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Abstract

We study systems with items who’s counts evolve over time. Specifically, the rule for evolution is random

and depends on the ranking of the current counts of items. We model this kind of system by a random walk

where the distribution of the random step depends on the ranking of its components. Our interest lies in

the whether the ranking stabilises in the long term. We show that under a mild assumption, the ranking of

the system stabilises almost surely and discuss a counterexample where stability might not be reached if the

condition is not met.
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1 Introduction

In many systems with rich-get-richer dynamics, the rank of the object of interest plays a crucial role. For

example, users of online shopping platforms are more likely to click on products with higher popularity rank

that appear on the top of the screen, hence making these products more popular and more likely to be clicked

on [6]. Rankings drives the rich-get-richer dynamics in these ranking-based system.

Despite its prevalence, the dynamics and long-term behaviour of ranking-based systems have not been

extensively explored. There is one previous work [1] that models the ranking-based systems in the general

case, and the models in other related work [7, 2, 5, 3] only allow binary increment of one component at each

“step”. The model introduced in [1] is a discrete-time Markov process Xn ∈ Rd, where the ith component

corresponds to the value of item i, and distribution of the future increments depends on the ranking of its

components. This model allows increments to take continuous values and enables various component to change

simultaneously. The value of the process at each discrete time n can be considered as a proxy for the ranking

at time n. Assuming that no ties are allowed, [1] showed that if for any pairs of components in the system, the

component that is ranked higher gets more increment on average than the other component in the pair, then

the ranking will stabilise almost surely. With a weaker assumption that under any ranking, it’s possible for

any component to get the largest increment at any time, [1] showed that the ranking stabilises with positive

probability. However, both assumptions, especially the one required for almost sure stability, are quite strong,

and are not seen in many ranking-based system in reality. For example, in online shopping platforms, if the

lower ranked product has very high quality, then it is possible for a lower ranked product to get more increment

on average then a higher ranked product.

1.1 Model

In this work, we use the model introduced in [1] and we consider a non-homogeneous random walk (Xn)n≥0 ∈ Rd,

where each component is the count of an item in the system at time n. The distribution of the random step—the
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distribution of the increment—depends only on the ranking of its components. Specifically, if the current ranking

of the walk is r, then the random step follows a probability distribution µr. The fact that the distribution of

the step doesn’t change as long as the ranking doesn’t change, and that the ranking is fully determined by the

differences of all possible pairs of components in the system allows us to model the dynamics of each ranking by

another random walk. For every ranking r in the system, we can model its dynamics by (Y r
n )n≥0 ∈ R(

d
2). The

components of the (Y r
n )n≥0 are the differences between the count of all possible ordered pairs of components

i, j in the system, where component i is ranked higher than component j. Specifically, we denote the random

walk of this component as (Y
(i,j)r

n )n≥0. For each pair i, j, the random steps of (Y
(i,j)r

n )n≥0 are independent and

identically distributed with the same distribution as Zr
i −Zr

j , where (Z
r
i , Z

r
j ) are distributed as the components

i and j of µr. The drift of the (Y
(i,j)r

n )n≥0—the expectations of the random steps—tells us a lot about its

behaviour. We let the drift of (Y r
n )n≥0 be E(Zr

i − Zr
j ) = qri − qrj .

Given that the system enters a ranking r, it is still at r after n discrete time step if all components of (Y r
n )n≥0

never admits negative values up to the nth step. This fact allows us to study the dynamics of the system by

studying (Y r
n )n≥0 for all possible rankings r in the system, up until the (possibly infinite) time they leave. A

more detailed description of this random walk can be found in Section 2.3.

For convenience, we assume that there are no ties between the counts and that for all pairs of items i, j

qri ̸= qrj . However, all our results can be easily extended to a model that allows ties by taking into account a

few extra cases.

1.2 Stable pair and stable ranking

If the rankings of the system stabilises in the long term, there must be at least a ranking in the system that is

relatively “stable” where the system can stay there forever. To explore which pair of items and which ranking

in the systm are “stable”, we introduce the concept of stable pair and stable ranking.

We classify all ordered pairs into two categories, either “stable” or “unstable”. If component i is ranked

higher than j and on average i has more increment than j (in other words, qri > qrj ), then we call (i, j) a stable

pair, otherwise (i, j) is an unstable pair.

We say that a ranking is a stable ranking if all pairs under this ranking are stable pairs, otherwise it’s an

unstable ranking.

1.3 Simple example: (Xn)n≥0 ∈ R2

Consider a simple system with only 2 items a and b. In this section we explore the dynamics of this simple

system.

Let’s first consider the implication of a stable ranking. If ranking ab is a stable ranking, then (Y ab
n )n≥0 ∈ R

is a random walk with random step following the same distribution as Zr
a −Zr

b . (Y
ab
n )n≥0 has drift qra − qrb > 0,

hence it has positive probability of never admitting negative values (see Theorem 10.1. in [4]). This implies that

once the system enters a stable ranking, it has positive probability of staying there forever. If ab is unstable,
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(Y ab
n )n≥0 ∈ R is a random walk with drift qra − qrb < 0, hence it eventually becomes negative (and thus the

ranking changes) almost surely (see Theorem 8.2. in [4]). This implies that the system leaves any unstable

rankings almost surely.

First consider the dynamics of the system when both ab and ba are stable. In this case, entering any ranking

in the system, we will have uniformly bounded below by 0 probability of staying in that ranking forever. It

is easy to see that in this case the system reaches stability almost surely. Next, assume ab is stable and ba is

unstable. In this case if the system enters ba, we will go to ab almost surely following the drift of (Y ba
n )n≥0. We

say ranking ba drifts to ab if from ba the system can naturally enter ab following the drift of (Y ba
n )n≥0. Since

ba drifts to ab and ab is stable, it follows that the system also staying in that ranking forever almost surely in

this case. Lastly, if both ab and ba are unstable, then ab drifts to ba and ba drifts to ab. In this case the system

will keep oscillating between ab and ba and will never reach stability. We show in our work that given there is

at least one stable ranking in the system, this kind of endless oscillation between unstable rankings is the only

way the for the system to not stabilise almost surely.

1.4 Main results

In higher dimension the situation is much more complicated than the simple scenario above, since the random

walks are multidimensional and the components are correlated. To deal with this complication, we make

Assumption 3.4, which ensures that for any ranking r in the system, if we only consider the random walk with

components that are the differences of stable pairs in (Y r
n )n≥0, then this random walk has positive probability of

entering the positive orthant from the origin without leaving the closed positive orthant. With this assumption,

we prove that for any ranking r, the stable pairs have positive probability of retaining their relative order until

the system leaves ranking r (Lemma 3.6). With this Lemma, we show that even in higher dimension, once the

system enters a stable ranking, it has positive probability of staying there forever (Proposition 3.7).

In higher dimension, for every unstable ranking r we specifies the drift set of r, Dr, such that under

Assumption 3.4, if the system leaves r, it has uniformly bounded away from 0 probability of entering one of the

rankings in Dr (Lemma 4.4). This is one of the key Lemmas in this project as it gives a positive probability

path of transitions between rankings.

In higher dimension, the oscillatory behaviour that we saw in Section 1.3 becomes oscillatory behaviour at

the level of drift sets. (See Figure 3 for an example of this oscillatory behaviour in higher dimension, in this

diagram bac and bca are two unstable rankings. We draw an arrow from a ranking r to another ranking r′ if

r′ is in the drift set of r). Hence to ensure that the ranking will stabilise almost surely, we construct an extra

condition, which helps eliminates the oscillatory behaviour. Under Assumption 3.4 and this extra condition we

show that the rankings will stabilise almost surely. We characterise a more general condition for the rankings

to stabilise almost surely than the one in [1].

The organisation of the document is as follows: in Section 2 we introduce the notations; in Section 3 we

introduce the concept of stable and unstable objects and prove their properties; in Section 4 we introduce the

4



idea of drift and use it to show the possible transitions that the system can make between rankings; finally in

Section 5 we state the condition required for the rankings to stabilise almost surely; in Section 6 we provide the

proof for our key Lemma.

1.5 Statement of authorship

The results presented in this report is the work of the author under the supervision of Dr Nathan Ross.

2 Preliminaries

2.1 Rankings

Let X be a vector in Rd with unique elements. The ranking r of X is the permutation of the components of X

satisfying r(a) > r(b) whenever Xa > Xb. We denote the ranking of X by rk(X).

Given that rk(X) = r, and a, b are components of X, we say that r(a) < r(b) if a is ranked higher than b.

We denote R = R(d) as the set of all possible rankings of a count vector with d components.

2.2 Ranking-based process

Let ν be a probability distribution on Rd with finite second moments. For each r ∈ R, let µr be a probability

distribution on Rd, also with finite second moments. We consider a random walk (Xn)n≥0, where X0 ∼ ν and

the random step at time t, ∆Xt = Xt+1 −Xt | Xt ∼ µrk(Xt).

For each r ∈ R, we denote by Zr = (Z1
r , ..., Z

d
r ) a random variable with distribution µr and qr = E(Zr).

2.3 Ranking and random walk

The fact that the distribution of the increment of each component purely depends on the current ranking allows

us to consider the dynamics of each ranking separately. Specifically, we can model the dynamics of each ranking

with a multidimensional random walk.

For an arbitrary ranking r let T r = inf{n ∈ Z+
0 : rk(Xn) = r}. We denote the set of ordered indices as

Ir = {(i, j) ∈ [d]× [d] : r(i) < r(j)}. For each (i, j) ∈ Ir, we let

Y
(i,j)r

0 = 0,

and

Y r
0 = (Y

(r−1(1),r−1(2))r

0 , . . . , Y
(r−1(d−1),r−1(d))r

0 ) ∈ R(
d
2).

For each (i, j), we let ∆Y
(i,j)r

0 ,∆Y
(i,j)r

1 , . . . be independent and all have the same distribution as Zr
i − Zr

j .

For n ∈ Z+, let

∆Y r
n = (∆Y (r−1(1),r−1(2))r

n , . . . ,∆Y (r−1(d−1),r−1(d))r

n ) ∈ R(
d
2).

5



We define the random walk of r as the sequence (Y r
n )n≥0 where

Y r
n+1 = Y r

n +∆Y r
n .

When it comes to the dynamics of the entire system, we can model what happens to the system once it enters

ranking r with (Y r
n )n≥0. Since (Y

r
n )n≥0 starts at the origin, the random vector of the walk at each discrete time

n represents XTr+n −XTr . Specifically, if we have t = inf{n ∈ Z+ : ∃(i, j) ∈ Ir, Y (i,j)r

n < (Xj
Tr

−Xi
Tr
)} < ∞,

then this corresponds to rk(XT r+t) ̸= r.

3 Stable pair and stable ranking

As mentioned in the introduction, if the ranking stabilises, there has to be at least one ranking in the system

that is relatively “stable” so there is positive probability for the system to stay there forever. In this section,

we specify the definition of stable pair and stable ranking and show why they are relatively “stable”.

Definition 3.1. For any pairs of components i, j from a ranking-based process and r ∈ R with r(i) < r(j).

We say that (i, j) is a stable pair under r if qri > qrj . We denote the set of stable pairs of r as Sr.

Definition 3.2. For any r ∈ R, we say that r is a stable ranking if |Sr| =
(
d
2

)
, otherwise we say that r is an

unstable ranking. We denote the set of all stable rankings in the system as S and the set of all unstable rankings

in the system as U .

In the next proposition, we show that the process leaves every unstable ranking with probability 1.

Proposition 3.3. Assuming T0 is a stopping time with rk(XT0
) = r ∈ U on the event that T0 < ∞. Let

T ′ = inf{n > T0 : rk(Xn) ̸= r}. Then

P(T ′ < ∞| rk(XT0
) = r) = 1. (1)

Proof. On the event that T0 < ∞, it’s enough to show that the stopping time inf{n : Y
(i,j)r

n < −M} for some

(i, j) ∈ Ir if finite for all M > 0.

By definition, there exist at least a pair of components (i, j) such that r(i) < r(j) and qrj > qri . This means

there exists (i, j) ∈ Ir such that E[∆Y
(i,j)r

n ] < 0.

By the well-known result that a random walk with negative drift is transient and goes to −∞ almost surely

(see Theorem 8.2. in [4]), we get

P(T1 < ∞| rk(XT0) = r) ≥ P(
⋃

(i,j)∈Ir

⋃
t>0

{Y (i,j)r

t < (Xj
Tr

−Xi
Tr
)})

= 1.

(2)

Before we move our focus to the stable pair and stable ranking, we need to introduce the following assumption,

which is necessary to ensure the stable property of the stable pair and stable ranking.
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𝑋!" − 𝑋!#

𝑋!# − 𝑋!$

𝛿

𝛿

Figure 1: Random walk of pairs (1, 2) and (2, 3) entering the δ-positive orthant. Time axis is hidden.

Assumption 3.4. For any r ∈ R, if we consider the random walk with components that are the differences of

stable pairs in (Y r
n )n≥0, then for some ϵ, δ > 0, this random walk has greater than ϵ probability of entering the

δ-positive orthant without leaving the positive orthant. In mathematical symbols, we have

P
( ⋃

t>0

(
⋂

(i,j)∈Sr

{Y (i,j)r

t > δ}
⋂ t−1⋂

s=1

⋂
(i,j)∈Sr

{Y (i,j)r

s ≥ 0})
)
> ϵ.

Remark 3.5. One might think this assumption looks rather complex but it is easy to verify that it’s a weak

assumption. For example this alternative assumption below implies Assumption 3.4, but is stricter.

For any r ∈ R and (i, j) ∈ Sr

µr
(
{Xi > Xj} ∩ ∀(k, l) ∈ Sr \ (i, j) {Xk ≥ Xl}

)
> 0.

This alternative assumption ensures that for the random walk with components that are the differences of

stable pairs in (Y r
n )n≥0, every component has positive probability of taking a step in the positive direction

while all other components don’t take steps in the negative direction. However, it turns out that the alternative

assumption is stricter than Assumption 3.4. See Figure 1 for an example. The random walk in Figure 1 can

either only increased by (0, w) or (−w,w) at each step, where w is some constant. This random walk has

positive probability of entering the δ-positive orthant following the steps in the Figure 1. Hence this walk

satisfies Assumption 3.4 but doesn’t satisfy the alternative assumption since there’s no way to increase in the

vertical direction without decreasing in the horizontal direction.

Under Assumption 3.4, the next Lemma and Proposition shows that the stable pairs and stable rankings are

indeed stable. Moreover, Lemma 3.6 shows that under Assumption 3.4, for any ranking r ∈ R, the stable pairs

under r have positive probability of retaining their relative order until the system leaves ranking r; Proposition

3.7 shows that under Assumption 3.4, once the system enters a stable ranking, it stays in that ranking forever

with positive probability.
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Lemma 3.6. Let Xn be a ranking-based process with d items satisfying Assumption 3.4, then for any r ∈ R

and some ϵ > 0,

P
( ⋂

t>0

⋂
(i,j)∈Sr

{Y (i,j)r

t ≥ 0}
)
> ϵ. (3)

Proof. We know that for all (i, j) ∈ Sr, (Y
(i,j)r

n )n≥0 is a random walk with positive drift, hence as n −→ ∞,

Y
(i,j)r

n −→ ∞ (Theorem 8.2. in [4]). Hence, there exists some M > 0 such that, for all n0 > 0,

P
( ⋃
n>0

Y
(i,j)r

n0+n − Y (i,j)r

n0
≤ −M

)
<

1

d2
. (4)

Let

An0
=

⋂
(i,j)∈Sr

({Y (i,j)r

n0
> M}

n0−1⋂
n=0

{Y (i,j)r

n ≥ 0}).

For (i, j) ∈ Sr, let

B(i,j)
n0

=
⋂
n>0

{(Y (i,j)r

n0+n − Y (i,j)r

n0
) > −M}.

It is clear that the Lemma follows if An0
∩

⋂
(i,j)∈Sr

B
(i,j)
n0 happens with uniformly bounded away from 0

probability. Note that An0
is independent of

⋂
(i,j)∈Sr

B
(i,j)
n0 .

Let δ > 0 be as in Assumption 3.4 and let β = ⌈M
δ ⌉. It follows that for some ϵ1 > 0 and some n0 > 0,

P(An0) > ϵβ1 . (5)

Now for
⋂

(i,j)∈Sr

B
(i,j)
n0 , we have that for some ϵ2 > 0

P
( ⋂
(i,j)∈Sr

B(i,j)
n0

)
= 1− P

( ⋃
(i,j)∈Sr

⋃
n>n0

{(Y (i,j)r

n0+n − Y (i,j)r

n0
) ≤ −M}

)
≥ 1−

∑
(i,j)∈Sr

P
( ⋃
n>n0

{(Y (i,j)r

n0+n − Y (i,j)r

n0
) ≤ −M}

)
≥ 1− 1

d

> ϵ2,

(6)

where the first equality follows by taking complements; the first inequality follows from Boole’s inequality; the

second inequality follows from the fact that |Sr| ≤
(
d
2

)
.

Hence,

P
( ⋂

t>0

⋂
(i,j)∈Sr

{Y (i,j)r

t ≥ 0}
)
= P

(
An0

∩
⋂

(i,j)∈Sr

B(i,j)
n0

)
= P

(
An0

)
· P

( ⋂
(i,j)∈Sr

B(i,j)
n0

)
> ϵβ1 · ϵ2,

(7)

where the first equality follows from the definition of An0 ∩
⋂

(i,j)∈Sr

B
(i,j)
n0 ; the second equality follows from the

fact that An0 and
⋂

(i,j)∈Sr

B
(i,j)
n0 are independent; and the inequality follows from (5) and (6).
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Proposition 3.7. Let Xn be a ranking-based process satisfying Assumption 3.4, then for any initial distribution

ν and some ϵ > 0,

Pν(
⋂
t>n

rk(Xt) ∈ S|rk(Xn) ∈ S) > ϵ (8)

This Proposition directly follows from Lemma 3.6 since all pairs under a stable ranking are stable pairs.

4 Drift

In the last section, we have shown that the system leaves every unstable ranking almost surely. In this section,

we explore the ways the process leaves a given unstable ranking. For a given unstable ranking r, we specify

the drift set of r, denoted Dr, which are the set of rankings which the random walk enters by “respecting” the

relative drifts. We will show in this section that under Assumption 3.4, the system has uniformly bounded away

from 0 probability of arriving at a ranking in Dr after it leaves r.

Definition 4.1. Given a ranking r, we say that Dr is the drift set of r if Dr = {r′ ∈ R\ r : ∀(i, j) ∈ Sr, r
′(i) <

r′(j)}.

Given rk(X0) = r and T ′ = inf{n > 0 : rk(Xn) ̸= r}. We say that r drifts to r′ if rk(XT ′) = r′ and r′ ∈ Dr.

The probability of r drifting to r′ from x is

Px(r
′) = P

(
rk(XT ′) = r′

∣∣∣X0 = x

)
. (9)

Remark 4.2. Given the process leaves r to another ranking r′. All stable pairs under r remain their relative

order if and only if r drifts to r′. This is clear from the definition of drift.

Example 4.3. Let Xn be a ranking-based process with 3 components a, b and c. If r = abc, then depending

on qr, Dr consists of the following rankings:

qr Dr

qra > qrb > qrc ∅

qra > qrc > qrb {acb}

qrb > qra > qrc {bac}

qrb > qrc > qra {bac, bca}

qrc > qra > qrb {(acb, cab}

qrc > qrb > qra {acb, bac, cab, bac, cba}

Now we prove our claim that under Assumption 3.4, the probability the we leave an unstable ranking to one

of the rankings that it drifts to is bounded away from 0.

Lemma 4.4. Let Xn be a ranking-based process that satisfies Assumption 3.4 with d components and rk(x) =

r ∈ U . Assume rk(X0) = r. Then there exist some ϵ > 0 such that,∑
r′∈Dr

Px(r
′) > ϵ. (10)
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Proof of Lemma 4.4. Assume that the process satisfies Assumption 3.4 and let

Er =
⋂

(i,j)∈Sr

⋂
n>0

{Y (i,j)r

n > 0}

F r =
⋃

(i,j)∈Ir\Sr

⋃
n>0

{Y (i,j)r

n < (Xj
0 −Xi

0)}

Gr =
⋂

(i,j)∈Sr

⋂
n>0

{Y (i,j)r

n > (Xj
0 −Xi

0)}.

Here Er is the event that in (Y r
n )n≥0 all components of stable pairs under r always stay in the positive

quadrant. F r is the event that an unstable pair under r change their relative order. Gr is the event that in

(Y r
n )n≥0, all stable pairs under r always remain their relative order. It is clear that the Lemma follows if event

F r ∩ Gr happens with bounded away from zero probability. And since Gr is a subset of Er, we see that the

Lemma also follows if event F r ∩ Er happens with bounded away from zero probability.

By Proposition 3.3, we have

P(
⋃

(i,j)∈Ir

⋃
t>0

{Y (i,j)r

t < (Xj
0 −Xi

0)}) = 1.

This means if Er occurs, the only way for the process leave ranking r at time t is for F r to occur. Hence when

Er occurs, F r must occur as will, this gives us the result

Er ∩ F r = Er. (11)

By Lemma 3.6, there exists some ϵ > 0 such that,

P(Er) > ϵ. (12)

Hence ∑
r′∈Dr

PX0
(r′) = P(Gr ∩ F r)

≥ P(Er ∩ F r)

= P(Er) > ϵ

(13)

where the first equality follows from the definition of Gr ∩ F r; the first inequality follows from the relationship

between Gr and Er; the second equality follows from (11); and the last inequality follows from (12).

With the concept of drift and drift set, we can describe all the drift relations within the system by a drift

diagram.

Definition 4.5. Let Xn be a ranking-based process with d components. We use a ranking transition diagram

with d! nodes to visualise the relationship between rankings in the system. Each node in the diagram is labelled

as one of the d! ranking. For any pairs of rankings r,r′ in the system, we draw an arrow from node r to node

r′ if r′ ∈ Dr.
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abc

bac

bca

cba

acb

cab

Figure 2: An example of a drift diagram for a system with three items a, b and c.

Note if a node in the drift has degree d, then by Lemma 4.4, the system has uniformly bounded away from

0 probability of following one of the d arrows out and it might also have positive probability of going to one of

the nodes that the arrows don’t point to. This is very different from the commonly seen transition diagram of

a Markov Chain.

Example 4.6. Let Xn be a ranking-based process with 3 components a, b and c with the following qr for

r ∈ R, then Figure 2 is a drift diagram for this system.

r qr Dr

abc qra > qrb > qrc ∅

acb qrc > qra > qrb {cab}

bac qrc > qrb > qra {bca, cba}

bca qra > qrb > qrc {abc, bac}

cab qrb > qrc > qra {(bca, cba}

cba qrb > qrc > qra {bca}

5 Convergence of ranking

In this section we state the condition for almost sure convergence of rankings. We start this section with an

illustrative concerning example where the ranking might not converge with positive probability, which leads us

to finding the condition required for almost sure convergence.

Example 5.1. The system with the drift diagram in Figure 3 seems to have positive probability of never

reaching stability.

Suppose the process starts with ranking bca. Assume that with µbca, qbcab > qbcaa > qbcac . Specifically, item b

is likely to gain a very large increment and item a c are likely to gain small increments. In this case, the system

drifts to bac. Suppose qbacc > qbacb > qbaca = 0, where item a doesn’t gain any increment almost surely and the

increments that item b and c gains are likely to be close. In this case, bac is much more likely to follow the
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abc

bac

bca

cba

acb

cab

Figure 3: An example of a drift diagram with a loop (bac-bca loop).

arrow to transition back to bca than going to cba since item b is likely to be taking the lead by a significant

count coming attribute to the boost from ranking bca. Every time the system transitions back to bca, b’s leading

position will be reinforced even more, which might eventually result the system has close to 0 probability of

drifting from bac to cba. Hence we see that the system seems to have positive probability of oscillating between

rankings bac and bca forever without ever reaching stability.

If we want the system to stabilise almost surely, it is clear that we have to eliminate the behaviour in

Example 5.1. To deal with this concerning behaviour, in the proof relating convergence of rankings we set an

extra condition that the drift diagram doesn’t contain any cycles, which eliminates the oscillating behaviour

that we see in this example.

We do not have a proof here to show that if there exits a loop in the drift diagram, the system will get stuck

with oscillating between unstable rankings with positive probability. Hence this extra condition might not be

optimal, which can be a problem to investigate for future work.

With the above condition, we now state the Lemma and main Theorem of the section, which brings together

the implication of Lemma 4.4 and drift diagram when it comes to convergence of ranking.

Lemma 5.2. Let Xn be a ranking-based process satisfying assumption 3.4. Let S be the set of all stable rankings

in the system. If S is non-empty and the drift diagram has no cycles, then for any v and some ϵ > 0,

Pv(
⋃
n>0

⋂
t>n

rk(Xt) ∈ S) > ϵ. (14)

We now come to our main result for this project:

Theorem 5.3. Let Xn be a ranking-based process satisfying assumption 3.4. If S is non-empty and the drift

diagram has no cycles, then

Pv(
⋃
n>0

⋂
t>n

rk(Xt) ∈ S) = 1. (15)
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abc

bac

bca

cba

acb

cab

abc

bac

bca

cba

acb

cab

Figure 4: Two drift diagrams. All unstable ranking have degree 1 in the left diagram. Some unstable ranking

have degree > 1 in the right diagram.

Proof. By Lemma 5.2, starting from any ranking and some ϵ > 0, there’s greater than ϵ probability of entering a

stable ranking and staying there forever. Hence this is a Bernoulli experiment with greater ϵ chance of winning.

Hence the ranking will converge eventually with probability 1.

6 Proof for Lemma 5.2

Example 6.1. In this example we explain some intuition behing the proof for Lemma 5.2. Given that the drift

diagram has no loop, starting from each unstable ranking, we will be able to follow the arrow in the diagram

and arrive at the stable ranking. Therefore, to prove Lemma 5.2, we need to show that for some ϵ > 0, the

probability of following path to the stable ranking starting from any r ∈ R is greater than ϵ.

If all unstable rankings in the diagram has degree 1, then the result will follow nicely. If the node for r ∈ U

has degree 1, this means |Dr| = 1. From Lemma 4.4, r will follow the arrow with greater than ϵ1 probability

for some ϵ1 > 0. Hence it’s easy to see that from any r ∈ R, the probability of following path to the stable

ranking is greater than ϵ.

On the other hand if some unstable rankings have degree > 1, the situation is more complicated. Take

the left diagram in Figure 4 as an example. For some ϵ1, ϵ2, ϵ3 > 0, starting at ranking cba, the probability of

following the path cba−cab−acb−abc is ϵ1.1(X)·ϵ2 ·ϵ3 and the probability of following the paths cba−acb−abc is

ϵ1.2(X) · ϵ3. Here ϵ1.d(X) is the probability of choosing to leave raking cba with the dth arrow when the random

walk is at X. Hence it’s by Lemma 4.4 ϵ1.1(X) + ϵ1.2(X) = ϵ1. In this case, the probability of going down the

path cba− cab− acb− abc might no longer be uniformly bounded away from 0 since the value ϵ1(X) is random.

The same problem goes with the probability of going down the path cba− acb− abc. However, notice that the

probability of going down either of these two paths is > ϵ1 · ϵ2 · ϵ3.

We solve the kind of concern we see with the left diagram in Figure 4 by joining probability of following the

paths that bifurcates through induction.

In order for the induction to work, we define the ranking path, which is a sequence of ranking that represents a
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path in the drift diagram. In the proof for Lemma 5.2, we use the ranking paths to identify paths that bifurcates.

Definition 6.2. A ranking path is a sequence

(wi)
d
i=0 = (w0, w1, . . . , wd)

of d+1 rankings, where for i ∈ {0, . . . , d}, each wi is a ranking in the system and wi+1 ∈ Dwi
for i ∈ {0, . . . , d−1}.

Either d < ∞, in which case wd ∈ S and for all i ∈ {0, . . . , d− 1} wi ∈ U , or d = ∞.

Given (wi)
d
i=0, let T0 = 0 and for i ∈ {1, . . . , d}, Ti = Ti(wi−1) = inf{n > Ti−1 : rk(Xn) ̸= wi−1} ≤ ∞.

To shorten the notation in the proof, we denote the probability of traversing the path (wi)
d
i=0 with initial

distribution v as Rw,v and specifically,

Rw,v = Pv(rk(X0) = w0) ·
d∏

i=1

P
(
rk(XTi

) = wi

∣∣∣ i−1⋂
k=0

{rk(XTk
) = wk}

)

= Pv(rk(X0) = w0) ·
d∏

i=1

∫
Px

(
rk(XT1) = wi

)
µi−1(dx),

(16)

where µi−1 = L
(
XTi−1

∣∣∣ i−1⋂
k=0

Tk+1−1⋂
j=Tk

{rk(Xj) = wk}
)
. Using the definition of drift, this can be simplified to,

Rw,v = Pv(rk(X0) = w0) ·
d∏

i=1

∫
Px(wi)µi−1(dx). (17)

Remark 6.3. Note the condition “all ranking paths consist of distinct element” is equivalent to the condition

that the drift diagram has no cycles. Since we are using ranking paths to formulate the induction, in the proof

for 5.2 we are going to state the condition as all ranking paths consist of distinct element instead.

Proof. Let Xn be a ranking based process with k elements and let d = k!. Let

Pv(S) = Pv(
⋃
n>0

rk(Xt) ∈ S)

Let W be the collection of all ranking paths in the system. Since all ranking paths consist of distinct

rankings, they have length at most d and the last element is a stable ranking. For notation convenience, for a

ranking path (wi)
h
i=0, then for all j > h, we let∫

Px(wj)µj−1(dx) = 1.

Hence,

Pv(S) ≥
∑

(wn)i≥0∈W

Rw,v

=
∑

(wn)i≥0∈W

Pv(rk(X0) = w0) ·
d∏

i=1

∫
Px(wi)µi−1(dx).

(18)

Now, we claim that for u ∈ {0, . . . , d} and ϵ1 > 0,

Pv(S) ≥ ϵu1
∑

(wn)i≥0∈W

Pv(rk(X0) = w0) ·
d−u∏
i=1

∫
Px(wi)µi−1(dx) (19)
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We prove by induction that for u ∈ {0, . . . , d}, the claim is true.

We already know the claim is true for u = 0. Assume that (19) is true for some v ∈ {0, . . . d− 1}.

For all (wi)i≥0 ∈ W such that l(w) ≥ d − v + 1, we consider the partitions W
(1)
d−v, . . . ,W

(m)
d−v and sequences

of rankings of length d− v, σ
(1)
d−v, . . . , σ

(m)
d−v. For j ∈ {1, . . . ,m}, the rankings paths in W

(j)
d−v has its first d− v

elements equal to σ
(j)
d−v, specifically,

W
(1)
d−v = {(wi)i≥0 ∈ W : (wi)

d−v−1
i=0 = σ

(1)
d−v}

...

W
(m)
d−v = {(wi)i≥0 ∈ W : (wi)

d−v−1
i=0 = σ

(m)
d−v}.

Note m < ∞ since there can only be finitely many sequences of rankings of length d− v.

We denote

W
(m+1)
d−v = {(wi)i≥0 : l(w) < d− v + 1}

and note that W
(1)
d−v, . . . ,W

(m+1)
d−v partitions W .

Hence,

Pv(S) =
∑

1≤j≤m+1

∑
(wi)i≥0∈W

(j)
d−v

Rw,v

≥ ϵv1

( ∑
1≤j≤m

Pv(X0 = w
(j)
0 ) ·

d−v∏
i=1

∫
Px(w

(j)
i+1)µ

(j)
i (dx)

+
∑

(wi)i≥0∈W
(m+1)
d−v

Pv(X0 = w0) ·
d−v∏
i=1

∫
Px(wi+1)µi(dx)

)

≥ ϵ
(v+1)
1

( ∑
1≤j≤m

Pv(X0 = w
(j)
0 ) ·

d−(v+1)∏
i=1

∫
Px(w

(j)
i+1)µ

(j)
i (dx)

+
∑

(wi)i≥0∈W
(m+1)
d−v

Pv(X0 = w0) ·
d−(v+1)∏

i=1

∫
Px(wi+1)µi(dx)

)

= ϵ
(v+1)
1 ·

∑
(wi)i≥0∈W

Pv(rk(X0) = w0) ·
d−(v+1)∏

i=1

∫
Px(wi)µi−1(dx),

(20)

where the first equality follows from the partition; the first inequality follows from the induction premise; the

second inequality follows from the fact that for all j ∈ {1, . . . ,m}, {wd−v : (w
(j)
n )i≥0 ∈ W

(j)
d−v}, is the set of all

rankings that w
(j)
d−v−1 drifts to and that all ranking paths in W

(m+1)
d−v has length less than d − v + 1; the last

equality follows from the partition.

By mathematical induction , we get

Pv(S) > ϵd1 ·
∑

(wi)i≥0∈W

Pv(rk(X0) = w0) ≥ ϵd1. (21)
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From Proposition 3.7, it follows that for ϵ2 > 0

P(
⋂
t>n

rk(Xt) ∈ S| rk(Xn) ∈ S) > ϵ2, (22)

since all stable pairs under a stable ranking have positive probability of retaining their relative other, which

means if the process enters a stable ranking, it will stay there forever with positive probability.

Hence

Pv(
⋃
n>0

⋂
t>n

rk(Xt) ∈ S) = P(
⋂
t>n

rk(Xt) ∈ S| rk(Xn) ∈ S) · Pv(S)

> ϵd1 · ϵ2

= ϵ

(23)
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