∥x+ − v∥22 = ∥x+∥2 − 2⟨x+, v⟩+ ∥v∥22 ≥ ∥x+∥2 − 2∥x+∥2∥v∥2 + ∥v∥22 = |∥z∥2 − ∥v∥2|2,

and since zivi = (sign (vi) vi)[y
+]i ≥ 0,∀i = 1, . . . , d, we have that

⟨z, v⟩ = ∥z∥2∥v∥2 ⇒ ∥z − v∥2 = |∥z∥2 − ∥v∥2|

Hence, ∥z − v∥22 = ∥x+ − v∥22 ⇒ z = x+.

Lemma 6.3. ⟨1d, y
+⟩ = λ

Proof. Assume ⟨1d, y
+⟩ < λ and consider g(t) := ⟨1d, vabs + t(y+ − vabs)⟩, we have that g is continuous over

[0, 1] and g(0)g(1) < 0 then there exists t0 ∈ (0, 1) such that g(t0) = 0. In that case, vabs+ t0(y
+−vabs) belongs

to the feasible region of problem (7). Nevertheless, we have that

∥vabs + t0(y
+ − vabs)− vabs∥22 = (t0)

2∥y+ − vabs∥22 < ∥y+ − vabs∥22,

which contradicts the definition of y+.

Let Pl := {s ∈ Rl|⟨1l, s⟩ = λ}, l ∈ N∗ and u := ProjPd
(vabs), then we have the following observation.

Lemma 6.4. For all q ∈ Rl, l ∈ N∗, we have that

ProjPl
(q) =

λ− ⟨1l, q⟩
l

1d − q.

Proof. For all p ∈ Pl we have

∥p− q∥22 =

l∑
i=1

(pi − qi)
2 ≥ 1

l

(
d∑

i=1

(qi − pi)

)2

=
1

l
(⟨1l, q⟩ − λ)2

The equalities happens when

q1 − p1 = . . . = ql − pl, ⟨1l, p⟩ = λ ⇐⇒ pi =
λ− ⟨1l, q⟩

l
− qi,∀i = 1, . . . , l

Using the above lemma, we have that

⟨u− vabs, p⟩ = 0,∀p ∈ Pd ⇒ ∥p− vabs∥22 = ∥p− u∥22 + ∥u− vabs∥22.

Combining this fact with lemma 6.3, we have that problem (7) is equivalent to
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min
y∈Rd

+

∥y − u∥22

s.t. ⟨1d, y⟩ = λ,

(8)

It should be noted that any element in the projection on Pl should have at least one positive compo-

nent. Without loss of generality, we assume that u has d
′ ≤ d positive components and such components are

{u1, . . . , ud′}. In that case, we have:  d
′∑

i=1

ui

 ≥ ( d∑
i=1

ui

)
= λ

If d
′
= d then y+ = u. Otherwise, let w be a d

′
vector such that its component is the positive components of u.

Lemma 6.5. Let y++ be the solution of the following problem:

min
y∈Rd

′
+

∥y − w∥22

s.t. ⟨1d′ , y⟩ ≤ λ,

(9)

then we have

y+ =

 y++

0(d−d′ )


Proof.

∥y+ − u∥22 =

d
′∑

i=1

(
(y+)i − ui

)2
+

d∑
i=d′+1

(
(y+)i − ui

)2 ≥ ∥y++ − w∥22 +
d∑

i=d′+1

(−ui)
2
=

∥∥∥∥∥∥
 y++

0(d−d′ )

− u

∥∥∥∥∥∥
2

2

Hence, we have that

y+ =

 y++

0(d−d′ )



Thus, by noting that ∥w∥1 ≥ λ we reduce a d dimensional problem to a d
′
< d dimensional problem with

similar nature. Now, we are ready to introduce the projection oracle in algorithm (8).

Proposition 6.6. Algorithm (8) always ends either step 4 in at most d iterations of while loop and returns

ProjSλ
(v) for all v ∈ Rd.

Proof. If ∥v∥1 ≤ λ, then v is also ProjSλ
(v) and algorithm (8) ends in step 4.

If ∥v∥1 > λ, then we will prove that else will happen in a finite amount of time. Assume that we are

in step 9 after an amount of time and we are facing situation where we have some non-positive elements in

current vector g. In that case, the update in step 13 is result of lemma (6.5) when we consider the minimisation

with smaller dimension and fill in the zero value for components of ProjSλ
(v) corresponding to non-positive

components of u . Since there are some non-positive elements in g, the new l in step 16 is strictly smaller than

l before the update. As we note that the projection onto Pl has at least one positive component for any l > 0,
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and l is always integer and decreases throughout time, it has to be that l will never be 0 in step 16 and that

the algorithm (8) will enter step 17 in finite amount of time.

Note that as soon as we enter step 17, the components in u will either be 0 or −1 and the number of −1

components is exactly l. Since there are only positive element in vabs and vabs ∈ Pl. Therefore, by filling the −1

components of g by components of vabs and applying lemma (6.2) as well as lemma (6.5), the returned vector

is exactly the projection of v onto Sλ.

6.3.4 Implementation of ACG-BiO Method

Instead of using Frank Wolfe method for generating the sequence of support {βk}k=0,1,...,K ⊂ R of ACG-BiO

(4) mentioned in remark (3.1), we run FISTA [2] with step size tk = 1/Llower over 3K iterations. In addition, to

save the storing space, rather than storing the whole sequence, we only extract and utilise βk over K iterations

since the this element satisfies all the conditions that {βk}k=0,1,...,K−1 satisfy. Turning to the initial β0, we set

β0 := βk. In constrast to the implementation of CG-BiO, we still stick with the stepsizes αk = 2/(k + 2) as

suggested in theorem (3.7). In addition, in each iteration, we need to solve the following sub-problem:

min
s∈Rn

⟨∇fupper(βk), s⟩

s.t. ∥s∥1 ≤ λ,

⟨∇flower(βk), s− βk⟩ ≤ βk − flower(βk).

(10)

As suggested by Jiang et al. [9], the above problem can be reformulated as a mere linear programming

problem by introducing the following variable transformation s := s+ − s−, where s+, s− ∈ Rn
+. In that case,

the problem is turned into:

min
s∈Rn

+

⟨∇fupper(βk), s+ − s−⟩

s.t. ⟨1n, s+⟩+ ⟨1n, s−⟩ ≤ λ,

⟨∇flower(βk), s+ − s− − βk⟩ ≤ βk − flower(βk).

(11)

6.3.5 Implementation of CG-BiO, MNG, BiG-SAM, and a-IRG method.

For these methods, we follow the same setup as recommended by Jiang et al. [9]. Below, we show the details of

the following methods: MNG, BiG-SAM, and a-IRG in algorithms (9), (10), and (11).
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Algorithm 9: [Beck and Sabach [1]] Minimal norm gradient (MNG) method.

Data: hyperparameter M ≥ Llower

Result: sequence {xk}k
1 Initialize x0 ∈ Rn;

2 for k = 0, . . . ,K − 1 do

3 Compute xk+1 ← argminx∈Qk∩Wk
fupper(x), where

Qk := {z ∈ Rn|⟨GM (xk), xk − z⟩ ≥ 3

4M
∥GM (xk)∥2},

Wk := {z ∈ Rn|⟨fupper(xk), z − xk⟩ ≥ 0},

GM (x) := M

(
x− ProjS

(
x− 1

M
∇flower(x)

))
.

Algorithm 10: [Sabach and Shtern [15]] Bilevel gradient sequential averaging (BiG-SAM) method.

Data: η1 ≤ 2/Lupper, η2 ≤ 1/Llower, γ > 0, {αk}k = {min{γ/k, 1}}k
Result: sequence {xk}k

1 Initialize x0 ∈ Rn for k = 0, . . . ,K − 1 do

2 Compute yk+1 ← ProjS (xk − η1∇flower(xk)) Compute zk+1 ← xk − η2∇fupper(xk);

3 Compute xk+1 ← αk+1zk+1 + (1− αk+1)yk+1

Algorithm 11: [Kaushik and Yousefian [10]] Averaging iteratively regularized gradient (a-IRG)

method.
Data: stepsizes {γk}k, regularization parameters {ηk}k
Result: sequence {xk}k

1 Initialize x0 ∈ Rn;

2 for k = 0, . . . ,K − 1 do

3 Compute xk+1 ← ProjS (xk − γk (∇flower(xk) + ηk∇fupper(xk)));
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6.4 Performance Comparison
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From figure a and figure b, it can be seen that ACG-BiO converges faster than other methods despite some

overshoot at iteration 5000th. As mentioned in section (2), CG-BiO method does show some problems in terms

of convergence as after running 50,000 iterations, the optimality gap of flower of CG-BiO method seems to stable

at around 0.001 rather than keeping decreasing as ACG-BiO method behaves. Turning to figure c, we observe

that ACG-BiO method achieves the smallest test error as compared to the others. Moreover, it should be noted

that the convergence of both flower and fupper as K →∞ can be foreseen by the third claim in theorem (3.7).

Specifically, the fact that our flower in this example satisfies assumption (2) relies on the following result , which

is originated from theorem 3.1 proven by Li [11].

Proposition 6.7. Let g : Rn → R be a convex polynomial function with degree d and P be a polyhedron in Rn.

Let f := g + IP , then there exists τ > 0 such that

dist
(
x, f−1 ((−∞, 0])

)
≤ τ

(
[f(x)]+ + [f(x)]

[(d−1)n+1]−1

+

)
,

where [a] = max{a, 0}.

Lemma 6.8. Function flower over feasible region Sλ defined in problem (3) satisfies assumption (2).

Proof. By noting Sλ defined in problem (3) is a polytope, considering function

g : Rd → R

x→ 1

maxz∈S flower(z)
(flower(x)− f∗

lower) ,

and applying the proposition (6.7), we have

dist(x, χ∗
1) ≤ τ

(
g(x) + (g(x))

1
2

)
,∀x ∈ S.

In addition, over Sλ, 0 ≤ g(x) ≤ 1, and thus, g(x) ≤ (g(x))
1
2 ,∀x ∈ S. Hence, we have

dist(x, χ∗
1) ≤ 2τ(g(x))

1
2 ,∀x ∈ S

⇐⇒ (maxz∈S flower(z))
1
2

2τ
dist(x, χ∗

1) ≤ (flower(x)− f∗
lower)

1
2 ,∀x ∈ S
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Method Time (seconds)

ACG-BiO 2365.379

CG-BiO 2718.7925

MNG 2766.2252

BiG-SAM 30.7648

a-IRG 28.0632

Table 1: Time elapsed on running 50,000 iterations of ACG-BiO, CG-BiO, MNG, BiG-SAM, a-IRG.

⇐⇒
maxz∈S flower(z)/

(
2τ2
)

2
(dist(x, χ∗

1))
2 ≤ flower(x)− f∗

lower,∀x ∈ S.

It should be noted that while ACG-BiO only takes us around 2365.379 seconds to complete 50,000 iterations,

CG-BiO method and MNG method spend up to 2718.7925 seconds and 2766.2252 seconds doing the same thing

as shown in table (1). As expected from the short cut of projection step in BiG-SAM method and a-IRG method,

these two methods only take 30.7648 seconds and 28.0632 methods to run over 50,000 iterations. Nevertheless,

three methods MNG, BiG-SAM and a-IRG show poor convergence results.

7 Conclusion

In this paper, we proposed the ACG-BiO method and its variants which relax either the minimisation oracle

or the assumption of bounded feasible region to solve simple bilevel optimization problem with convex and

L-smooth objective funtions over convex and compact feasible region. Specifically, we proved ACG-BiO method

and its variant with the application of LPsep Braun et al. [3] can achieve the convergence rate of O( 1
K ) over K

iterations for both objective functions and its variant with possible unbounded feasible region converges with a

rate of O
(

1
Kp

)
for any p ∈ (0, 1). The numerical results also showed the superior performance of our method

compared to existing algorithms.
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