
Writing A GAP Package For Local

Action Diagrams

Marcus Chijoff
Supervised by Stephan Tornier

The University of Newcastle

March 3, 2023

Contents

1 Abstract 1

2 Introduction 2

3 Statement of Authorship 2

4 Background 3

4.1 Groups . 3

4.2 Graphs . 3

5 Local Action Diagrams 4

5.1 Property (P) . 4

5.2 Local Action Diagrams . 4

5.3 Strongly Confluent Partial Orientations . 6

6 Implementation In GAP 7

6.1 Finding Local Action Diagram Isomorphisms . 7

6.2 Finding Scopos . 7

6.3 Searching For All Local Action Diagrams . 9

7 Searching For All (P)-closed Subgroups of Td With Two Vertex Orbits 11

8 Conclusion 11

9 Acknowledgements 12

10 Appendix: Using The GAP Package Produced 12

11 References 12

1 Abstract

Local action diagrams are in a one-to-one correspondence with (P)-closed groups acting on trees. When the

action of a (P)-closed group on a tree has finitely many orbits and the tree is locally finite the corresponding

local action diagram is also finite. We provide an implementation of finite local action diagrams in GAP. It’s able

to determine if two local action diagrams are isomorphic, if they contain strongly confluent partial orientations,

and enumerate, up to isomorphism, all local action diagrams corresponding to (P)-closed subgroups of Aut(Td)

with two vertex oribts.

1

2 Introduction

Groups are an algebraic structure that represent the symmetry of objects. The mappings on a graph that

preserve edge connectivity are called automorphisms and together with the operation of function composition

they form a group. The ‘(P)-closure’ of a group of automorphisms consists of all the automorphisms that ‘act

the same locally’ as an element of the group at each vertex of the graph. This means that these groups can be

described by what’s happening locally at each vertex.

Local action diagrams were introduced by C. Reid and S. Smith. [1] They are in a one-to-one correspondence

with (P)-closed groups which means that every (P)-closed group has a corresponding local action diagram and

every local action diagram corresponds with a (P)-closed group. A local action diagram consists of an underlying

digraph, a group labelling each vertex, a set labelling each arc that is compatible with the group labelling each

vertex, and a reversal mapping.

The orbits of a group action are the partition of the domain into sets containing all elements that can ‘reach

each other’ by the group action. When a (P)-closed group is acting on a tree, the corresponding local action

diagram has a vertex for each orbit of the action. This means that when there is a finite number of orbits

there is a finite number of vertices in the local action diagram. Furthermore, when the tree is locally finite —

meaning it has a finite number of edges originating from each vertex — then the local action diagram has a

finite number of edges. This means that we are able to describe infinite groups acting on infinite trees with a

finite amount of information.

GAP is a computer algebra system designed with a focus on group theory. [2] There are a number of

community made packages that extend its functionality. We developed a GAP package which implements

local action diagrams. The package makes use of the digraphs package to implement a category in GAP for

local action diagrams. It also provides functions to check for local action diagram isomorphisms, find strongly

confluent partial orientations in local action diagrams, and enumerate all local action diagrams corresponding

to (P)-closed groups acting on a regular tree of degree d and either 1 or 2 vertex orbits.

3 Statement of Authorship

The code implementing the local action diagram category in GAP, finding local action diagram isomorphisms,

and enumerating local action diagrams with two vertices was written by M. Chijoff. The digraphs package for

GAP was used in the implementation. M. Chijoff wrote the code to load this as a package in GAP. S. Tornier

wrote the code to draw local action diagrams with one and two vertices in TikZ and wrote the original code

to enumerate local action diagrams with one vertex. M. Chijoff adapted the original code to enumerate local

action diagrams with one vertex to work with the local action diagram category.

2

4 Background

In the following section, we use the same notation and definitions as [1] and this notation will be used throughout

the report.

4.1 Groups

A group is a set, G, with a binary operation, ·, satisfying the following axioms:

• Identity Element: There as an e ∈ G such that for all g ∈ G, g · e = e · g = g.

• Inverses: For all g ∈ G, there exists an g−1 ∈ G such that g · g−1 = g−1 · g = e.

• Associativity: For all x, y, z ∈ G, x · (y · z) = (x · y) · z.

• Closure: For all x, y ∈ G, x · y ∈ G.

When the operation is clear from context we omit writing an explicit symbol for it.

For a group, G, we define a subgroup, H, of G to be a subset of G which forms a group with the same

group operation. We write H ≤ G to say that H is a subgroup of G.

For a group, G, and a set, X, a group action on X is a function α : G×X → X satisfying:

• Identity: For all x ∈ X, α(e, x) = x.

• Compatibility: For all g, h ∈ G and x ∈ X, α(g, α(h, x)) = α(gh, x).

When it is clear from context, we write gx to mean α(g, x) for g ∈ G and x ∈ X.

For each element, x, of X we define the orbit of x — denoted by G · x — to be G · x := {g · x : g ∈ G}, i.e.

the set of elements in X which can be reached by the action of G. The set of orbits of a group action form a

partition of X and we denote this set by G\X.

4.2 Graphs

A directed graph Γ = (V,A, o, r) consists of a vertex set, V , a set of arcs, A, a map o : A→ V which assigns

each arc to an origin vertex, and a bijection r : A → A called an edge reversal and such that r2 = id. We

denote the reversal mapping by a 7→ a and define the terminal vertex of an arc to be t(a) := o(a). For each

v ∈ V , the set o−1(v) is the set of all arcs which originate at v. For a graph, Γ, we denote the set of vertices by

V Γ and the set of edges by AΓ when not clear from context. A subgraph Γ′ = (V ′, A′, o′, r′) is a graph such

that V ′ ⊆ V , A′ ⊆ A, and o′ and r′ equal to the restriction of o and r to A′.

An isomorphism between two graphs, Γ and Γ′, is a pair of bijections, θV : V Γ→ V Γ′ and θA : AΓ→ AΓ′,

which respect the origin vertices and edge reversal. This means that θV (o(v)) = o(θV (v)) and θA(a) = θA(a)

for all v ∈ V Γ and a ∈ AΓ. An isomorphism from a graph to itself is called an automorphism. The set of

all automorphisms of a graph together with function composition forms a group and we denote this group by

Aut(Γ).

3

For a group, G, acting on a graph, Γ, we define the quotient graph G\Γ by:

• The vertex set, VG, is the set of vertex orbits of G acting on Γ.

• The arc set is, AG, the set of arc orbits of G acting on Γ.

• The origin map õ : AG → AG is defined by õ(Ga) = Go(a).

• The reversal map r̃ : AG → AG is defined by Ga 7→ Ga.

A graph is simple if for each u, v ∈ V there is at most one arc of the form (u, v). For an index set I ⊆ Z we

define Î := {i ∈ I : i+ 1 ∈ I}. Then a path indexed by I is a sequence of vertices (vi)i∈I and edges ({ai, ai})i∈Î

such that {ai, ai} is an edge in Γ between vi and vi+1 for all i ∈ Î. A path is simple if all vertices in it are

distinct. A directed path only includes arcs ai where o(ai) = vi and t(ai) = vi+1 for all i ∈ Î. If the index set

is finite with maximum n > 0, v0 = vn, and all vertices in the path are distinct then we say that the path is a

cycle. A subset, O, of AΓ is an orientation if for each a ∈ AΓ, either a ∈ O or a ∈ O. A partial orientation

is a subset, O, of AΓ such that for all a ∈ AΓ, if a ∈ O then a /∈ O.

We define the length of a path to be the number of arcs in the sequence of arcs. If there is a path between

two vertices, u, v ∈ V , then there is a path of minimal length between them. We call the length of this path

the distance between u and v and denote it by d(u, v). For k ≥ 1 and v ∈ V we denote by B(v, k) the ball of

radius k centred at v. This is the subgraph of Γ induced by all vertices that are a distance of at most k away

from v.

A graph is connected if there is a path between any two distinct vertices. A tree is a non-empty simple,

connected graph that contains no cycles. The regular tree of degree d — denoted by Td — is a tree such that∣∣o−1(v)
∣∣ = d for all v ∈ V Td.

5 Local Action Diagrams

5.1 Property (P)

Given a tree T and H ≤ Aut(T) we define the following group

H(P) :=
{
g ∈ Aut(T) : ∀v ∈ V ∃hv ∈ H : hv|B(v,1) = g|B(v,1)

}
.

This is known as the (P)-closure of H. We say that H is (P)-closed if H = H(P). [1] The set H(P) is the group

of all automorphisms that ‘act locally like H.’

5.2 Local Action Diagrams

Local action diagrams were first described by C. Reid and S. Smith. [1] It was proven by them that local action

diagrams are in a one-to-one correspondence with (P)-closed groups.

Definition 5.1 A local action diagram ∆ = (Γ, (Xa), (G(v))) consists of

4

{1, 2}{3, 4}

⟨(1, 2), (3, 4)⟩

{1, 3}{2, 4}

⟨(1, 3), (2, 4)⟩

Figure 1: Two Isomorphic Local Action Diagrams

• A connected graph Γ.

• For each vertex, v, of Γ a group G(v) labelling the vertex.

• For each arc, a, of Γ a set Xa such that Xa is a distinct orbit of G(o(a)).

For each v ∈ V Γ we write Xv := ∪a∈o−1(v)Xa. Note that when drawing local action diagrams in this report

we use colours on the arcs to represent the reversal mapping. Arcs between two vertices with the same colour

are the reverse of each other and arcs that loop on a vertex with the same colour are the reverse of each other.

Definition 5.2 If ∆ = (Γ, (Xa), (G(v))) and ∆′ = (Γ′, (X ′
a), (G

′(v))) are two local action diagrams then we

define an isomorphism θ = (θ, (θv)) between them to be a graph isomorphism θ : Γ→ Γ′ and for each v ∈ V Γ a

bijection θv : Xv → Xθ(v) which restricts to a bijection from Xa to Xθ(a) and also such that θvG(v)θ−1
v = G′(v).

Figure 1 shows two isomorphic local action diagrams. An isomorphism between them is θ = (θ, (θ1)) where

θ is one of the digraph isomorphisms and

θ1 =

1 7→ 1

2 7→ 3

3 7→ 2

4 7→ 4

If T is a (potentially infinite) tree and G is a (potentially infinite) (P)-closed group acting on T then the

underlying graph, Γ, of the associated local action diagram is the quotient graph G\T . Thus, if there are finitely

many orbits of G acting on T then there are finitely many vertices in the local action diagrams and if T is locally

finite — i.e.
∣∣o−1(v)

∣∣ <∞ for all v ∈ V T — then there are finitely many arcs in the local action diagram.

In Figure 2 the group acting on the tree in the left consists of all automorphisms of the tree that preserve

the edge labelling. This group is (P)-closed and the corresponding local action diagram is on the right. The

group only has one orbit which is why which is why the local action diagram only has one vertex.

5

1

23

2 3

1

3

1

2

. . .

. . .

...
...

. .
.

. .
. {1}

{2}

{3}

⟨id⟩

Figure 2: An Example of A Tree and Group Action (left) and The Associated Local Action Diagram (right)

{1}

{2, 3}

{1, 2}

{3}
C2 C2

Figure 3: A Local Action Diagram With a Non-trivial Scopo (The Dashed Arcs)

5.3 Strongly Confluent Partial Orientations

Definition 5.3 Let ∆ = (Γ, (Xa), (G(v))) be a local action diagram. Then a strongly confluent partial

orientation (scopo) of ∆ is a subset O of AΓ such that

• If a ∈ O then a /∈ O and |Xa| = 1.

• For all v ∈ V Γ, if O contains an arc originating at v then O contains all other arcs (apart from a) that

terminate at v.

The first part of Definition 5.3 is the ‘partial orientation part’ and the second part of it is the ‘strongly

confluent part’. Also note that the empty scopo is a valid scopo. Scopos in a local action diagrams can be used

to find invariant subtrees and ends in the associated tree with respect to the group action. For example, if a

local action diagram only has the empty scopo then the associated group action is geometrically dense, which

means that the group action leaves no invariant subtrees or ends in the tree, other than the whole tree.

Figure 3 shows a local action diagram with a non-trivial scopo. The dashed arcs are the arcs in the scopo

and arcs with the same colour are reverses of each other.

6

6 Implementation In GAP

GAP is a computer algebra system with a focus on combinatorics and group theory. [2] It also has a number

of community made packages which extend its functionality. Each variable in GAP has categories assigned to

it. For example, a variable storing the number 1 is part of the IsInt and IsPosRat categories among others.

Each variable can also have a number of attributes associated with it.

To implement local action diagrams in GAP we define the category IsLocalActionDiagram and provide a

constructor. The constructor requires a digraph, list a vertex labels, list of edge labels, and a reversal mapping

as input. It will either check that they form a valid local action diagram or won’t depending on the users choice

of constructor. It will then create a copy of the digraph, assign it to the category IsLocalActionDiagram,

assign the vertex labels, edge labels, and reversal mappings as attributes, and then return this value. The

digraphs package for GAP is used to implement the digraph of local action diagrams. [3]

6.1 Finding Local Action Diagram Isomorphisms

We use an exhaustive search to find if two local action diagrams are isomorphic. Algorithm 1 shows the

implementation in pseudocode.

Algorithm 1 returns the first isomorphism found if one exists; otherwise it returns fail, a value in GAP

which means that nothing valid could be returned. The function FindGroupConjugateBijection will search

through every valid bijection between the domains of the two vertex labels. It uses the digraph isomorphism

mapping of the arcs so that it only searches through bijections which correctly restrict to the arc labels. If a local

action diagrams isomorphism exists, then the function will return a list containing the digraph isomorphism

and a list of bijections between the vertex labels.

6.2 Finding Scopos

We use an exhaustive search on a reduced search space to find all Scopos of a local action diagram. The search

space is reduced by removing all arcs that violate at least one of the conditions for being part of a scopo.

Algorithm 2 shows the implementation in pseudocode.

In Algorithm 2, the ScopoSecondCondition function checks if the second condition in Definition 5.3 holds

for the given arc only — i.e. for each arc, a, it checks that each arc that terminates at o(a) (apart from a) has

a label with cardinality one. Any arc which does not satisfy this condition can’t be part of a scopo but an arc

satisfying this condition is not sufficient for it to be part of a scopo.

For each arc, a, in a candidate scopo, the IsScopo function checks that each arc that terminates at o(a) is

in the candidate scopo and that a is not in the candidate scopo. The previous work to reduce the search space

ensures that each arc label already has a cardinality of one.

The candidate scopos are all the subsets of the candidate arcs. This is why reducing the search space is

necessary. If we did not reduce the search space then the number of candidate scopos would be 2|AΓ| where Γ is

7

Algorithm 1: Local Action Diagrams Isomorphism Search

Data: lad 1, lad 2

Result: lad isomorphism

digraph isomorphisms ← EveryDigraphIsomorphism(lad 1, lad 2);

bijections ← EmptyList();

for iso in digraph isomorphisms do

for vertex in LocalActionDiagramVertices(lad 1) do

group 1 ← LocalActionDiagramVertexLabel(vertex);

group 2 ← LocalActionDiagramVertexLabel(iso(vertex));

bijection ← FindGroupConjugateBijection(group 1, group 2, iso);

if bijection = fail then

bijections ← EmptyList();

break;

end

else

Add(bijections, bijection);

end

end

if Length(bijections) = Length(LocalActionDiagramVertices(lad 1)) then

Return(iso, bijections);

end

end

Return(fail);

8

Algorithm 2: Local Action Diagram Scopo Search

Data: lad

Result: lad scopos

all arcs ← LocalActionDiagramArcs(lad);

candidate arcs ← EmptyList();

lad scopos ← EmptyList();

for arc in all arcs do

if Length(ArcLabel(arc)) = 1 and ScopoSecondCondition(arc) then

Add(candidate arcs, arc);

end

end

for candidate scopo in PowerSet(candidate arcs) do

if IsScopo(candidate scopo) then

Add(lad scopos, candidate scopo);

end

end

Return(lad scopos);

the underlying digraph of the local action diagram. This quickly grows to sizes that are impractical to compute

and reducing the search space allows this to be computed for more local action diagrams.

6.3 Searching For All Local Action Diagrams

For a fixed degree d, we want to find all (P)-closed groups acting on Td with a given number of vertex orbits.

We are able to do this by finding all local action diagrams up to an isomorphism which correspond to the given

conditions. The case for one vertex orbit — i.e. vertex-transitive (P)-closed groups — was implemented by

S. Tornier in GAP. [1] This implementation was adapted to use our implementation of a local action diagram

category in GAP. Algorithm 3 shows our implementation for the case with two vertex orbits — i.e. local action

diagrams with two vertices.

In Algorithm 3, the groups labelling the vertices are representatives of the conjugacy classes of subgroups

of Sym(d). We use unordered tuples of them because in the case with two vertices swapping the order of the

group labels produces isomorphic local action diagrams.

The number of arcs originating at each vertex is determined by the number of orbits of the group labelling

the vertex. There must be at least one pair of arcs between the two vertices as local action diagrams must be

connected. The maximum number of arcs between the two vertices is determined by the minimum number of

orbits of the groups labelling the vertices. Any ‘left over’ arcs must be loops on the vertex they originate at.

This process iterates through every underlying digraph for each group labelling the vertices.

9

Algorithm 3: All Local Action Diagrams Search

Data: d

Result: all lads

all lads ← EmptyList();

conjugate group pairs ← UnorderedTuples(ConjugacyClassesSubgroups(SymmetricGroup(d)));

for group pair in conjugate group pairs do

arcs ← [Orbits(group pair[1]), Orbits(group pair[2])];

no orbits ← [Length(arcs[1]), Length(arcs[2])];

for arcs between in Range(1..Min(no orbits)) do
digraph ←

Digraph([[no oribts[1]-arcs between, arcs between], [arcs between, no orbits[2]-arcs between]]);

for arc label one in Arrangements(arcs[1]) do

for arc label two in Arrangements(arcs[2]) do

arc labels ← Concatenation(arc label one, arc label two);

for reversal map in OrderTwoPermutations(Length(arc labels)) do

if IsValidReversalMap(digraph, reversal map) then

temp lad ← LocalActionDiagram(digraph, group pair, arc labels, reversal map);

for lad in all lads do

if IsIsomorphicLocalActionDiagrams(lad, temp lad) then

Continue(2);

end

end

Add(all lads, temp lad);

end

end

end

end

end

end

Return(all lads);

10

Table 1: Number of Local Action Diagrams With Two Vertices Labelled With Subgroups of Td

d Number of Local Action Diagrams

1 1

2 4

3 26

4 200

5 ?

The labels for the arcs are also determined by the vertex orbits. Every arrangement of the vertex orbits is

iterated through for each underlying digraph. The reversal maps are determined by iterating through all order

two permutations on |AΓ| elements — i.e. all r ∈ Sym(|AΓ|) such that r2 = id — and checking which are valid

reversal maps for the underlying local action diagram. For each local action diagram found, we add it to the

output list if it is not isomorphic to any previously found local action diagrams.

7 Searching For All (P)-closed Subgroups of Td With Two Vertex

Orbits

We ran the process described in Algorithm 3 for a number of d. Table 1 shows the number of local action

diagrams found up to an isomorphism and thus the number of (P)-closed subgroups of Td up to a conjugacy.

We were able to run Algorithm 3 for d = 1, 2, 3, 4 but it takes too long to run for d = 5. To run it on d = 5

we will need to improve the search algorithm by reducing the search space. For example, if both vertices are

labelled with the trivial group acting on {1, 2, 3, 4, 5} then the orbits of both groups are {{1}, {2}, {3}, {4}, {5}}.

In this case we don’t need to search through every possible arrangement because conjugating the trivial group

by any bijection results in the trivial group which means that we can always pick a bijection that correctly maps

the orbits labelling the arcs. Thus we only need to search through one arrangement, reducing the search space.

It’s interesting the note that the sequence 1, 4, 26, 200 corresponds to first four elements of sequences A271935

and A246509 on the OEIS. [4, A271935, A245609] Both of these sequences differ at the fifth element so it will

be interesting to optimize the code and run it for d = 5 to see if the number of local action diagrams matches

up with one of these sequences.

8 Conclusion

Local action diagrams can be used to describe (P)-closed groups with a finite amount of information. We have

implemented a category for local action diagrams in GAP and some functions to perform computations with

them, namely: searching for a local action diagram isomorphism, searching for scopos in a local action diagram,

11

and enumerating local action diagrams with one or two vertices.

Possible future directions are:

• Improving the algorithms used in the implementation so faster computations can be performed.

• Running the enumeration algorithm for larger values of d to build a library of local action diagrams.

– Perhaps only enumerating sub-cases, such as the local action diagrams which are trees.

• Implementing further computations, such as testing if a local action diagram is a local subaction diagram

of another.

• Submit the package for redistribution with GAP.

9 Acknowledgements

I would like to thank Stephan Tornier for supervising this project. His help with understating local action

diagrams and GAP has been invaluable and his code to draw local action diagrams in TikZ is appreciated.

10 Appendix: Using The GAP Package Produced

The GAP package can be downloaded from https://github.com/marcusc31415/LocalActionDiagrams. To

install it, the LocalActionDiagrams folder needs to be placed in the pkg folder of a GAP root directory. A list

of GAP root directories can be found in the GAPInfo.RootPaths variable in a GAP session.

Once it is installed, to load the package in a GAP session you use LoadPackage("localactiondiagrams");.

This will also load the digraphs package. To make a local action diagram you need an immutable digraph, a

list of groups to label each vertex, a list of sets to label each edge, and a reversal mapping. The function

LocalActionDiagramFromData will check that these form a valid local action diagram and return the local

action diagram; the LocalActionDiagramFromDataNC function won’t check this and so can be used if you’ve

already checked that the data is valid.

The IsomorhpismLocalActionDiagrams function will return an isomorphism between two input local ac-

tion diagrams or fail if one doesn’t exist. The Scopo attribute of a local action diagram will first calculate

all the scopos of a local action diagram and store them; it will use the stored value on subsequent calls. The

AllLocalActionDiagrams function will enumerate all local action diagrams satisfying given condition. It cur-

rently supports only one and two vertices.

11 References

[1] C. D. Reid and S. M. Smith, Groups acting on trees with tits’ independence property (p), 2020. doi:

10.48550/ARXIV.2002.11766. [Online]. Available: https://arxiv.org/abs/2002.11766.

12

https://github.com/marcusc31415/LocalActionDiagrams
https://doi.org/10.48550/ARXIV.2002.11766
https://arxiv.org/abs/2002.11766

[2] GAP – Groups, Algorithms, and Programming, Version 4.12.2, The GAP Group, 2022. [Online]. Available:

https://www.gap-system.org.

[3] J. D. Beule, J. Jonušas, J. D. Mitchell, M. Torpey, M. Tsalakou, and W. A. Wilson, Digraphs - GAP

package, version 1.6.1, Dec. 2022. [Online]. Available: https://digraphs.github.io/Digraphs.

[4] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, Published electronically at http:

//oeis.org, 2023.

13

https://www.gap-system.org
https://digraphs.github.io/Digraphs
http://oeis.org
http://oeis.org

	Abstract
	Introduction
	Statement of Authorship
	Background
	Groups
	Graphs

	Local Action Diagrams
	Property (P)
	Local Action Diagrams
	Strongly Confluent Partial Orientations

	Implementation In GAP
	Finding Local Action Diagram Isomorphisms
	Finding Scopos
	Searching For All Local Action Diagrams

	Searching For All (P)-closed Subgroups of T_d With Two Vertex Orbits
	Conclusion
	Acknowledgements
	Appendix: Using The GAP Package Produced
	References

