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Abstract

We develop an understanding of the theory of optimal stopping so that prophet inequalities, a comparison be-

tween the expected maximum of a sequence of random variables and the reward gained using a non-anticipating

stopping rule, may be studied. In doing so, we also discuss order statistics and stopping rules before proving

numerous important results and demonstrating them empirically.

Statement of Authorship

All results and information in this report can be found in various texts referenced at the end of this report.

Notations, structure, and language have been updated to reflect a simpler and more consistent approach to the

results.

All updates to notation and elaborations in proofs were implemented by Mr. Denning, with assistance from

Mr. Entwistle and Dr. Sofronov in understanding the original language used and decomposing the proofs into

lighter strands. Any code used was developed by Mr. Denning with reference to previous work undertaken by

Mr. Entwistle.

2 Introduction

Many problems exist in finance, economics, and other applications, where data is collected and analysed se-

quentially. This data is collected in real-time and we may require a decision to be made before we have had a

chance to look at all the data; a decision must be made without seeing future observations and are based only

on past and present observations, and a choice of returning to a previous point in the sequence may not be

allowed. These problems may not have an obvious solution; we may instead employ a stopping rule, where we
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analyse the collected data until a set of criteria have been satisfied, at which point we stop and cease further

action (hence accepting some reward or reducing cost of further research). We would then be concerned with

how good our decision was relative to the best possible outcome.

Prophet inequalities are a class of problems in the theory of optimal stopping which allow us to answer the above

question. The idea for this report is that we are given n random variables X1, . . . , Xn with known distributions

but unknown realisations x1, . . . , xn. We observe the values one-by-one and we must choose a time at which to

cease observation and accept the value we are on, with the goal of maximising this value. To do so, we employ a

strategy (via a stopping rule) that decides to either choose a value xi (i = 1, . . . , n) knowing only that and any

previously observed values, or to reject xi and move on to the next value, at which point we cannot return to

xi (or any other previously observed values) again. If we then consider a game of this nature through the lens

of a gambler (someone using an optimal non-anticipating stop rule) versus a prophet (someone with complete

foresight who can always win), then prophet inequalities allow us to compare the average performance of this

gambler against the prophet.

In this paper, we look at and prove some well-known results before experimentally demonstrating and verifying

the inequalities. As these inequalities were first proven many years ago, we aim to advance some of the

terminology and notation to the present and provide more approachable proofs of these results whilst relating

them to specific examples. A nice summary of some general prophet results may be found in [5], and an

introduction to optimal stopping in [1].

3 Background

3.1 Optimal Stopping and Stopping Rules

The theory of optimal stopping is concerned with choosing a time to take an action to maximise an expected

reward or minimise an expected cost. This action is based upon sequentially observing a number of random

variables. In close relation to optimal stopping, stopping rules are then a set of criteria that specify whether we

should cease observation and choose the current value, or to continue on to the next observation.

To determine when to stop, we will observe the sequence of random variables and decide, at each step, whether

to take xi, the current value of Xi, or continue on. The problem of finding the optimal stopping rule can be

solved via backward induction using the following recurrence relation:

vi = E(max{Xn−i+1, vi−1}), i = 1, . . . , n, v0 = −∞,

where vi is the expected reward of a sequence with i observations left to make, and vn is the overall expected

reward. Intuitively, with i observations left to make, we could either accept the next value, xn−i+1, or reject

it and continue on knowing the expected reward with i − 1 observations remaining, and we should choose the

maximum of those.
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Before continuing, it will be helpful to give the above expression for vi differently. For X1, . . . , Xn that are

independent and identically distributed (iid) and continuous random variables, then by the definition of expected

value,

vi = E(max{Xn−i+1, vi−1})

=

∫ ∞

−∞
max{x, vi−1}f(x) dx,

where f(x) is the common probability density function (pdf) of each Xi.

The corresponding stopping rule which allows us to obtain the maximum expected reward with stopping value

τ∗ ∈ Tn, where Tn is the set of all stopping rules for X1, . . . , Xn, is

τ∗ = min{i : 1 ≤ i ≤ n, xi ≥ vn−i}.

What this rule does is stops at the first time the condition xi ≥ vn−i is met; we compare the current value xi

with the expected reward if we were to reject that value and move on, vn−i. It may be shown that this rule is

the optimal rule under our assumptions of independence [7].

Example 3.1. Let X1, . . . , Xn be iid uniform random variables on [a,b]. These have common pdf f(x) =

(b− a)−1 if x ∈ [a, b], and = 0 elsewhere. We will now compute the vi values using the above relation:

vi = E(max{Xn−i+1, vi−1})

=

∫ b

a

(b− a)−1 max{x, vi−1} dx

= (b− a)−1

{∫ vi−1

a

vi−1 dx+

∫ b

vi−1

x dx

}

=
(vi−1 − a)2

2(b− a)
+

a+ b

2

for i = 1, . . . n.

For the sake of concreteness, consider the [0,1] uniform distribution (so a = 0, b = 1 and hence vi =
(vi−1)

2+1
2 )

and let n = 7. This gives us our values

n 0 1 2 3 4 5 6 7

vi 0.0000 0.5000 0.6250 0.6953 0.7417 0.7751 0.8004 0.8203

where v7 = 0.8203 is our expected reward. We hence have the optimal stopping rule τ∗, where

τ∗ = min{i : 1 ≤ i ≤ 7, xi ≥ v7−i}.

For instance, if we observed the simulated sequence {xi}7i=1

0.7308 0.6513 0.5940 0.8049 0.7793 0.3342 0.2604

then we would stop on the fourth observation, since x4 = 0.8049 ≥ v3 = 0.6953 is the first time our stopping

condition is met. Hence, our gain is 0.8049, the value we stopped on. This is only slightly less than the expected

gain of 0.8203 we saw above.
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Example 3.2. This time, let X1, . . . , Xn be iid exponential random variables with mean 1/λ.

These random variables have common pdf f(x) = λe−λx if x ≥ 0 and = 0 elsewhere. Then, like above,

vi = E(max{Xn−i+1, vi−1})

=

∫ ∞

0

λe−λx max{x, vi−1} dx

=

∫ vi−1

0

λvi−1e
−λx dx+

∫ ∞

vi−1

λxe−λx dx

= vi−1 +
1

λ
e−λvi−1

for i = 1, . . . , n.

Similarly to the previous example, letting λ = 1 (so vi = vi−1 + e−vi−1) and n = 7 gives the values

n 0 1 2 3 4 5 6 7

vi 0.0000 1.0000 1.3679 1.6225 1.8199 1.9820 2.1198 2.2398

with the expected reward being v7 = 2.2398.

We have the same optimal stopping rule τ∗ as in Example 3.1, and so for some simulated sequence {xi}7i=1

0.1719 0.8306 2.0474 0.5930 3.4561 0.2426 1.1378

then we would stop on the third observation, since x3 = 2.0474 ≥ v4 = 1.8199 is the first time our stopping

condition is met.

3.2 Order Statistics

Order statistics are sample values placed in ascending order. In other words, the kth order statistic is equal to

the kth-smallest value. For the purposes of this report, we are concerned only with the largest order statistic

(called the nth order statistic), as we wish to compare our stopping rule with the maximum of the sequence.

In cases with a defined sample size of n, the nth order statistic, denoted as X(n), is the maximum of all the

random variables in the sequence X1, . . . , Xn. That is, X(n) = max{X1, . . . , Xn}. The cumulative distribution

function (cdf) of this statistic, assuming at least that each of the {Xi} are independent, is

FX(n)
(x) = P(max{X1, . . . , Xn} ≤ x)

= P(X1 ≤ x, . . . ,Xn ≤ x)

=

n∏
i=1

P(Xi ≤ x) by independence.

Taking this further for iid random variables, we obtain the nice expression

FX(n)
(x) = {P(X ≤ x)}n = {F (x)}n,

where F (x) is the common cdf of each Xi. The pdf of the nth order statistic is then fX(n)
(x) = nf(x){F (x)}n−1,

where f(x) is the common pdf of each Xi. This follows from the relation between cdf and pdf, f(x) = d
dxF (x).
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4 Prophet Inequalities

Consider a gambler playing a game, where they must attempt to choose the highest value in a sequence of cards

and they receive a reward equal to that value. They can use only non-anticipating strategies (i.e. rely only on

the present and past) in order to choose the best time to stop on a value (higher values are better). Assuming

the game is similar to the earlier idea of observing values sequentially with an inability to return to previous

values, then we may apply our stopping rule in order to find the gambler’s expected reward. We will define this

reward as V , so that

V = sup
t∈Tn

E(Xt).

On the other hand, there may be another player of this game who always manages to win; they may be thought

of as a cheater. More formally, we may call this person a ”prophet”, where they possess the ability of complete

foresight, and so they may look ahead in the sequence and simply select the maximum value to always win. We

can use the nth order statistic to represent this player, and hence define the prophet’s expected reward, M , to

be

M = E(max{X1, . . . , Xn}) = E(X(n)).

A prophet inequality is then an inequality in M and V that holds for some class of sequences X1, . . . , Xn. The

immediate inequality is M ≥ V ; the gambler can never outplay the prophet. This inequality is quite obvious,

so instead we may be curious as to how much better the prophet will perform compared to the gambler; this

may be in both a multiplicative and additive sense.

4.1 Ratio Inequalities

It is perhaps intuitive that there should exist some k ∈ R so that k times the gambler’s expected reward will

outweigh the prophet’s expected reward (i.e. M ≤ kV ) in our game above; otherwise the prophet’s expected

reward would be infinitely bigger than the gambler’s expected reward. This value of k has enjoyed improvement

over time, with initial findings bounding k ∈ [2, 4] before the following result was derived [6].

Theorem 4.1. If X1, ..., Xn are independent non-negative random variables, then

M ≤ 2V,

where the bound is sharp.

Proof. There exist many different proofs of this theorem. In this paper, we detail a threshold approach [8].

Define a fixed parameter, t, as a threshold such that we accept the first value xi ≥ t. To show the inequality,

we will choose t to be the median of the distribution of the maximum (i.e. P (maxi Xi ≥ t) = 1/2) and define

x = P (reject all rewards) = P (maxi Xi < t). Note that the strategy we are choosing is sub-optimal since there

is the possibility of accepting no reward, however we can prove the theorem using it.
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We first derive an upper bound on M . Letting x+ = max{0, x},

M = E(max
i

Xi) ≤ t+ E[max
i

(Xi − t)+] ≤ t+
∑
i

E[(Xi − t)+].

Next a lower bound for the gambler’s payoff (note that this is not V since we are using a sub-optimal rule; V

has expected payoff at least as good as this), denoted as E(Prize):

V ≥ E(Prize) ≥ (1− x)t+ x
∑
i

E[(Xi − t)+].

Now, it is clear that x = P (maxi Xi < t) = P (maxi Xi ≥ t) = 1/2 since t is the median. Substituting this

shows that

E(Prize) ≥ 1

2

(
t+

∑
i

E[(Xi − t)+]

)

≥ 1

2
M,

and hence we arrive at the desired result M ≤ 2V .

To show that this bound is sharp, consider an example. Define the random variables X1 ≡ 1 and X2 = 1/a

with probability a for a ∈ (0, 1], and 0 otherwise, and Xn ≡ 0 for all n > 2.

To find M , we need to consider when X1 ≥ X2 and when X1 < X2. So, for X1 ≥ X2, we require X2 = 0, which

occurs with probability 1− a, and hence X1 < X2 occurs with probability a. Thus

M = E(max
i

Xi)

= P (X1 ≥ X2) · E(X1 | X1 ≥ X2) + P (X1 < X2) · E(X2 | X1 < X2)

= (1− a) · 1 + a · 1
a

= 2− a.

Now, for V we simply have to determine which random variable has a higher expected value. Clearly E(X1) = 1,

but we also have E(X2) = a · 1
a = 1, so

V = sup
t∈Tn

E(Xt) = 1.

Then as a → 0, the limiting equality is apparent, and hence the bound is sharp.

Interestingly, the bound is only sharp in particular cases, such as in this ”long-shot” example; more information

can be found in [4].

Theorem 4.1 tells us that, on average, the prophet cannot win more than twice that of the gambler, which

may be quite surprising. Both bounded and unbounded sequences of random variables satisfying the above

assumptions abide by the inequality, such as the uniform and exponential distribution examples we saw earlier.

If we were to relax the assumptions, we arrive at the following results (both coming from [4]):

• If the independence assumption is dropped, then M ≤ nV , where n is the number of rvs in the sequence;
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• If the non-negativity assumption is dropped, then the ratio may be arbitrary.

We can extend Theorem 4.1 to the possibility of obtaining negative values whilst maintaining a meaningful

result by defining X+ = max{0, X}, replacing any negative values with 0; this would allow something like stock

prices or offers on a house to be modelled using the theorem.

4.2 Difference Inequalities

We now wish to consider results of the form M − V ≤ p, allowing us to compare the additive advantage the

prophet enjoys over the gambler. Before stating and proving the appropriate theorem, we shall define some

notations and introduce lemmas that will aid our proof, with all original work from [3].

Definition 4.2. For random variables X1, . . . , Xn, define V (Xj , . . . , Xn) = E(max{Xj , V (Xj+1, . . . , Xn)}) for

j = 1, . . . , n− 1 (this is analogous to vj = E(max{Xj , vj−1})), and define

D(X1, . . . , Xn) = E(max{X1, . . . , Xn})− V (X1, . . . , Xn),

the additive advantage of the prophet over the gambler.

Definition 4.3. For an integrable random variable Y with pdf f(y) and constants −∞ < a < b < ∞, let Y b
a

denote a random variable with

Y b
a =


Y, with probability 1−

∫ b

a
f(y) dy,

a, with probability (b− a)−1
∫ b

a
(b− y)f(y) dy,

b, with probability (b− a)−1
∫ b

a
(y − a)f(y) dy.

and say that Y b
a is extremal with respect to Y , a, and b.

Lemma 4.4. Using Y b
a as defined in Definition 4.3, we have that E(Y b

a ) = E(Y ).

A proof is supplied in the appendix.

Lemma 4.5. Let Y, a, b, and Y b
a be as above. If X is any integrable random variable independent of both Y

and Y b
a , then E(max{X,Y }) ≤ E(max{X,Y b

a }).

A proof of this lemma is supplied in the appendix.

Lemma 4.6. Given n > 2 and independent random variables X1, . . . , Xn, there exists a zero-one valued

random variable W independent of X2, . . . , Xn−2, satisfying D(X1, . . . , Xn) ≤ D(µ,X2, . . . , Xn−2,W ), where

µ = V (X2, . . . , Xn).

Proof. Because this proof is central to the proof of the next theorem, we include the proof here instead of the

appendix.

Without loss of generality, assume that all random variables are bounded in [0,1]. Adding or multiplying by
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suitable constants is allowed to achieve a general result. By Definition 4.2, and noting that V (µ,X2, . . . , Xn) =

V (X2, . . . , Xn) = µ,

D(X1, . . . , Xn) = E(max{X1, . . . , Xn})− V (X1, . . . , Xn)

≤ E(max{µ,X2, . . . , Xn}) + E(X1 − µ)+ − E(max{X1, V (X2, . . . , Xn)})

= E(max{µ,X2, . . . , Xn}) + E(X1 − µ)+ − V (X2, . . . , Xn)− E(X1 − V (X2, . . . , Xn)
+

= D(µ,X2, . . . , Xn). (1)

Now define the extremal random variables Z = (Xn)
1
0 and Y = (Xn−1)

1
E(Xn)

, letting them be independent

of each other and of X1, . . . , Xn−2. Using Lemma 4.4, we know that E(Z) = E(Xn) and E(Y ) = E(Xn−1).

Further, we see that

V (Xn−1, Xn) = E(max{Xn−1, E(Xn)})

= E(Xn) · P (Xn−1 ≤ E(Xn)) + E(Xn−1) · P (Xn−1 > E(Xn))

and

V (Y,Z) = E(max{Y,E(Z)})

= E(Z) · P (Y ≤ E(Z)) + E(Y ) · P (Y > E(Z))

= E(Xn) · P (Y ≤ E(Xn)) + E(Xn−1) · P (Y > E(Xn))

= E(Xn) · P (Xn−1 ≤ E(Xn)) + E(Xn−1) · P (Xn−1 > E(Xn))

= V (Xn−1, Xn),

and thus V (µ,X2, . . . , Xn) = V (µ,X2, . . . , Xn−2, Y, Z).

By Lemma 4.5, E(max{µ,X2, . . . , Xn}) ≤ E(max{µ,X2, . . . , Xn−2, Y, Z}), and thus

D(µ,X2, . . . , Xn) ≤ D(µ,X2, . . . , Xn−2, Y, Z). (2)

Finally, letting W be a random variable independent of X2, . . . , Xn−2 where W = 1 with probability V (Y, Z)

and = 0 otherwise, we have that

D(µ,X2, . . . , Xn−2, Y, Z) = D(µ,X2, . . . , Xn−2,W ), (3)

because E(W ) = V (Y,Z) and E(Z) = E(Xn) ≤ µ.

Combining (1), (2), and (3) gives the required result.

We may now introduce the main result and its proof.

Theorem 4.7. If X1, . . . , Xn are independent random variables bounded in [a,b], then M −V ≤ (b− a)/4, and

this bound is best possible.
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Proof. Again, without loss of generality, assume that all random variables are bounded in [0, 1].

Starting with a sequence of independent random variables X1, . . . , Xn, we may apply Lemma 4.6 recursively to

reduce to the case of considering only X1 and X2.

Using the same definition for µ as above, let E(X2) = µ and introduce a random variable Z = 1 with probability

µ and = 0 otherwise. Then

D(X1, X2) ≤ D(µ,Z)

= E(max{µ,Z})− V (µ,Z)

= {µ · P (Z ≤ µ) + E(Z) · P (Z > µ)} − E(max{µ,E(Z)})

= (µ(1− µ) + µ)− µ

= µ− µ2

≤ 1/4,

since µ ∈ [0, 1]. The bound is attained when µ = 1/2, so the inequality is sharp.

4.3 The Prophet Region

This last result is interesting and allows the above results to be simple corollaries for the case of each sequence of

X1, . . . , Xn being independent and bounded in [0, 1]. The result is a two-sided inequality bounding the prophet’s

possible outcomes relative to functions of the gambler’s possible values.

Definition 4.8. A convex set is such that for any two points in the set, their line segment is contained within

the set. Intuitively, you may imagine a circle or cube to be a convex set, whereas shapes with indents (e.g. a

crescent) are not convex. A closed convex set is then as above, but with the addition that all the limit points

are contained within the set.

Theorem 4.9. The set of all possible values of the ordered pair (V,M) for independent random variables

X1, . . . , Xn bounded in [0, 1] is precisely the closed convex set S in R2 given by

S =
{
(x, y) : x ≤ y ≤ 2x− x2, 0 ≤ x ≤ 1

}
.

Proof. As the theorem is a precise result, we must prove that both the statement ”Every point in S is a possible

value of (V,M)” and its converse hold. First consider the original statement.

We can show the first statement by example. Start by letting α = y−x
x−x2 . Define X1, . . . , Xn by X1 ≡ x,X2 = 1

with probability αx and = 0 otherwise, and Xn = 0 for all n > 2. We can now check that in fact x = V and

y = M .

Note that E(X1) = x, E(X2) = αx and E(Xn) = 0. Also note that 0 ≤ α ≤ 1 ⇒ αx ≤ x, since y ≤ 2x− x2.

Then by definition, V = supt∈Tn
{E(Xt)} = x.

Next we need to find when X1 > X2 and when X2 > X1 to determine the distribution of X(n). We have that
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X1 > X2 when X2 = 0, which occurs with probability 1 − αx, and X2 > X1 when X2 = 1, which occurs with

probability αx. Hence X(n) = 1 with probability αx and = x otherwise. Then

M = E(X(n)) = x(1− αx) + αx

= αx+ x− αx2

= α(x− x2) + x

= y − x+ x

= y.

Hence every point in S is a possible value of (V,M).

Now to prove the converse; every possible value of (V,M) is contained in S.

The proof here will run very similarly to the proof of Theorem 4.7. Using Lemma 4.6, we may reduce X1, . . . , Xn

down to considering only X1, X2 by defining the random variables Y1 ≡ V and Y2 = 1 with probability V , and

= 0 otherwise. Before continuing, we note that

E(max{Y1, Y2}) = P (Y1 ≥ Y2) · E(Y1 | Y1 ≥ Y2) + P (Y1 < Y2) · E(Y2 | Y1 < Y2)

= (1− V ) · V + V · 1

= 2V − V 2

and supt∈T2
E(Yt) = V .

Then applying Lemma 4.6,

D(X1, X2) = M − V ≤ D(Y1, Y2)

= E(max{Y1, Y2})− sup
t∈T2

E(Yt)

= V − V 2.

Hence we have the inequality M ≤ 2V − V 2. The inequality M ≥ V is apparent from the definitions of M and

V , and so we arrive at the desired result V ≤ M ≤ 2V − V 2.

5 Simulations and Results

The following examples demonstrate the above results empirically for a variety of situations. The standard

uniform distribution is bounded on [0, 1] so all the above results apply, whereas the exponential distribution is

unbounded, and so only the ratio result will necessarily hold (although we will derive an interesting difference

result through these simulations). We begin by deriving the theoretical results for the prophet’s and gambler’s

expected rewards before running simulations to compare results.
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5.1 The U(0, 1) Distribution

Let X1, . . . , Xn be a sequence of iid U(0, 1) random variables. Then their common pdf is f(x) = 1 on [0, 1] and

cdf is F (x) = x on [0, 1]. Hence the cdf of the nth order statistic is FX(n)
(x) = xn for x ∈ [0, 1]. This has pdf

fX(n)
(x) = nxn−1 and we can then calculate the expected value

M = E(X(n)) =

∫ ∞

−∞
x · fX(n)

(x) dx

=

∫ 1

0

x · nxn−1 dx

=
n

n+ 1
.

We can then derive the expected reward for each n for the gambler, which was done in Example 3.1. Generating

the table and plots gives us:

n 1 2 3 · · · 48 49 50

M 0.5000 0.6667 0.7500 · · · 0.9796 0.9800 0.9804

V 0.5000 0.6250 0.6953 · · · 0.9628 0.9635 0.9641
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Figure 1: Plots demonstrating each prophet inequality for the U(0, 1) distribution. In (a) and (b), the red line

denotes the prophet and the blue line the gambler, whilst the solid lines are the simulated averages and the

dashed lines the theoretical results.
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Plots (a) and (b) in Figure 1 show how the simulations agree with the theoretical results, both in the sense of

the individual prophet and gambler results following their theory, but also that the prophet’s reward is always

at least as large as the gamblers (i.e. M ≥ V ). Plots (c) and (d) demonstrate the difference, M − V , and

ratio, M/V , respectively, and comparing the results to our inequalities, we see they fall comfortably below the

bounds; in many cases (such as this), the bounds will be quite conservative. Additionally, we can see a clear

inverse relationship between them and n. This would indicate a possible asymptotic result, and we can show

that this is in fact the case. It can be shown [2] that V is asymptotically b − 2(b − a)/n, which approaches b

as n → ∞. Hence V → b = 1 in our example. On the other hand, using our expression for M it is clear that

M → 1 as n → ∞ also, and hence M − V → 0 and M/V → 1. Both of these observations are consistent with

the plots.

5.2 The Exp(1) Distribution

Let X1, . . . , Xn be a sequence of iid Exp(1) random variables. They have common pdf f(x) = e−x and

cdf F (x) = 1 − e−x for x ≥ 0. Hence the cdf of the nth order statistic is FX(n)
(x) = (1 − e−x)n and so

fX(n)
(x) = ne−x(1− e−x)n−1 for x ≥ 0.

Now, we will not use the traditional definition for expectation in this example as the integral is quite difficult

to solve. Instead, we turn to a result that will allow us to calculate the expected value recursively.

Lemma 5.1. Let X be a non-negative continuous integrable random variable. Then its expectation can be

evaluated using

E(X) =

∫ ∞

0

(1− F (x)) dx.

The proof is provided in the appendix.

Let us define En = E(X(n)) so that using Lemma 5.1, we have

En − En−1 =

∫ ∞

0

(
1− (1− e−x)n

)
dx−

∫ ∞

0

(
1− (1− e−x)n−1

)
dx

=

∫ ∞

0

(1− e−x)n−1[1− (1− e−x)] dx

=

∫ ∞

0

(1− e−x)n−1e−x dx

= 1/n.

Then continuing in a similar fashion,

En = (En − En−1) + (En−1 − En−2) + · · ·+ (E2 − E1) + E1

=
1

n
+

1

n− 1
+ · · ·+ 1

2
+ 1

= Hn,
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where Hn denotes the nth partial sum of the harmonic series.

We can now produce a similar table encapsulating the values for the gambler and prophet for different n values,

along with the plots showing the raw averages and the difference and ratios, like for the U(0, 1) example.

n 1 2 3 · · · 48 49 50

M 1.0000 1.5000 1.8333 · · · 4.4588 4.4792 4.4992

V 1.0000 1.3679 1.6225 · · · 3.9368 3.9563 3.9755
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Figure 2: Plots demonstrating each prophet inequality for the Exp(1) distribution. In (a) and (b), the red line

denotes the prophet and the blue line the gambler, whilst the solid lines are the simulated averages and the

dashed lines the theoretical results.

Plots (a) and (b) in Figure 2 demonstrate how the experimental results closely follow the theory as expected,

with deviations occurring only due to the nature of probability. Looking at (d), we see again that the ratio, M/V ,

lies well below 2, indicating another conservative result. On the other hand, our difference result (Theorem

4.7) may not be applied since our random variables are unbounded. Hence we currently do not know whether

the difference, M − V , is bounded or not. Looking at (c), we see that the difference does seem to converge

around the red dotted line, however to confirm this we will analyse the asymptotic results for M and V . It

will be shown in Appendix B that, in fact, we have the asymptotic result M − V → γ ≈ 0.5772, where γ is the

Euler-Mascheroni constant.
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6 Future Work

Optimal stopping theory contains a broad spectrum of possible future research for prophet inequalities. We can

extend the simple case examined in this report of stopping only once into cases of multiple stopping, where you

can stop and accept multiple rewards along the sequence. This extends the reward function; letting vn,k denote

the value of a game with k stops and n observations left to make, then

vn,1 = E(max{XN−n+1, v
n−1,1}), 1 ≤ n ≤ N,

v0,1 = −∞,

vn,k−i+1 = E(max{XN−n+1 + vn−1,k−i, vn−1,k−i+1}), k − i+ 1 ≤ n ≤ N,

vk−i,k−i+1 = −∞, i = k − 1, . . . , 1,

and we naturally obtain a multi-dimensional stopping rule as well.

Otherwise, many of the assumptions made in the theorems can be varied to achieve different results. For example,

we may relax the independence and non-negativity assumptions, assume the distributions are known/unknown,

or further tighten assumptions to assume iid in order to develop new results. All of these have been studied

previously, however the more complex case of multiple stopping detailed above has not received much attention.

7 Conclusion

This report successfully updates terminology and expands on prior papers on prophet inequalities in order

to improve readability and initial comprehensions of the material. We were able to understand where the

inequalities come from, what they mean from a physical perspective, and their place in the world with room

for further research in situations of multiple stopping and changing initial assumptions. Demonstrating the

results empirically allows a visualisation of the theorems to see how actual results develop over time and having

different numbers of values available to observe.
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A Simulation Code

U(0,1) code:

1 # U(0,1) Simulations and Theoretical Results

2 library(stats)

3 library(ggplot2)

4

5 N = seq(1, 500) # number of observations of random variables

6

7 # Theory

8 v = zeros(length(N)+1, 1)

9 m = zeros(length(N)+1, 1)

10 v[1] = 0 # expected reward with no observations left since R indexes from 1

11 m[1] = 0 # prophet reward with no observations left

12

13 for(i in 1: length(N)){

14 v[i+1] = (1+v[i]^2)/2 # gambler expected reward for each number of obs left

15 m[i+1] = N[i]/(N[i]+1) # prophet expected reward for each number of obs left

16 }

17 # remember m[i] means there are i+1 observations left

18

19 # Simulations

20 n = 1000 # number of simulations

21 V = zeros(n, length(N)) # matrix to store result of each sim for each num of rv

22 M = zeros(n, length(N))

23

24 V_raw = zeros(n, 1) # results from sim

25 M_raw = zeros(n, 1)

26

27 V_avg = zeros(length(N), 1) # average of sim for each num of obs

28 M_avg = zeros(length(N), 1)

29

30 V_hold = 0 # initialising variable

31

32 for(p in 1: length(N)){

33 for(q in 1:n){

34 x = runif(p, 0, 1)

35 for(r in 1:p){

36 if(x[r] >= v[p-r+1]){

37 V_hold = x[r]

38 break

39 }

40 }

41 V_raw[q] = V_hold

42 M_raw[q] = max(x)

43 }
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44 V_avg[p] = mean(V_raw)

45 M_avg[p] = mean(M_raw)

46 }

47

48 V_thy = v[2:501]

49 M_thy = m[2:501]

50

51 #-----------------------

52

53 avg_df = data.frame(N, M_avg , V_avg)

54

55 sim_vs_thy_plot = ggplot(data = avg_df , aes(x = N)) +

56 geom_line(aes(y = M_avg , colour = "Prophet")) +

57 geom_line(aes(y = V_avg , colour = "Gambler")) +

58 geom_line(aes(y = M_thy , colour = "Prophet"), linetype = "dashed") +

59 geom_line(aes(y = V_thy , colour = "Gambler"), linetype = "dashed") +

60 scale_colour_manual("", breaks = c("Prophet", "Gambler"), values = c("red", "blue")) +

61 xlab("Number of Observations") +

62 scale_y_continuous("Reward") +

63 labs(title = "U(0,1) Simulations vs Theory") +

64 theme(legend.position = "none")

65

66 avg_ratio = M_avg/V_avg

67 ratio_df = data.frame(seq(1, 500), avg_ratio)

68 ratio_df[1,2] = NA

69

70 ratio_plot = ggplot(data = ratio_df, aes(x = N)) +

71 geom_line(aes(y = avg_ratio), colour = "darkcyan") +

72 xlab("Number of Observations") +

73 scale_y_continuous("Ratio (M/V)") +

74 labs(title = "U(0,1) Ratio of M to V") +

75 geom_point(aes(x = 1, y=1))

76

77 avg_diff = M_avg - V_avg

78 diff_df = data.frame(seq(1, 500), avg_diff)

79 diff_df[1,2] = NA

80

81 diff_plot = ggplot(data = diff_df, aes(x = N)) +

82 geom_line(aes(y = avg_diff), colour = "darkcyan") +

83 xlab("Number of Observations") +

84 scale_y_continuous("Difference (M-V)") +

85 labs(title = "U(0,1) Difference of M and V") +

86 geom_point(aes(x = 1, y = 0))

87

88 # smaller set (to show differences more easily)

89 avg_sml = avg_df[1:50 ,]
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90 M_thy_sml = M_thy [1:50]

91 V_thy_sml = V_thy [1:50]

92

93 sim_plot_sml = sim_vs_thy_plot = ggplot(data = avg_sml , aes(x = seq(1,50))) +

94 geom_line(aes(y = M_avg [1:50] , colour = "Prophet",)) +

95 geom_line(aes(y = V_avg [1:50] , colour = "Gambler",)) +

96 geom_line(aes(y = M_thy_sml , colour = "Prophet"), linetype = "dashed") +

97 geom_line(aes(y = V_thy_sml , colour = "Gambler"), linetype = "dashed") +

98 scale_colour_manual("", breaks = c("Prophet", "Gambler"), values = c("red", "blue")) +

99 xlab("Number of Observations") +

100 scale_y_continuous("Reward") +

101 labs(title = "U(0,1) Simulations vs Theory") +

102 theme(legend.position = "none")

103

104 avg_extra_sml = avg_df[1:20 ,]

105 M_thy_extra_sml = M_thy [1:20]

106 V_thy_extra_sml = V_thy [1:20]

107

108 sim_plot_extra_sml = ggplot(data = avg_extra_sml , aes(x = seq(1,20))) +

109 geom_line(aes(y = M_avg [1:20] , colour = "Prophet",)) +

110 geom_line(aes(y = V_avg [1:20] , colour = "Gambler",)) +

111 geom_line(aes(y = M_thy_extra_sml , colour = "Prophet"), linetype = "dashed") +

112 geom_line(aes(y = V_thy_extra_sml , colour = "Gambler"), linetype = "dashed") +

113 scale_colour_manual("", breaks = c("Prophet", "Gambler"), values = c("red", "blue")) +

114 xlab("Number of Observations") +

115 scale_y_continuous("Reward") +

116 labs(title = "U(0,1) Simulations vs Theory") +

117 theme(legend.position = "none")
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Exp(1) code:

1 # Exp(1) Simulations and Theoretical Results

2 library(stats)

3 library(ggplot2)

4

5 N = seq(1, 500) # number of observations of random variables

6

7 # Theory

8 v = zeros(length(N)+1, 1)

9 m = zeros(length(N)+1, 1)

10 v[1] = 0 # expected reward with no observations left since R indexes from 1

11 m[1] = 0 # prophet reward with no observations left

12

13 for(i in 1: length(N)){

14 v[i+1] = v[i] + exp(-v[i]) # gambler expected reward for each number of obs left

15 m[i+1] = 1/N[i] + m[i] # prophet expected reward for each number of obs left

16 }

17 # remember m[i] means there are i+1 observations left

18

19 # Simulations

20 n = 1000 # number of simulations

21 V = zeros(n, length(N)) # matrix to store result of each sim for each num of rv

22 M = zeros(n, length(N))

23

24 V_raw = zeros(n, 1) # results from sim

25 M_raw = zeros(n, 1)

26

27 V_avg = zeros(length(N), 1) # average of sim for each num of obs

28 M_avg = zeros(length(N), 1)

29

30 V_hold = 0 # initialising variable

31

32 for(p in 1: length(N)){

33 for(q in 1:n){

34 x = rexp(p, 1)

35 for(r in 1:p){

36 if(x[r] >= v[p-r+1]){

37 V_hold = x[r]

38 break

39 }

40 }

41 V_raw[q] = V_hold

42 M_raw[q] = max(x)

43 }

44 V_avg[p] = mean(V_raw)

45 M_avg[p] = mean(M_raw)

20



46 }

47

48 V_thy = v[2:501]

49 M_thy = m[2:501]

50

51 #-----------------------

52

53 avg_df = data.frame(N, M_avg , V_avg)

54

55 sim_vs_thy_plot = ggplot(data = avg_df , aes(x = N)) +

56 geom_line(aes(y = M_avg , colour = "Prophet")) +

57 geom_line(aes(y = V_avg , colour = "Gambler")) +

58 geom_line(aes(y = M_thy , colour = "Prophet"), linetype = "dashed") +

59 geom_line(aes(y = V_thy , colour = "Gambler"), linetype = "dashed") +

60 scale_colour_manual("", breaks = c("Prophet", "Gambler"), values = c("red", "blue")) +

61 xlab("Number of Observations") +

62 scale_y_continuous("Reward") +

63 labs(title = "Exp(1) Simulations vs Theory") +

64 theme(legend.position = "none")

65

66 avg_ratio = M_avg/V_avg

67 ratio_df = data.frame(seq(1, 500), avg_ratio)

68 ratio_df[1,2] = NA

69

70 ratio_plot = ggplot(data = ratio_df, aes(x = N)) +

71 geom_line(aes(y = avg_ratio), colour = "darkcyan") +

72 xlab("Number of Observations") +

73 scale_y_continuous("Ratio (M/V)") +

74 labs(title = "Exp(1) Ratio of M to V") +

75 geom_point(aes(x = 1, y=1))

76

77 avg_diff = M_avg - V_avg

78 diff_df = data.frame(seq(1, 500), avg_diff)

79 diff_df[1,2] = NA

80

81 diff_plot = ggplot(data = diff_df, aes(x = N)) +

82 geom_line(aes(y = avg_diff), colour = "darkcyan") +

83 xlab("Number of Observations") +

84 scale_y_continuous("Difference (M-V)") +

85 labs(title = "Exp(1) Difference of M and V") +

86 geom_point(aes(x = 1, y = 0)) +

87 geom_hline(yintercept = 0.5772156649 , linetype = "dotted", colour = "red")

88

89 # smaller set (to show differences more easily)

90 avg_sml = avg_df[1:50 ,]

91 M_thy_sml = M_thy [1:50]
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92 V_thy_sml = V_thy [1:50]

93

94 sim_plot_sml = sim_vs_thy_plot = ggplot(data = avg_sml , aes(x = seq(1,50))) +

95 geom_line(aes(y = M_avg [1:50] , colour = "Prophet",)) +

96 geom_line(aes(y = V_avg [1:50] , colour = "Gambler",)) +

97 geom_line(aes(y = M_thy_sml , colour = "Prophet"), linetype = "dashed") +

98 geom_line(aes(y = V_thy_sml , colour = "Gambler"), linetype = "dashed") +

99 scale_colour_manual("", breaks = c("Prophet", "Gambler"), values = c("red", "blue")) +

100 xlab("Number of Observations") +

101 scale_y_continuous("Reward") +

102 labs(title = "Exp(1) Simulations vs Theory") +

103 theme(legend.position = "none")

104

105 avg_extra_sml = avg_df[1:20 ,]

106 M_thy_extra_sml = M_thy [1:20]

107 V_thy_extra_sml = V_thy [1:20]

108

109 sim_plot_extra_sml = ggplot(data = avg_extra_sml , aes(x = seq(1,20))) +

110 geom_line(aes(y = M_avg [1:20] , colour = "Prophet",)) +

111 geom_line(aes(y = V_avg [1:20] , colour = "Gambler",)) +

112 geom_line(aes(y = M_thy_extra_sml , colour = "Prophet"), linetype = "dashed") +

113 geom_line(aes(y = V_thy_extra_sml , colour = "Gambler"), linetype = "dashed") +

114 scale_colour_manual("", breaks = c("Prophet", "Gambler"), values = c("red", "blue")) +

115 xlab("Number of Observations") +

116 scale_y_continuous("Reward") +

117 labs(title = "Exp(1) Simulations vs Theory") +

118 theme(legend.position = "none")
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B Proofs

B.1 Proof of M − V Asymptotic for Exp(1) Case

For this proof, let log denote the natural logarithm. It can be shown [2] that V is asymptotically β log(n),

where β = 1 in our case. Further, we know from earlier that M = Hn. Now we wish to derive an asymptotic

result for Hn.

First we note that

1 +
1

2
+ · · ·+ 1

n
>

∫ n

1

1

x
dx = log(n) (4)

and
1

2
+ · · ·+ 1

n
<

∫ n

1

1

x
dx = log(n). (5)

These results may be justified geometrically via the following plot:

Figure 3: Geometric Argument for Bounds on Hn. [Source: https://math.stackexchange.com/questions/

156326/showing-inequality-for-harmonic-series]

The area of the blue curve is an upper rectangle (left side) Riemann approximation representing the sum∑n
k=1

1
k , whilst the green curve is a lower rectangle (right side) Riemann approximation representing the sum∑n

k=1
1

k+1 , which bounds the true area of the curve between these two values. Combining (4) and (5) gives

log(n) < Hn < 1 + log(n), n > 1.

What this shows is that the rate of growth of Hn is bounded by log(n). We know that log(n) diverges as n → ∞

and so Hn also diverges.
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Now, rearranging the inequality above gives

0 < Hn − log(n) < 1.

If we let an = Hn − log(n), we can see that an is a monotonically increasing sequence and is bounded. Ap-

plying the monotonic convergence theorem (if a sequence increases/decreases and is bounded above/below by

a supremum/infimum, it will converge), we conclude that limn→∞ an exists. Computing this limit, we have

lim
n→∞

an = γ,

where γ ≈ 0.5772 is the Euler-Mascheroni constant. Hence

Hn − log(n) ≈ γ

for large n.

As a result, we get that

M − V ≈ γ + log(n)− log(n)

= γ

for large n, as required. Going back to Figure 2, the red line in (c) is valued at γ, confirming this result.

B.2 Proof of Lemma 4.4:

First note that Y b
a is a mixed random variable. Hence its cdf is the sum of continuous and step functions.

Letting Y b
a have cdf denoted by FY (y), we have

FY (y) = C(y) +D(y),

where C denotes the continuous part and D the step part of the cdf. We can then differentiate C, denoted as

c, and hence we have the property ∫ ∞

−∞
c(y) dy +

∑
yk

P (Y = yk) = 1.

Thus we can obtain the expected value of Y b
a as

E(Y b
a ) =

∫ ∞

−∞
yc(y) dy +

∑
yk

ykP (Y = yk).

Applying this to our random variable, we obtain

E(Y b
a ) =

∫ a

−∞
yf(y) dy +

∫ ∞

b

yf(y) dy + aP (Y b
a = a) + bP (Y b

a = b)

=

∫ a

−∞
yf(y) dy +

∫ ∞

b

yf(y) dy + a(b− a)−1

∫ b

a

(b− y)f(y) dy + b(b− a)−1

∫ b

a

(y − a)f(y) dy

=

∫ a

−∞
yf(y) dy +

∫ ∞

b

yf(y) dy + (b− a)−1

∫ b

a

(ab− ay + by − ab)f(y) dy

=

∫ ∞

−∞
yf(y) dy

= E(Y ).
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B.3 Proof of Lemma 4.5:

First define the random variable X that is independent of Y and Y b
a . We are required to prove that∫ b

a

max{x, y}f(y) dy ≤ (b− a)−1

{
max{x, a}

∫ b

a

(b− y)f(y) dy +max{x, b}
∫ b

a

(y − a)f(y) dy

}
. (6)

To see this, consider

• If x ≤ a ≤ y ≤ b, then

(b− a)−1

{
a

∫ b

a

(b− y)f(y) dy + b

∫ b

a

(y − a)f(y) dy

}
=

∫ b

a

yf(y) dy.

• If a ≤ x ≤ y ≤ b, then

(b− a)−1

{
x

∫ b

a

(b− y)f(y) dy + b

∫ b

a

(y − a)f(y) dy

}

≥ (b− a)−1

{
a

∫ b

a

(b− y)f(y) dy + b

∫ b

a

(y − a)f(y) dy

}

=

∫ b

a

yf(y) dy.

• If a ≤ y ≤ x ≤ b, then

(b− a)−1

{
x

∫ b

a

(b− y)f(y) dy + b

∫ b

a

(y − a)f(y) dy

}

≥ (b− a)−1

{
x

∫ b

a

(b− y)f(y) dy + x

∫ b

a

(y − a)f(y) dy

}

=

∫ b

a

xf(y) dy.

• If a ≤ y ≤ b ≤ x, then

(b− a)−1

{
x

∫ b

a

(b− y)f(y) dy + x

∫ b

a

(y − a)f(y) dy

}
= (b− a)−1

∫ b

a

(bx− xy + xy − ax)f(y) dy

=

∫ b

a

xf(y) dy.

Hence (6) is satisfied.

Thus

E(max{X,Y }) =
∫ a

−∞
max{x, y}f(y) dy +

∫ ∞

b

max{x, y}f(y) dy +
∫ b

a

max{x, y}f(y) dy

≤
∫ a

−∞
max{x, y}f(y) dy +

∫ ∞

b

max{x, y}f(y) dy

+ (b− a)−1

{
E(max{X, a})

∫ b

a

(b− y)f(y) dy + E(max{X, b})
∫ b

a

(y − a)f(y) dy

}
= E(max{X,Y b

a }),

as required.
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B.4 Proof of Lemma 5.1:

Let the non-negative random variable X have pdf f(x) and cdf F (x). Since 1−F (x) = P (X ≥ x) =
∫∞
x

f(t)dt,

then ∫ ∞

0

(1− F (x)) dx =

∫ ∞

0

P (X ≥ x) dx =

∫ ∞

0

∫ ∞

x

f(t) dtdx.

Changing the order of integration, noting that 0 ≤ x ≤ t < ∞,∫ ∞

0

∫ ∞

x

f(t) dtdx =

∫ ∞

0

∫ t

0

f(t) dxdt =

∫ ∞

0

[xf(t)]
t
0 dt =

∫ ∞

0

tf(t) dt.

Since t is a dummy variable, we may replace it with x and arrive at the desired result:

E(X) =

∫ ∞

0

(1− F (x)) dx.
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