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Abstract

Modelling and predicting stock price volatility is one of the key research fields for risk management in

today’s financial stock market. In support of today’s frequent and continuous decision makings in the

market, more sophisticated and informative forecasting techniques are strongly desired. In this project,

we employ Functional Data Analysis (FDA) to study intra-month stock price volatility. FDA considers

covariates as functional curves and gives response forecasting as functional trajectories inheriting valuable

functional natures including flexibility and information richness. In particular, for our project, we use a

functional concurrent AR(1) model to predict the intra-month volatility trajectory of this month from that

of last month. We introduce some essential FDA techniques including curve smoothing, functional model

fitting and functional F-test in the context of volatility forecasting. Then, we empirically apply FDA to a

Dow Jones Industrial Average (DJIA) dataset to do intra-month volatility forecasting. We find that FDA

is empirically effective in intra-month volatility forecasting. Further, the forecasted functional trajectories

should be highly informative and hence preferable in today’s fast-moving markets.

1 Introduction

The financial stock market has always been an attractive place for Mathematical and Statistical research due to

its stochastic nature and richness of data. Typically, modelling and predicting stock price volatility is one of the

key research fields for risk management. Understanding the nature of volatility contributes to the development

of economic theories (e.g., see Binder and Merges (2001)). Meanwhile, accurate volatility prediction helps

policymakers to better design the market (e.g., see Ivrendi and Guloglu (2012)) and traders to invest wisely

(e.g., see Huber, Huber and Kirchler (2022)).

Studying volatility is indeed rewarding, but also challenging. One problem is that the trading days are not

evenly distributed over a time horizon, which makes it hard to model daily volatilities using traditional models

for evenly spaced time series (e.g., see the GARCH model in Bollerslev (1986)). Another problem is how to

fully utilise the data to support frequent and continuous decision makings (e.g., see High-Frequency Trading in

Conerly (2014)). Given such high velocity and large volume of today’s stock market data, people are no longer

satisfied with a single mean prediction. Instead, a continuous path or trajectory prediction should be much

more informative and hence preferable.

Targeting these two challenges, our project aims to employ Functional Data Analysis (FDA) proposed

by Ramsay and Silverman (2005) to study and predict the intra-month trajectory of stock price volatility.

Specifically, inspired by Alva, Romo, and Ruiz Ortega (2009), we adapt a functional concurrent AR(1) model

to predict the intra-month volatility trajectory of the next month from that of the current month. Note that to

be consistent with Alva, Romo, and Ruiz Ortega (2009), a daily volatility observation is defined as the absolute

logarithmic returns of the day. The key idea of FDA in the context is curve smoothing. By smoothing the

daily volatility observations within a month into a continuous functional curve, the uneven time spaces between

trading days become irrelevant. Moreover, by considering the response as a smooth functional curve, much

more information will be extractable including the volatility at any given time point within the domain or even
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some meaningful derivatives of the curve.

The rest of the report is structured as follows. In section 2, we introduce essential FDA techniques and

the functional concurrent AR(1) model in the context of intra-month volatility prediction. In section 3, we

apply the functional concurrent AR(1) model to the Dow Jones Industrial Average (DJIA) data to empirically

examine the effectiveness of the model. Finally, we conclude and discuss our research findings in section 4.
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2 Method

In this section, we first rigorously define stock price volatility. Then, we introduced some basic curve smoothing

techniques and functional concurrent AR(1) model in the context of volatility prediction. In addition, some

prediction and validation methods will be discussed.

2.1 Stock Price Volatility

We would define stock price volatility similar to that in Alva, Romo, and Ruiz Ortega (2009) for consistency.

In our research, volatilities are observed daily for each trading day within each month, and it is defined as the

absolute logarithmic returns of the day. More rigorously, for trading day j of month i, the daily volatility is

define as

vi,j =

∣∣∣∣∣ log pi,j
pi,j−1

∣∣∣∣∣, i = 1, ..., n, j = 2, ..., Ti, (1)

where pi,j denotes the (average) price of the stock in trading day j of month i. Note that n is the number

of months in our sample and Ti is the number of trading days in month i. Also note that volatilities are

observed from trading day 2 onwards for each month, so there will be (Ti − 1) volatility observations for month

i. Intuitively, a daily volatility vi,j = 0 only when the price stays unchanged (i.e., pi,j = pi,j−1); otherwise,

vi,j > 0 and will increase as the price (absolute) difference increases. Then, an intra-month volatility functional

curve Vi(t) for month i can be obtained by smoothing the observations vi,j , j = 2, ..., Ti within month i into a

continuous and smooth curve. In this case, V1(t),...,Vn(t) can be regarded as n samples from the intra-month

volatility function V (t), and we are building functional AR(1) model based on the samples.

Note that since the number of trading days Ti may vary from month to month, the domain unification issue

should be properly dealt with. In our project, we unify the domains of Vi(t), i = 1, ..., n to a common domain

[0, 1] by mapping trading day j of month i to time ti,j =
j−2
Ti−2 ∈ [0, 1], j = 2, ..., Ti. That is, we evenly distribute

the trading days of a month across the interval [0, 1], with the first day mapping to 0 and the last day mapping
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to 1. In this case, it is appropriate to assume [0, 1] as the domain of the intra-month volatility function V (t).

This domain unification procedure is actually an example of landmark registration (Ramsay, Hooker and Graves

2009), which is a commonly used FDA technique for curve alignment.

2.2 Curve Smoothing

We would take the first-month volatility function V1(t) as an example to illustrate how curve smoothing in

FDA works in this context. In FDA, we appriximate V1(t) by a linear combination of a functional basis system

ϕ(t) = (ϕ1(t), ..., ϕK(t))T . That is,

V1(t) =

K∑
k=1

ckϕk(t) + η1(t) = cTϕ(t) + η1(t), (2)

where c = (c1, ..., cK)T are the coefficients to be determined, K is the number of basis functions in the basis

system and η1(t) ∼ Normal(0, σ2(t)) is a random error. In our project, we use a cubic B-spline basis system,

which is commonly used in general settings (Ramsay, Hooker and Graves 2009). The next question is how to

choose the number of basis functions K. Normally, K << (T1 − 1) is chosen to prevent potential overfitting

(Ramsay, Hooker and Graves 2009). But underfitting can also be a problem if K is too small. Actually, choosing

an optimal K is not fundamental. Instead, it is a common practice to first choose a relatively large K, and then

apply a roughness penalty to adjust the potential overfitting.

That is, we perform curve smoothing with roughness penalties (Ramsay, Hooker and Graves 2009). Specifi-

cally, we find the best set of coefficients c that minimises the smoothing criterion function

F (c) = SSE(V1) + λPEN2(V1) =

T1∑
j=2

[v1,j − V1(tj)]
2 + λ

∫ 1

0

[D2V1(t)]
2 dt, (3)

where a smaller sum of squared errors SSE(V1) indicates a better fit, and PEN2(V1) is a penalty term penalising

the curvature (i.e., second derivative) of V1(t) to prevent overfitting. The smoothing parameter λ > 0 can be

chosen by minimising a generalized cross-validation measure GCV(λ) proposed by Craven and Wahba (1979),

but we would not go into details here since it is not the primary focus of our project.

In R, we can use the function create.bspline.basis from the fda package to create the required B-spline

basis system, and then use the functions fdPar and smooth.basis from the same package to estimate the

coefficients c and obtain the smoothed functional curves. See more details in Ramsay, Hooker and Graves

(2009).

2.3 Functional Concurrent AR(1) Model

Inspired by Alva, Romo, and Ruiz Ortega (2009) who employed FDA for intra-day volatility prediction, we pro-

pose the following functional concurrent AR(1) model to predict the intra-month volatility function (trajectory)

of month i from that of month (i− 1)

Vi(t) = β0(t) + β1(t)Vi−1(t) + ϵi(t), (4)
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where ϵi(t) is the error term. This model is called concurrent (Ramsay, Hooker and Graves 2009) since it only

relates the value of Vi(t) to the value of Vi−1(t) at the same time points t. Actually, this concurrent AR(1) model

may not be the finest model for Vi(t). The volatility Vi(t) at a given time point t of the current month may also

correlate with Vi−1(s) where s ̸= t (i.e., volatilities at other time points s of last month), or with Vi(h) where

h < t (i.e., volatilities at earlier time points h of the current month). Other factors such as seasonality may

also have effects on Vi(t). Nevertheless, the concurrent AR(1) model has its own advantage that it is simpler

to understand and intuitively easier to interpret, which is why we consider it preferable for this time-limited

project.

The key process in model fitting is parameter estimation. For this functional concurrent AR(1) model,

the estimation procedure is largely similar to that of general concurrent models (Ramsay, Hooker and Graves

2009). We first try to express the model in matrix notation. Suppose there are N pairs of the functional

observations (Vi(t), Vi−1(t)), i = 2, ..., N + 1. Let the N × 2 functional matrix Z(t) contain all 1’s in the first

column and the covariate functions Vi−1(t) in the second column. And let the 2×1 functional coefficient vector

β(t) = (β0(t), β1(t))
T . Then, the functional concurrent AR(1) model in matrix notation is

V(t) = Z(t)β(t) + ϵ(t), (5)

where V(t) is an N × 1 functional vector containing the response functions Vi(t). Now, we can express the

corresponding N × 1 vector of residual functions as

r(t) = V(t)− Z(t)β(t). (6)

Finally, our target is to find the best functional coefficient vector β(t) that minimises the weighted regularised

fitting criterion

LMSSE(β) =

∫ 1

0

r(t)T r(t) dt+

1∑
j=0

λj

∫ 1

0

[D2βj(t)]
2 dt, (7)

where the first term is a functional equivalent SSE measuring the goodness of fit and the second term is a

penalty term penalising the curvatures (i.e., second derivatives) of βj(t), j = 0, 1 to prevent overfitting. Note

that we would also approximate βj(t), j = 0, 1 as linear combinations of functional bases and perform similar

curve smoothing procedures.

In R, the function fRegress from the fda package can be used to fit a functional concurrent linear model

(including our concurrent AR(1) model), and estimate the relevant functional coefficients β(t). See more details

in Ramsay, Hooker and Graves (2009).

2.4 Functional Permutation F-Test

We would use a functional permutation F-test proposed by Ramsay, Hooker and Graves (2009) to examine

the significance of the predictive relationship between this-month volatility (i.e., the covariate) and next-month

volatility (i.e., the response). The idea of this permutation F-test is that if there is no relationship between the
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response and the covariate, then the fitted model would not vary significantly when we try to randomly pair up

the response values with the covariate values. In other words, if the observed pairing of response and covariate

values trains the model significantly better than other random pairings, then we say that the observed data

support a significant predictive relationship between the covariate and the response. The goodness of fit of a

model is measured by the following (functional) F-statistic

F (t) =
Var[V̂(t)]

1
n

∑n
i=1(Vi(t)− V̂i(t))2

, (8)

where V̂(t) = {V̂i(t), i = 1, ..., n} are the predicted functional response curves and a large F-statistic indi-

cates a better fit. To form a (functional) null distribution, we iteratively calculate the (functional) F-statistics

Fp(t), p = 1, ...,m, for m different models fitted respectively by m different (random) response-covariate pair-

ings. Then, we would obtain a functional point-wise critical value curve c(t) as the 95% (functional) quantile

curve of the (functional) null distribution {Fp(t), p = 1, ...,m}. Then, the predictive relationship between the

covariate and the response is statistically significant (at 5% level) if the (functional) F-statistic for the observed

response-covariate pairing is point-wisely larger than the critical value curve (i.e., Fobserved(t) > c(t)). More

conservatively, we can obtain a scalar critical value c as the 95% (scalar) quantile of the (scalar) null distribution

{max
t

Fp(t), p = 1, ...,m}. Then, if Fobserved(t) > c, we conclude that the predictive relationship is statistically

significant. Note that the scalar critical value c may be too conservative sometimes, in which case the functional

critical value curve c(t) should be more informative.

In R, the function Fperm.fd from the fda package can be used to perform a functional permutation F-test.

See more details in Ramsay, Hooker and Graves (2009).

2.5 Volatility Forecasting and Validation

We would employ a multi-step forecasting (prediction) method to perform intra-month volatility forecasting.

Suppose we have used smoothed volatility functions from n months (i.e., {Vi(t), i = 1, ..., n}) as a functional

time series (with month n as the last month) to train our AR(1) model and we have obtained β̂0(t), β̂1(t) as

the functional coefficient estimates, then an m-step volatility forecasting works as follows:

1. Set i := n+ 1, V̂n(t) := Vn(t).

2. Forecast the volatility function of month i as V̂i(t) := β̂0(t) + β̂1(t)V̂i−1(t).

3. If i < m, increment i by 1 and go to Step 2; else, finish forecasting.

After an m-step volatility forecasting, we would obtain m predicted volatility (functional) trajectories corre-

sponding to m future months. That is, {V̂i(t), i = n+ 1, ..., n+m}.

To further examine how effective our model is on intra-month volatility forecasting, we would compare the

goodness of fit of the predicted functional curves to that of the smoothed functional curves. We would employ

the weighted mean square error (WMSE) as a goodness of fit measure, which is widely used in many general

settings. A smaller WMSE indicates a better fit for the observed data. Also note that we take the inverse
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distances as weights. That is, the weight for observed data point vi,j is wpredicted
i,j = 1 / |vi,j − V̂i(tj)| for the

predicted functional curve V̂i(t) (or w
smoothed
i,j = 1 / |vi,j −Vi(tj)| for the smoothed functional curve Vi(t)). This

means that data points further from the functional curve have smaller weights, and hence we prefer the curve

with a more robust fit.

3 Application

In this section, we apply the proposed functional concurrent AR(1) model to the Dow Jones Industrial Average

(DJIA) dataset to empirically examine the effectiveness of the model on intra-month volatility trajectory fore-

casting. We perform the relevant curve smoothing, model fitting, statistical testing and forecasting validation,

which will be illustrated along with intuitive visualisations.

3.1 DJIA Volatility Dataset

The Dow Jones Industrial Average (DJIA) is one of the most commonly used stock price indexes to represent

the general stock price level in the U.S. stock market. In our project, we use a 5-year daily DJIA dataset, which

can be retrieved online from Macrotrends (2023). Note that the daily DJIA data represents daily stock prices,

so we need to add an additional step to obtain the corresponding daily volatilities based on the definition of

volatility in section 2.1. Then, the obtained DJIA volatility dataset is the primary dataset for our experiment.

The DJIA volatility dataset consists of daily volatility data across 5 years (2018 - 2022). Since we are

predicting intra-month volatility trajectories, we group the daily volatility observations by month so that the

full dataset can be represented as S = {vi,j , i = 1, ..., 60, j = 2, ..., Ti} where vi,j is the volatility of trading

day j of month i as defined in section 2.1. Then, we use the subset from the first 4 years (2018 - 2021) as the

training set (i.e., Straining = {vi,j , i = 1, ..., 48, j = 2, ..., Ti}), and the subset from the last 1 year (2022) as the

test set(i.e., Stest = {vi,j , i = 49, ..., 60, j = 2, ..., Ti}). As a common practice, we use the training set to train

the functional concurrent AR(1) model, and then use the test set to validate the effectiveness of the model on

forecasting.

3.2 Curve Smoothing with DJIA Volatilities

We do curve smoothing for both the training set Straining and the test set Stest, following the method specified

in section 2.2. After the curve smoothing, we obtain the training set with smoothed functional observations

(i.e., Ssmoothed
training = {Vi(t), i = 1, ..., 48} where Vi(t) is the smoothed volatility function of month i), and similarly

the smoothed test set Ssmoothed
test = {Vi(t), i = 49, ..., 60}. Note that along with the curve smoothing, we unify

the domains of Vi(t), i = 1, ..., 60 to a common domain [0, 1], following the method discussed in section 2.1.

To have a more intuitive sense of the data and how curve smoothing works, we give a visualisation of the

test set volatility data points vi,j ∈ Stest, superposed by the corresponding smoothed intra-month volatility

functional curves Vi(t) ∈ Ssmoothed
test , as shown in Figure 1.
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Figure 1: 2022 (12 months) volatility data points (in black circles) superposed by corresponding smoothed

intra-month volatility curves (in blue lines). The vertical axes represent volatility values, and the horizontal

axes represent the standardised intra-month time.

3.3 Functional Concurrent AR(1) Model with Ssmoothed
training as training set

The 48 smoothed intra-month volatility curves from the training set Ssmoothed
training are visualised in Figure 2. We

observe that the green dashed curve in Figure 2 may be a potential outlier, which should be carefully dealt

with. We find that this potential outlier is actually related to the stock market crash in 2020 March. A stock

market crash is actually informative in a business cycle, so we decide to keep this meaningful piece of data in

the training set.

Then, we use the training set Ssmoothed
training to train a functional concurrent AR(1) model following the method

discussed in section 2.3. We obtain the estimation for the (functional) slope coefficient β̂1(t) which is visualised

in Figure 3. We observe that there is a positive correlation between this-month volatility trajectory Vi(t) and

last-month volatility trajectory Vi−1(t). Further, the correlation grows stronger as t gets larger.

3.4 Functional Permutation F-Test with DJIA Volatility Data

We employ a functional permutation F-test as introduced in section 2.4 to test for the significance of the

predictive relationship between last-month volatility Vi−1(t) and this-month volatility Vi(t). The test result is

visualised in Figure 4. We observe that when t > 0.2, the predictive relationship is statistically significant at

the 5% level.
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Figure 2: 48 smoothed intra-month volatility curves (2018-2021, 48 months) from the training set. The hori-

zontal axis represents the standardised intra-month time.

Figure 3: Estimation for the (functional) slope coefficient β̂1(t). The horizontal axis represents the standardised

intra-month time t.
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Figure 4: Functional permutation F-test for the significance of the predictive relationship between last-month

volatility Vi−1(t) and this-month volatility Vi(t). The horizontal axis represents the standardised intra-month

time t.

3.5 DJIA Intra-month Volatility Forecasting and Validation

We do a 12-step forecasting for 12 intra-month volatility trajectories corresponding to 12 months in year 2022.

We use the model trained in section 3.3 to do forecasting. The forecasting results are visualised in Figure 5.

The 12 forecasted intra-month volatility curves are shown in red lines, in contrast to the blue lines obtained

by direct curve smoothing with the daily volatility data points. We can visually see that the forecasted curves

and the directly smoothed curves inherit similar patterns and both give reasonable fits to the observed daily

volatility data points (shown in black circles).

We would also like to validate the forecasting performance quantitatively based on the weighted mean

square error (WMSE) as the goodness of fit measure discussed in section 2.5. As in Figure 6, the 12 WMSEs

corresponding to the 12 forecasted intra-month volatility curves are plotted in the red line, in contrast to the

12 WMSEs of the directly smoothed curves plotted in the blue line. We observe that for short-term forecasting

(e.g., the first 6 months in 2022), the forecasting performs reasonably, similar to direct curve smoothing. But

for long-term forecasting (e.g., the last 6 months in 2022), the forecasting performs relatively unstable and

sometimes not ideal. This may be explained by the increasing uncertainty and accumulated forecasting error

in the long term. Another reason may be that our functional concurrent AR(1) model is relatively simple and

not sophisticated enough, which we intend to extend and improve in future research.
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Figure 5: 2022 (12 months) forecasted intra-month volatility curves (in red lines). For contrasting purposes,

daily volatility data points are shown in black circles superposed by directly smoothed intra-month volatility

curves shown in blue lines. The vertical axes represent volatility values, and the horizontal axes represent the

standardised intra-month time.

Figure 6: WMSEs for the 12 forecasted intra-month volatility curves (in red line) vs. WMSEs for the 12 directly

smoothed intra-month volatility curves (in blue line). The horizontal axis represents 12 months in 2022.
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4 Discussion and Conclusion

In this project, we studied intra-month stock price volatility with the help of Functional Data Analysis (FDA).

Specifically, we used a functional concurrent AR(1) model to do intra-month volatility trajectory forecasting.

We first introduced some essential FDA techniques and then we empirically applied them to a Dow Jones

Industrial Average (DJIA) dataset. Typically, we trained a functional concurrent AR(1) model with the DJIA

data and did some intra-month volatility forecasting and validation. We found that for the stock price index

DJIA, there is a statistically significant predictive relationship between last-month volatility and this-month

volatility. Furthermore, our functional model, or in a broader sense, FDA has provided an insightful view in

stock market research and forecasting. The flexibility and information richness inherent in functional regression

and forecasting are highly valuable in today’s stock market, in support of rapid and continuous decision makings

and relevant big data analysis.

Considering the great potential of FDA in stock market research and forecasting, we would like to point out

the following possible future directions. One direction is that we would like to extend our functional model to

a more sophisticated form, intending to improve forecasting accuracy and stability. For the extension, we may

consider including more covariates in the model such as seasonality effects or some possible correlations between

non-concurrent time points (e.g., see section 2.3). Another direction is investigating FDA further in other fields

of stock market research, such as stock price prediction or high-frequency trading strategies.
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