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Abstract

In this report we discuss the Riemann–Roch theorem, which gives a formula for the

dimension of a certain space of meromorphic functions on a compact Riemann surface.

From a classical perspective, we prove the formula using the ideas of cohomology and exact

sequences from algebraic topology. We then understand the theorem as a consequence

of applying the index theory of Dirac operators to complex manifolds. This leads to the

Hirzebruch–Riemann–Roch theorem, which generalises the Riemann–Roch theorem to

compact complex manifolds of arbitrary dimension.

1 Introduction

A Riemann surface is a geometric object locally modelled on the complex plane. These were

introduced by Riemann in order to deal with the multi-valued behaviour of algebraic functions

such as the square root. Riemann surfaces can be considered as the natural domains of

holomorphic and meromorphic functions, and are used in the theory of analytic continuation.

However, Riemann surfaces are also fundamental geometric objects in their own right, as the

simplest examples of complex manifolds. Moreover, the technical tool of the cohomology of

sheaves is more clearly understood in this special case, and we use this to prove the Riemann–

Roch theorem (introduced in Section 3 and proved in Section 4). The Riemann–Roch formula

allows for the computation of the dimension of a space of meromorphic functions with prescribed

zeroes and poles on a compact Riemann surface. This is a natural problem to consider, since

a common strategy to study the geometry of a surface is to study functions on it, and it is

well-known that there are no nonconstant holomorphic functions on a compact Riemann surface.

In the second half of this report (Sections 5-7) we summarise important notions from the

index theory of Dirac operators. The index is an integer expressed in terms of analytical

quantities, namely a difference in the dimensions of certain kernels related to a Dirac operator.

The Atiyah–Singer index theorem (Atiyah and Singer 1963) relates the index to topological

quantities called characteristic classes. Atiyah, Bott, and Patodi (1973) gave a new proof of a

local version of the index theorem by studying the heat equation associated to a Dirac operator.

This report focuses on how this proof is applied to a particular Dirac operator called the

Dolbeault–Dirac operator. This gives a generalisation of the Riemann–Roch theorem to compact

complex manifolds of arbitrary dimension, which is known as the Hirzebruch–Riemann–Roch
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theorem. A version of the Hirzebruch–Riemann–Roch theorem had previously been known for

projective algebraic varieties, but its generalisation to compact complex manifolds is due to

index theory.

2 Statement of Authorship

The treatment of Riemann surfaces follows the textbook by Forster (1981). The material on the

heat kernel proof of the index theorem primarily follows the definitions and overall structure of

the exposition in the textbook by Roe (1998), with other sources used and appropriately cited.

I summarised and explained the ideas and proofs, emphasising the connections between the

Riemann–Roch theorem and index theory.

3 Meromorphic Functions on Riemann Surfaces

A Riemann surface is a connected one-dimensional complex manifold. This involves charts from

the surface to the complex plane which induce an appropriate topology and notion of complex

differentiability. We now expand upon what this definition means.

Definition 3.1 (Riemann surface). Let X be a two-dimensional topological manifold, i.e.

a Hausdorff topological space which is locally homeomorphic to R2. A complex chart is a

homeomorphism φ : U → V of an open subset U of X to an open subset V of C. A complex

atlas is a collection A = (φi)i∈I of complex charts φi : Ui → Vi such that
⋃

i∈I Ui = X.

Two complex charts φi : Ui → Vi, i = 1, 2, are holomorphically compatible if the sets

φi(U1 ∩ U2), i = 1, 2, are open and the transition map

φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2)

is a biholomorphic complex function, i.e. a bijective holomorphic function with a holomorphic

inverse. We say that two complex atlases A and A′ are analytically equivalent if every chart

in A is holomorphically compatible with every chart in A′. It is easily seen that analytical

equivalence is an equivalence relation. Its equivalence classes are called complex structures.

Finally, a one-dimensional complex manifold is a pair (X,Σ) where X is a two dimensional

topological manifold and Σ is a complex structure on X. If moreover X is connected, we say

that it is a Riemann surface. We abbreviate (X,Σ) to X.
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An atlas for a Riemann surface allows us to define what it means for a mapping f : X → Y

between Riemann surfaces to be holomorphic: we ask that the corresponding map between

subsets of the complex plane given by composing f with complex charts is holomorphic, for all

charts in the atlas. The importance of the definition of analytical equivalence is that it implies

that we can check the definition of a holomorphism for any atlas which induces the chosen

complex structure on the Riemann surface. Some theorems about holomorphic functions on the

complex plane immediately generalise to results about holomorphic maps between Riemann

surfaces; notably, we have the identity theorem.

Theorem 3.2 (Identity theorem). Let X and Y be Riemann surfaces, and f and g be holomor-

phic maps from X to Y which coincide on a set A ⊂ X. If A contains a limit point of X, then

f = g.

Given the definition of holomorphic maps, we can then define meromorphic maps in the

same way that meromorphic functions are defined from holomorphic functions on the complex

plane.

Definition 3.3 (Meromorphic functions). Let X be a Riemann surface and Y an open subset

of X. A meromorphic function on Y is a holomorphic function f : Y ′ → C for an open subset

Y ′ ⊆ Y , such that Y \ Y ′ only contains isolated points, and for every point p ∈ Y \ Y ′, one has

lim
x→p

|f(x)| = ∞.

These points are called the poles of f . The set of meromorphic functions on Y is denoted M (Y ).

To study meromorphic functions on a Riemann surface, we introduce the notion of a divisor.

We now work with compact Riemann surfaces for simplicity and since these are all we need for

the Riemann–Roch theorem.

Definition 3.4 (Divisor, degree). Let X be a compact Riemann surface. A divisor on X is a

map D : X → Z with finite support. The degree of D, denoted degD, is the sum
∑
x∈X

D(x).

We can associate divisors to meromorphic functions in the following way.

Definition 3.5. Let X be a compact Riemann surface and Y an open subset of X. Let X be a

Riemann surface and Y an open subset of X. For all meromorphic functions f ∈ M (Y ) and
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a ∈ Y , define

orda(f) =



0, if f is holomorphic and nonzero at a

k, if f has a zero of order k at a

−k, if f has a pole of order k at a

∞, if f is identically zero in a neighbourhood of a.

Proposition 3.6 (Divisor of a meromorphic function). Let f be a nonzero meromorphic function

on a compact Riemann surface X. Then the map x 7→ ordx(f) is a divisor on f , denoted (f)

and called the divisor of f .

Proof. If orda(f) = ∞ for some a ∈ X, then f is identically zero on a set for which a is an

interior point, and hence a limit point. It follows by the identity theorem, Theorem 3.2, that

f = 0 on X. Due to the assumption that f is nonzero, this shows that (f) is indeed a map to Z.

Consider the set S of poles of f . It is by definition a discrete subset of the compact space X.

Hence S is finite. By the identity theorem, the zeroes of a nonzero meromorphic function are

also a discrete subset of X. Therefore (f) has finite support. Thus (f) is a divisor.

The Riemann–Roch theorem gives a formula for the dimension of the vector space of

meromorphic functions which are at least as well-behaved as a given divisor. In the next section

we make this interpretation precise (see Remark 4.2) and provide a proof using cohomology.

4 Čech Cohomology and the Riemann–Roch Theorem

Our proof of the Riemann–Roch theorem uses exact sequences to compute the cohomology

groups of sheaves. We first explain these technical terms and then present the proof.

A sheaf is a collection of abelian groups with elements called sections, which can be thought

of as a generalisation of functions, with a way to restrict them, and such that the sections are

determined locally and can be glued together. See Appendix A for a detailed definition. Here

are examples which we will use later. For every open subset U of a Riemann surface X, let

O(U) be the vector space of holomorphic functions on U . Together with the usual restriction

maps, this gives the sheaf O of holomorphic functions on X.
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Example 4.1 (The sheaf OD). Let D be a divisor on a compact Riemann surface X. For all

open sets U ⊆ X, define OD(U) = {f ∈ M (U) : ordx(f) ≥ −D(x) for all x ∈ U}. Together

with the natural restriction maps, OD is a sheaf, called the sheaf of multiples of the divisor −D.

Remark 4.2. Suppose D(x) = m > 0. Then ordx(f) ≥ −m if and only if f is holomorphic or

has a pole of order less than or equal to m at x. If D(x) = n ≤ 0, then ordx(f) ≥ −n if and only

if f has a zero of at least order −n at x. This is what is rigorously meant by the statement that

D gives rise to a space of meromorphic functions with prescribed zeroes and permissible poles:

this is referring to OD(X). The Riemann–Roch formula computes the dimension of OD(X).

Example 4.3 (Skyscraper sheaf). Let p be a point on a Riemann surface X. The skyscraper

sheaf Cp is given by the abelian groups

Cp(U) =

C if p ∈ U,

0 if p /∈ U.

Cohomology gives a way to study a Riemann surface (or a more abstract topological space)

by associating it with abelian groups. Čech cohomology does this by assign a section of a sheaf

to intersections of a cover on the Riemann surface. These are called cochains.

Definition 4.4 (Cochain group). Let X be a topological space and F a sheaf of abelian groups

on X. Let U = (Ui)i∈I be an open cover of X. For q ≥ 0, define the q-th cochain group of F

with respect to U as the direct product

Cq(U,F ) :=
∏

(i0,...,iq)∈Iq+1

F
( q⋂
k=0

Uik

)
.

Elements of Cq(U,F ) are called q-cochains.

We are mostly interested in q-cochains where q is from 0 to 2. For a toy example, consider

an open cover U consisting of two sets U1 and U2. Then a 0-cochain is a pair (f1, f2) where

f1 ∈ F (U1) and f2 ∈ F (U2). A 1-cochain is a tuple (f11, f12, f21, f22) where f11 ∈ F (U1), f12

and f21 are in F (U1 ∩ U2), and f22 ∈ F (U2).

The coboundary operator sends a q-cochain to a (q + 1)-cochain.

Definition 4.5 (Coboundary operator). We define the coboundary operator from the 0-th

cochain group to the first cochain group by

δ : C0(U,F ) → C1(U,F ), (fi)i∈I 7→ (gij)i,j∈I ,
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where gij := fj − fi ∈ F (Ui ∩ Uj). From the first to the second cochain group we define

δ : C1(U,F ) → C2(U,F ), (fij)i,j∈I 7→ (gijk)i,j,k∈I

where gijk := fjk − fik + fij ∈ F (Ui ∩ Uj ∩ Uk). In the above definitions it is understood that

we restrict to the appropriate intersection before adding the sections.

Definition 4.6 (Cocycle and coboundary). Denote the kernel of δ : C1(U,F ) → C2(U,F ) by

Z1(U,F ), and the image of δ : C0(U,F ) → C1(U,F ) by B1(U,F ). Elements of Z1(U,F ) are

called 1-cocycles. Elements of B1(U,F ) are called 1-coboundaries.

An important fact is that 1-coboundaries are 1-cocycles, or symbolically δ2 = 0. If gij, gik

and gjk are elements of a 1-coboundary (gij)i,j∈I , then by definition there exists a zero cochain

(fi)i∈I such that gij = fj − fi for all i, j ∈ I. Thus

gij + gjk = fj − fi + fk − fj = fk − fi = gik.

This finishes the proof since gij + gjk = gik is precisely the condition for (gij)i,j∈I to be a cocycle.

Therefore we can consider 1-cocycles modulo 1-coboundaries, which is the definition of the first

cohomology group.

Definition 4.7 (First cohomology group with respect to a cover). Let X be a topological space,

U an open cover of X, and F a sheaf of abelian groups on X. The quotient group

H1(U,F ) = Z1(U,F )/B1(U,F )

is called the first cohomology group with coefficients in F with respect to the cover U. Its

elements are called cohomology classes. Note that if F is a sheaf of vector spaces, then C1(U,F )

and H1(U,F ) are vector spaces.

We can remove the dependence on the cover to form the first cohomology group H1(X,F )

which only depends on the topological space X and the sheaf F . This is done by taking the

quotient by an equivalence relation where two cohomology classes are equivalent if there exists

a common subcover on which they agree. A precise definition is in Section 12 of Lectures on

Riemann Surfaces (Forster 1981), which also introduces the zeroth cohomology group H0(X,F ).

This is equal to the group of global sections on X, i.e. H0(X,F ) = F (X).

Exact sequences provide a practical method for computations involving cohomology groups.

A sequence of homomorphisms between abelian groups A1
f1−→ A2

f2−→ . . .
fn−1−→ An, where n ≥ 3,
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is called an exact sequence if im fi = ker fi+1 for all i = 1, . . . n − 2. A sheaf homomorphism

α : F → G is a family of homomorphisms α(U) : F (U) → G (U) for all open sets U ,

which commute with the restriction homomorphisms. A sheaf homomorphism induces a

homomorphisms Fx → Gx between the stalks of the sheaf; stalks are introduced in Appendix A.

Thus we define a sequences of sheaves F → G → H to be exact if the corresponding sequences

of the stalks Fx → Gx → Hx, which is a sequence of abelian groups, is exact for all x ∈ X.

The following important theorem relates exact sequences of sheaves with exact sequences of

cohomology groups.

Theorem 4.8. Suppose that X is a topological space and

0 → F → G → H → 0

is an exact sequence of sheaves on X. Then there is an induced exact sequence of cohomology

groups

0 → H0(X,F ) → H0(X,G ) → H0(X,H )

→ H1(X,F ) → H1(X,G ) → H1(X,H ).

This is proved as Theorem 15.12 of Lectures on Riemann Surfaces (Forster 1981). Finally, we

need to quote the fact that for X a compact Riemann surface, the cohomology group H1(X,O)

is finite dimensional. This is proved in Sections 13 and 14 of the same textbook, by analysing the

inhomogenous Cauchy–Riemann equation and developing L2-theory for holomorphic cochains.

Therefore in this case we define the genus of X as g = dimH1(X,O) < ∞.

We have now developed enough theory to state and prove the Riemann–Roch theorem.

Theorem 4.9 (Riemann–Roch). Let D be a divisor on a compact Riemann surface X of genus

g. Then H0(X,OD) and H1(X,OD) are finite dimensional vector spaces and

dimH0(X,OD)− dimH1(X,OD) = 1− g + degD.

Recall that H0(X,OD) = OD(X). Therefore the Riemann–Roch theorem gives a formula

for the complex dimension of this space of meromorphic functions which was interpreted in

Remark 4.2.

Proof. The proof is by induction. Consider D = 0. From the definitions, O0 = O, the sheaf of

holomorphic functions. Then H0(X,O) = O(X) consists of only constant functions since X
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is compact, so dimH0(X,O) = 1. We have H1(X,O) = g by definition and degD = 0 since

D = 0. Therefore the Riemann–Roch formula holds.

Given a point P ∈ X, we also denote by P the divisor which takes the value 1 at the point P

and zero elsewhere. Let D′ = D + P . In Appendix B, we prove that there is an exact sequence

0 → OD → OD′ → CP → 0, and calculate that H0(X,CP ) = C and H1(X,CP ) = 0. Therefore

Theorem 4.8 gives an exact sequence

0 → H0(X,OD) → H0(X,OD′) → C

→ H1(X,OD) → H1(X,OD′) → 0.

Let V = im(H0(X,OD′) → C) and W = C/V . Clearly dimV + dimW = 1 = degD′ − degD.

From the definition of V and W , the sequences

0 → H0(X,OD) → H0(X,OD′) → V → 0,

0 → W → H1(X,OD) → H1(X,OD′) → 0

are exact. By the rank-nullity theorem and exactness, the alternating sum of the dimen-

sions of these sequences are zero. Therefore dimH0(X,OD′) = dimH0(X,OD) + dimV and

dimH1(X,OD) = dimH1(X,OD′) + dimW . Note that if the vector spaces corresponding to D

are finite dimensional then they are for D′, and vice versa. Adding these equations gives

dimH0(X,OD′)− dimH1(X,OD′) = dimH0(X,OD)− dimH1(X,OD) + dimV + dimW

= dimH0(X,OD)− dimH1(X,OD) + degD′ − degD.

which shows that

dimH0(X,OD′)− dimH1(X,OD′)− degD′ = dimH0(X,OD)− dimH1(X,OD)− degD.

It is now clear that if the Riemann–Roch theorem holds for one of D or D′, then it holds for the

other. If it holds for D it holds for D+P , and if it holds for D = (D−P )+P it holds for D−P .

An arbitrary divisor D on X can be written as a sum D = P1 + · · · + Pm − Pm+1 − · · · − Pn

from points in X. This proves the Riemann–Roch theorem by induction from D = 0.

5 Dirac Operators

In the remainder of this report we present a modern perspective on the Riemann–Roch theorem.

Index theory allows this theorem to be approached by studying an invariant of an operator,
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called the index of a Dirac operator. In particular, applying index theory to complex manifolds

gives a generalisation of the Riemann–Roch theorem to higher dimensions. Since index theory

is a large field, we focus on giving an overview of the main ideas, rather than on proofs. Proofs

can be found in Elliptic Operators, Topology and Asymptotic Methods (Roe 1998), which is

our primary reference. Another comprehensive reference is Heat Kernels and Dirac Operators

(Berline, Getzler, and Vergne 1992).

To define Dirac operators, we first need to introduce Clifford bundles. Let V be a real

vector space with a symmetric bilinear form (·, ·). The Clifford algebra gives a way to multiply

vectors, satisfying a certain rule. Namely, the Clifford algebra Cl(V ) is heuristically the algebra

generated by V subject to the rule that v2 = −(v, v)1 for all v ∈ V , where 1 is the unit in Cl(V ).

The idea of generation can be made precise by enforcing a universal property.

Definition 5.1 (Clifford algebra). Let V be as above. A Clifford algebra for V is an associative

algebra A equipped with a map φ : V → A such that φ(v)2 = −(v, v)1, and which is universal

among such maps in the sense that if there there exists another such map φ′ : V → A′, then

there exists a unique algebra homomorphism A → A′ such that the following diagram commutes:

V A

A′

φ

φ′

A Clifford algebra exists for any V and, by the universal property, is unique up to unique

isomorphism. We denote it by Cl(V ). Given a basis e1, . . . , en for V , we can realise Cl(V )

as the span of the 2n possible products of φ(e1)
k1 , . . . , φ(en)

kn , where each ki is 0 or 1, with

multiplication satisfying the rule

φ(v1)φ(v2) + φ(v2)φ(v1) = −2(v1, v2).

Another realisation of Cl(V ) is the quotient of the tensor algebra T (V ) by the ideal generated

by

I = {v ⊗ w + w ⊗ v + 2(v, w) | v, w ∈ V }

(Berline, Getzler, and Vergne 1992, Proposition 3.2). In fact, the map φ : V → Cl(V ) is injective,

so we identify v ∈ V with its image φ(v) ∈ Cl(V ).

We define a Clifford module as a left module over the complexified Clifford algebra Cl(V )⊗RC.

The tangent bundle TM of a Riemannian manifold M gives rise to a Clifford bundle S. This is a
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bundle of Clifford modules, meaning that it is a vector bundle with fibres Sp for p ∈ M which are

left modules over Cl(TpM)⊗ C, satisfying additional compatibility assumptions. Importantly,

S has a connection. We review connections, vector bundles, and sections in Appendix C.

The Clifford bundles we are interested in have the additional structure of a Z2-grading. This

is a direct sum decomposition S = S+ ⊕ S−. Elements in S+ as considered even and elements in

S− are considered odd. We ask that the metric and connection are even, in that they send S+

to S+ and S− to S−, while the Clifford action is odd, i.e. it sends S+ to S− and vice versa.

Definition 5.2 (Dirac operator). The Dirac operator D of a Clifford bundle S is the operator

on Γ(S), the space of smooth sections of S, given by the composition

Γ(S)
∇−→ Γ(T ∗M ⊗ S)

g−→ Γ(TM ⊗ S) → Γ(S)

where the first arrow is the connection ∇ on S, the second arrow is the metric, and the final

arrow is the Clifford action.

In local coordinates, i.e. in a local orthonormal tangent frame (ei)i∈I , the Dirac operator is

expressed for any section s ∈ S by

Ds =
∑
i

ei∇is.

In terms of the Z2-grading, D is odd, since the connection and the metric are even while the

action is odd. This is an important property and leads to cancellations (discussed in Section 6).

A motivation for Dirac operators comes from trying to find a square root of a Laplacian

operator. The square of the Dirac operator of a Clifford bundle as defined here is not a Laplacian,

but it is related to one by the Lichnerowicz–Weitzenböck formula

D2 = ∇∗∇+ FS +
1

4
κ (5.1)

Here ∇∗∇ is the Bochner Laplacian (∗ denotes formal adjoint), FS is a quantity of the Clifford

bundle called the Clifford contraction of the twisting curvature, and κ is the scalar curvature of

the metric on M .

The Dirac operator relevant to the Riemann–Roch theorem is the Dolbeault–Dirac operator

∂̄ + ∂̄∗. This is defined on differential forms on a complex manifold X. Recall that differential

forms make sense of expressions such as f dx dy. Let dimC(X) = n. Consider local coordinates

zk, for k = 1, . . . , n, on an open subset U of X. Let zk = xk + iyk. Then the differential of a
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smooth (infinitely differentiable with respect to the real coordinates) function f is given by

df =
∑
k

∂f

∂xk

dxk +
∑
k

∂f

∂yk
dyk.

After defining the Wirtinger derivatives

∂

∂zk
=

1

2

(
∂

∂xk

− i
∂

∂yk

)
,

∂

∂z̄k
=

1

2

(
∂

∂xk

+ i
∂

∂yk

)
,

one calculates that the differential of f can also be expressed as

df =
∑
k

∂f

∂zk
dzk +

∑
k

∂f

∂z̄k
dz̄k.

The second sum in this expression is defined to be ∂̄f . A smooth (0, q)-form on X is given by∑q
k=1 fk dz̄k1 dz̄k2 · · · dz̄kq for smooth functions fk. For example, if n = 3, a (0, 2)-form looks like

f dz̄1 dz̄2 + g dz̄1 dz̄3 + h dz̄2 dz̄3. By convention, a function is a (0, 0)-form. Denote by Ω(0,q)(X)

the space of smooth (0, q)-forms on X. The ∂̄ operator on a (0, q)-form is given locally by
q∑

k=1

fk dz̄k1 dz̄k2 · · · dz̄kq 7→
q∑

k=1

∂̄fk dz̄k1 dz̄k2 · · · dz̄kq

Note that it sends a (0, q) form to a (0, q + 1) form. In fact, this map is independent of the

choice of local coordinates, and so this defines ∂̄ as an operator Ω0,q(X) → Ω0,q+1(X). Its formal

adjoint ∂̄∗ is therefore a map Ω0,q+1(X) → Ω0,q(X), so it sends (q + 1)-forms to q-forms. As

mentioned above, the sum ∂̄ + ∂̄∗ is called the Dolbeault–Dirac operator.

The following theorem, stated as Proposition 3.27 by Roe (1998), shows how the Dolbeault–

Dirac operator relates to the Dirac operator of a particular Clifford bundle.

Theorem 5.3. Let X be a complex manifold. This induces a Clifford bundle S, called a spin

bundle, such that the space of smooth sections Γ(S) is isomorphic to the direct sum
⊕∞

q=0Ω
0,q.

The Dirac operator of S is
√
2(∂̄ + ∂̄∗) + A, where A is an endomorphism of S.

Although
√
2(∂̄ + ∂̄∗) is not a Dirac operator, it is up to an endomorphism of S. Such

an operator is called a generalised Dirac operator, which share many properties with Dirac

operators.

6 Index and Supertrace

The Fredholm index of a bounded linear operator between T : X → Y between Banach spaces

is defined as

indT = dimkerT − dim cokerT,
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provided these dimensions are finite, where cokerT = Y/ imT . Such an operator is called a

Fredholm operator. For an invertible operator, dim kerT = dim cokerT = 0, so indT = 0.

Unlike dimkerT or dim cokerT when considered individually, their difference indT is homotopy

invariant (Bleecker and Booß-Bavnbek 2013, Theorem 3.11). This motivates looking for a way

to express the index in terms of topological quantities (see Section 7).

To study geometry, we consider the index of a graded Dirac operator on a Z2-graded Clifford

bundle S = S+ ⊕ S−. Let D+ be the restriction of D to sections in S+, and D− the restriction

of D to sections in S−. In the case of Dolbeault–Dirac operator D =
√
2(∂̄ + ∂̄∗), D+ is the

restriction of D to the space of sections
⊕

q>0 even

Ω(0,q) and D− is the restriction to the space⊕
q>0 odd

Ω(0,q).

Dirac operators are an important example of elliptic operators, which are a type of differential

operators. The restriction D+ is also an elliptic operator. Elliptic operators over compact

manifolds, which is the case we consider, are Fredholm (Bleecker and Booß-Bavnbek 2013,

Corollary 9.18). Therefore, on a compact manifold, D+ is a Fredholm operator. It is conventional,

for instance see (Roe 1998, Definition 11.7), to define the index of a Dirac operator D as the

Fredholm index of D+. That is,

indD = dimkerD+ − dim cokerD+.

However, the formal adjoint of D+ is D−, so one can calculate that dim cokerD+ = dimkerD−.

This recovers the usual definition of the index of a Dirac operator, namely

indD = dimkerD+ − dimkerD−.

One of the reasons that the index of a Dirac operator is important is that it can be explicitly

computed. The first step towards this is the McKean–Singer formula. This relates the index to

the heat operator associated to D, which is notated e−tD2
and can be defined using spectral

theory: see the section ‘The functional calculus’ in (Roe 1998). Note that the heat operator

solves the heat equation for D, which is

∂s

∂t
+D2s = 0.

A fundamental property of the heat operator is that it has a smooth kernel, which means that

it can be expressed by integrating against a smooth function on M ×M . So for all s ∈ L2(S),

e−tD2

s(p) =

∫
M

kt(p, q)s(q) vol(q).
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The smooth kernel kt(p, q) is called the heat kernel. It depends on the parameter t since the heat

operator also does. The existence of the smooth kernel is due to the fact that e−tx2
: R → R is

a rapidly decaying function (Roe 1998, Proposition 5.31).

The trace of an operator can be defined more generally, but since the heat operator is a

self-adjoint operator with a smooth kernel, it is simply the sum of its eigenvalues, counted with

multiplicity (Roe 1998, Propositions 8.7 and 8.10). Define the grading operator ε which sends

s = s+ + s− ∈ S, where s+ ∈ S+ and S−, to ε(s) = s+ − s− ∈ S. Finally, the supertrace of the

heat operator is defined as the trace of the composition of the heat operator with the grading

operator: Trs(e
−tD2

) := Tr (εe−tD2
).

Theorem 6.1 (McKean–Singer). Let D be a graded Dirac operator on a Z2-graded Clifford

bundle S over a compact manifold M . Then

indD = Trs e
−tD2

.

Proof. Note that µ is an eigenvalue for εe−tD2
if and only if µ is an eigenvalue for e−tD2

with an

even eigensection or −µ is an eigenvalue for e−tD2
with an odd eigensection. For all eigenvalues

λ of D2, let n+(λ) denote the dimension of the λ-eigenspace H+
λ of D restricted to S+, i.e. of

D−D+, and correspondingly define n−(λ). Then, summing the eigenvalues of εe−tD2
,

Trs e
−tD2

=
∑
λ

e−tλ(n+(λ)− n−(λ)).

We claim that all terms with λ ̸= 0 cancel. Let λ ̸= 0 and s ∈ H+
λ . Since D+ commutes with D2,

D2(D+s) = D+(D
2s) = D+λs = λ(D+s),

so D+s ∈ H−
λ . This gives a linear map H+

λ

D+−→ H−
λ . For s ∈ H−

λ , by a similar argument

D2(λ−1D−s) = λ−1D−(D
2s) = λ−1D−(λs) = λ(λ−1D−s).

Therefore there is a linear map H−
λ

λ−1D−−→ H+
λ which is clearly a two-sided inverse to the map

H+
λ

D+−→ H−
λ . This shows that H

+
λ and H−

λ are isomorphic, so n+(λ)− n−(λ) = 0 for all λ ̸= 0.

Hence

Trs e
−tD2

=
∑
λ

e−tλ(n+(λ)− n−(λ))

= n+(0)− n−(0) = dimkerD−D+ − dimkerD+D−

= dimkerD+ − dimkerD− = indD. (6.1)
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Equation (6.1) uses the fact that kerD2 = kerD, which follows from the fact that D is formally

self-adjoint. Indeed, if x ∈ kerD2, then

⟨D2x, x⟩2 = ⟨Dx,Dx⟩2 = ∥Dx∥22 = 0

using the L2 inner product, so x ∈ kerD.

The cancellations in the proof also have an interpretation in terms of supersymmetric

quantum mechanics, where the Z2-grading corresponds to bosons and fermions (Alvarez-Gaumé

1983).

By the McKean–Singer formula, the heat operator is an approach to calculating the index.

On the other hand, since the index is a integer and independent of t, so is the supertrace of the

heat operator. For an operator with a smooth kernel, such as the heat operator, its trace is given

by integrating the kernel along the ‘diagonal’ k(x, x). Adjusting this to give a characterisation

of the supertrace gives

indD = Trs e
−tD2

=

∫
M

trs(kt(x, x)) vol(x),

where the local supertrace trs(a) is defined as tr(εa) for all a ∈ End(Sx), where tr is the usual

trace of an endomorphism (Roe 1998, Proposition 11.2).

This is a tractable expression since the heat kernel kt has an asymptotic expansion. Namely,

there is an asymptotic expansion of indD near t = 0

indD = Trs e
−tD2 ∼ 1

(4πt)n/2

(∫
trs Θ0 vol+t

∫
trs Θ1 vol+ . . .

)
,

where the asymptotic expansion coefficients Θ0,Θ1 are given by algebraic expressions in terms

of the metric, the connection coefficients, and their derivatives. It appears that taking t → 0+

causes this expression to diverge to infinity. However, we know that it is equal to the index of

D, which is constant. Therefore, all the terms must be zero, except potentially for the constant

term which appears when n is even. Hence for an even-dimensional real manifold, such as a

complex manifold, we have

indD =
1

(4πt)n/2

∫
trsΘn/2 vol

(Roe 1998, Proposition 11.4). It only remains to evaluate the local supertrace. This can be

computed using a symbolic calculus due to Getzler (1986).
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7 The Hirzebruch–Riemann–Roch Theorem

During the final calculations, the square of the Dirac operator introduces terms related to cur-

vature, by the Lichnerowicz–Weitzenböck formula, Equation (5.1). This is related to topological

quantities called characteristic classes. The Chern–Weil theory of characteristic classes associates

a de Rham cohomology class, i.e. a closed differential form, to a vector bundle by applying

an invariant polynomial P to its curvature K, considered as a matrix in local coordinates.

The invariance of P means that P (XY ) = P (Y X) so P (Y −1XY ) = P (X); this ensures that

P (K) is independent of the choice of local coordinates. This finally leads to the Atiyah–Singer

index theorem, which expresses the index of a Dirac operator in terms of an integral involving

characteristic classes.

Applied to the Dolbeault–Dirac operator, the Atiyah–Singer theorem leads to the Hirzebruch–

Riemann–Roch theorem. For a holomorphic vector bundle V over a compact manifold X,

let H0,k(V ) be the de Rham cohomology group of Ω0,k(V ), the space of smooth sections of

(0, k)-forms on V . These spaces are finite dimensional due to Hodge theory, and the Hirzebruch–

Riemann–Roch theorem computes their alternating sum, called the Euler characteristic.

Theorem 7.1 (Hirzebruch–Riemann–Roch). Let V be a holomorphic vector bundle over a

compact complex manifold X with complex dimension n. Then

χ(X, V ) =
∑
k

(−1)k dimH0,k(V ) =

∫
X

ch(X) td(X)

where ch(X) is the Chern character of X and td(X) is the Todd class of the tangent bundle TX.

8 Discussion and Conclusion

This report explored the Riemann–Roch theorem from two viewpoints. First we proved the

classical statement in one dimension using cohomology. Then we gave an overview of index

theory, which gives an alternative and modern perspective involving invariants of operators,

allowing for the Riemann–Roch theorem to be generalised to arbitrary dimensions.

Generalisations and recent directions in index theory include studying families of operators

rather than a single operator, equivariant index theory which involves additional symmetries,

index theory on manifolds with boundary, and extending index theory to non-elliptic operators

such as Bismut’s hypoelliptic Laplacian. An alternative generalisation of the Hirzebruch–

Riemann–Roch theorem is the Grothendieck–Riemann–Roch theorem in algebriac geometry.
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Appendix A Sheaves

In order to define a sheaf, we first define a presheaf. This is a collection of data assigned to

open sets in a topological space, with a way to restrict to smaller open subsets.

Definition A.1 (Presheaf). Let (X, T ) be a topological space. A presheaf of abelian groups on

X is a pair (F , ρ) where

i) F = (F (U))U∈T is a family of abelian groups defined on the open sets of X

ii) ρ = (ρUV )U,V ∈T , V⊆U is a family of group homomorphisms ρUV : F (U) → F (V )

such that ρUU = idF (U) for all U ∈ T and ρVW ◦ ρUV = ρUW for all U, V,W ∈ T with W ⊆ V ⊆ U .

We similarly define a presheaf of vector spaces. The homomorphisms are called restriction

homomorphisms, and ρUV should be read as the restriction from U to V . Elements of a presheaf

are called sections. For a section f ∈ F (U), we use the simpler notation f |V = ρUV (f) for the

restriction of f to V . In all the examples needed in this report, the restriction homomorphisms

are just the usual restriction maps.

Definition A.2 (Sheaf). A sheaf is a presheaf F on a topological space X such that for every

open set U and every collection of open sets (Ui)i∈I such that
⋃

i Ui = U , the following conditions

are satisfied:

(S1) If f, g,∈ F (U) are sections such that f |Ui
= g|Ui

for all i ∈ I, then f = g

(S2) Given sections fi ∈ F (Ui), i ∈ I, over Ui such that

fi|Ui∩Uj
= fj|Ui∩Uj

for all i, j ∈ I,

there exists a section f ∈ F (U) over U such that f |Ui
= fi for every i ∈ I.

The sheaf axiom (S1) states that sections are determined by their local behaviour, and (S2)

states that compatible sections, namely sections which agree on their overlaps, can be glued

together to give a section defined on a larger domain. Note that for presheaves of functions

with their natural restriction maps, these conditions are trivially satisfied, so they are sheaves.

Sheaves are defined on open sets. It will also be useful, in particular when defining exact

sequences of sheaves, to consider a particular point. This is the idea of the stalk of a sheaf at a

point a, which is the quotient of the sheaf by local equivalence at a.
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Definition A.3 (Stalk). Let F be a presheaf of sets on a topological space X. Let a ∈ X be a

point and N(a) be the set of open neighbourhoods of a. On the disjoint union⋃
U∈N(a)

F (U),

let two sections f ∈ F (U) and g ∈ F (V ) be equivalent, written f ∼ g, if there exists an open

set W with a ∈ W ⊆ U ∩ V such that f |W = g|W . The stalk of F at the point a is the quotient

Fa :=
( ⋃
U∈N(a)

F (U)
)/

∼ .

If F is a presheaf of abelian groups, then Fa is again an abelian group with addition defined

via representatives.

Appendix B Proof of the Riemann–Roch Theorem

The exact sequence of sheaves used in the proof of the Riemann–Roch theorem is described as

follows. Let D be an arbitrary divisor on a compact Riemann surface X and D′ = D + P , as in

the proof. There is an inclusion OD ↪→ OD′ because the sheaf OD′ permits one more pole at

the point P than OD does. Let (V, z) be local coordinates on X with z(P ) = 0. We define a

sheaf homomorphism

β : OD′ → CP

for all open sets U in X as follows. If P /∈ U , let βU be the zero homomorphism. If P ∈ U and

f ∈ OD(U), the function f admits a Laurent series expansion about P , given by

f =
∞∑

n=−D(P )−1

cnz
n

in the local coordinate z. Set βU(f) = c−D(P )−1 ∈ C = CP (U).

Clearly βU is surjective. Moreover, if f ∈ OD, then it cannot have a pole of order D(P ) + 1

at the point P . Hence βU (f) = 0. Now suppose that f ∈ ker β ⊂ OD′ . Then ordP (f) ≥ −D(P )

since c−D(P )−1 = 0. Hence f ∈ OD. This shows that the image of the inclusion OD ↪→ OD′

equals ker β. Therefore there is an exact sequence of sheaves

0 → OD ↪→ OD′
β−→ CP → 0.
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We also compute cohomology groups of the skyscraper sheaf. By definition of the skyscraper

sheaf, H0(X,CP ) = CP (X) = C. To calculate H1(X,CP ), let U be an open cover of X, and let

ξ ∈ H1(X,CP ) be a cohomology class represented by a cocycle (fij)i,j∈I in Z1(U,CP ). Then U

has a refinement V = (Vi)i∈I such that P ∈ Vi for precisely one i ∈ I. Then P /∈ Vi ∩ Vj for all

i, j ∈ I with i ̸= j. By definition of CP , this means that fij|Vi∩Vj
= 0 for i ̸= j. It is a general

fact that fii = 0 for cocycles; to see this, note that fik = fij + fjk and take i = j = k. Hence

Z1(V,CP ) = 0 and so ξ = 0. As ξ was arbitrary, we conclude that H1(X,CP ) = 0.

Appendix C Vector Bundles and Connections

The aim of this appendix is to define connections on vector bundles. These definitions can be

found in textbooks in differential geometry; we have referred to the textbook by Lee (2009).

An example of a vector bundle is the tangent bundle TM of a smooth manifold. This is a

smooth manifold with a projection map π : TM → M . For all p ∈ M , π−1(p) = TpM is a real

vector space.

Definition C.1 (Vector bundle). Let E and M be smooth manifolds and π : E → M be a

smooth map. Let K = R or C, and let V be a finite-dimensional K-vector space. The quadruple

(E, π,M, V ) is a smooth K-vector bundle with typical fibre V if the following conditions are

satisfied:

(i) Every point p ∈ M has an open neighbourhood and a diffeomorphism ϕ : π−1(U) ⊂ E →

U × V such that the following diagram commutes:

π−1(U) U × V

U

ϕ

π pr1

where pr1 : (u, v) 7→ u projects onto the first factor. The pair (U, ϕ) is called a local

trivialisation of the vector bundle. Due to the commutative diagram, ϕ must be of the

form (π,Φ) for a map Φ : π−1(U) → V .

(ii) For all x ∈ M , the set Ex := π−1(x) is a K-vector space, isomorphic to the typical fibre V .

(iii) Every point p ∈ M is in the domain of some local trivialisation (U, ϕ) such that for all

x ∈ U ,

Φ|Ex : Ex → V
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is an isomorphism of vector spaces.

We call E the total space, π the vector bundle projection, and M the base space. For each

p ∈ M , the set Ep := π−1(p) is called the fibre over p. Abusing notation, we may simply write

the vector bundle as V .

Definition C.2 (Section of a vector bundle). A smooth section of a vector bundle (E, π,M, V )

is a smooth right inverse of the vector bundle projection map, i.e. a smooth map σ : M → E

such that π ◦ σ = idM . The set of smooth sections of the vector bundle V is denoted Γ(V ).

A section of a vector bundle is different to a section of a sheaf, although they can both be

viewed as generalisations of functions. In the case of the tangent bundle TM , a section is a

vector field on M . Connections give a way to differentiate sections, in analogy to how directional

derivatives can differentiate vector fields.

Definition C.3 (Connection). A connection on a smooth K-vector bundle (E, π,M, V ) is a

bilinear map

∇ : Γ(TM)× Γ(V ) → Γ(V )

such that for all smooth functions f on M , X ∈ Γ(TM) and s ∈ Γ(V ),

∇fX(s) = f∇Xs, and ∇X(fs) = (Xf)s+ f∇Xs,

where Xf is the Lie derivative of X along f .

All manifolds have connections. Riemannian manifolds have a connection called the Levi–

Civita connection which is compatible with its metric in a sense that can be made precise.
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