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Abstract

This project explores Bayesian estimation of stationary time series models for large data sets via Markov

chain Monte Carlo methods. Processes with exogenous input are commonplace in real-world applications,

although accommodation of these inputs can limit the effectiveness of model estimation. As such, an alternative

approximate likelihood based on asymptotic independence of observations in the frequency domain was utilised

for faster computation. The exogenous input in the model was accommodated via dynamic regression models

with errors modelled as a time series process. The models considered were auto-regressive models with exogenous

input, moving average models with exogenous input, and auto-regressive moving average models with exogenous

input. The methods used ensured accurate estimation of the model parameters, while the choice of model allowed

a simple interpretation of the effect of the exogenous input. The algorithm constructed in this project provides a

strong framework that can be scaled to accommodate for more complex models found in real-world applications,

as well as highly sophisticated subsets of Markov chain Monte Carlo methods.
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1 Introduction

Bayesian methods have recently gained widespread use in Statistics and Data Science due to their natural

probabilistic interpretations and ability to estimate complex models, as well as developing predictions that

account for the uncertainty involved. Bayesian statistics express uncertainty in the parameters of a statistical

model using the language of probability. The inferential object in Bayesian statistics is a posterior probability

distribution of the parameters, obtained via Bayes’ theorem, which combines both a priori information about the

parameters, encoded as a probability distribution, and a probabilistic model for the data generating mechanism,

known as the ‘likelihood’, which describes the plausibility of the observed data given a set of parameters. The

posterior probability distribution corresponds to a known distribution in only a few toy model cases, and

practitioners often need to resort to state-of-the-art Markov chain Monte Carlo (MCMC) simulation methods;

in particular, the Metropolis-Hastings algorithm.

This project explores Bayesian estimation of stationary time series models for large data sets via Markov

chain Monte Carlo methods. Accounting for the dependence of the observations through time typically results in

an expensive likelihood for the model, especially for large data sets. A prominent solution utilised in this project

is to transform the time series to the frequency domain, where an alternative approximate likelihood based on

asymptotic independence of observations (in the frequency domain) can be formulated. The advantage of the

so-called ‘Whittle likelihood’ (Whittle, 1953) is that it is computationally much faster than the time domain

likelihood and thus enables inference for large data sets.

Practitioners are often interested in the effect of an exogenous variable on a system of endogenous variables.

Such effects can be estimated using, for example, an ARMAX model for uni-variate time series, or a VARMAX

model in the multivariate case. However, these models provide an unintuitive interpretation of the effect of the

exogenous variable. To this end, a dynamic regression model was used as shown by Hyndman (2010) and used

by Carter and Kohn (1997).

This project demonstrates the effectiveness of these methods when estimating auto-regressive models with

exogenous input, moving average models with exogenous input, and auto-regressive moving average models with

exogenous input.

1.1 Statement of Authorship

Dr Quiroz formulated the project idea and outline, as well as provided guidance and supervision. The algorithm

was written in part by Mark Youssef and Dr Quiroz. Analysis and interpretation of results was performed by

Youssef.
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2 Example Application: Saginaw River Water Velocity

An exogenous variable is described as having an effect on a system, while not being affected by other parameter’s

within the system. Systems with exogenous variables are abundant in real-world practices. As such, the methods

explored in this project could find use in a range of industries and data sets.

One example is the water velocity of the Saginaw River in Michigan measured at Bay City. The exogenous

input in this case would be the water velocity measured further upstream at Saginaw. Because the river flows

from Saginaw to Bay city, the velocity at the former will likely have a strong effect on the velocity at the latter.

Figure 1 shows the water velocity at Saginaw, and figure 2 shows the water velocity at Bay City. It is visually

apparent from both figures that there is a strong correlation between them. The methods explored in this

project can be used to describe this effect numerically.

Figure 1: Saginaw Water Velocity

Figure 2: Bay City Water Velocity
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3 Time Series Models

To define the dynamic regression models used in the project, the subsequent time series models enveloped within

them must first be defined.

3.1 Auto-Regressive Moving Average Process

An auto-regressive time series is such that the value of the time series at time t is dependant on the value of the

time series at previous time periods. Let y1 . . . yn denote a zero-mean time series measured at n time points.

An auto-regressive process with p lag terms AR(p) is defined as

yt = ϕ1yt−1 + · · ·+ ϕpyt−p + zt

zt ∼ N(0, 1)

A moving average process is such that the value of the process at time t is dependant on the value of the error

term z at previous time periods. A moving average process with q lag terms MA(q) is defined as

yt = zt − θ1zt−1 − · · · − θqzt−q

zt ∼ N(0, 1)

These models can be combined to form an auto-regressive moving average process ARMA(p, q)

yt = ϕ1yt−1 + · · ·+ ϕpyt−p − θ1zt−1 − · · · − θqzt−q + zt

zt ∼ N(0, 1)

3.2 Dynamic Regression Model

Let xt denote the exogenous input and let β be its co-efficient. The dynamic regression model used in this

project is defined below, along with the 3 different ways that ηt was defined

yt = βxt + ηt

ηt ∼ AR(p)

ηt ∼ MA(q)

ηt ∼ ARMA(p, q)

(1)

When using this model, we have a clear and intuitive interpretation of β. It represents the change in y given a

one unit increase in x. It was due to this simple interpretation that the model was chosen for this project.
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4 Spectral Information

4.1 Spectral Density

To obtain the spectral density, we must first derive the auto-co-variance function. The auto-covariance function

of a zero-mean stationary process yt ∈ R is defined as:

γθ(τ) = E[ytyt−τ ]

θ = Model Parameters, τ = 0, 1, . . .

The spectral density is then the Fourier transform of the auto-covariance function, shown as

fθ(ω) =

∞∑
τ=−∞

γθ(τ)exp(−iωτ)

ω ∈ (−π, π]

Shown in figure 3 is an AR(1) process with a positive coefficient alongside it’s corresponding spectral density.

Notice in 3a that the process is slow-moving. Consequently, 3b shows a spectral density composed of mostly

low frequencies.

Figure 4, however, shows an AR(1) process with a negative co-efficient. Notice the process in 4a moves

quickly and erratically. As such, this process has a spectral density composed of mostly high frequencies, shown

in 4b.

(a) AR(1) Process (b) Spectral Density

Figure 3: AR(1) Process, ϕ = 0.9

(a) AR(1) Process (b) Spectral Density

Figure 4: AR(1) Process, ϕ = −0.9
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4.2 Periodogram

To calculate the likelihood function given a set of parameters using spectral methods, the periodogram of the

data is constructed. First, the discrete Fourier transformation (DFT) of the time series yt is taken, shown in

equation 2. Note that this can be computed in O(n log(n)) with the fast Fourier transformation.

J(ωk) ≡
1

2π

n∑
t=1

yt exp(−iωkt)

ωk ∈ Ω = {2πkn−1for k = −⌈n
2
⌉+ 1, . . . , ⌊n

2
⌋}

n = number of observations

(2)

The Periodogram is then the subsequent transformation of the DFT given in equation 3, where I(ωk) represents

data observation k in the frequency domain.

I(ωk) = n−1|J(ωk)|2
(3)

5 Whittle Log-Likelihood

The Whittle Log-Likelihood (Whittle (1953)) is the likelihood function used to allow for fast computation. The

key result is that as n → ∞, the periodogram observations are independent and exponentially distributed with

mean equal to the spectral density evaluated at their respective frequencies. This feature is demonstrated in

figure 5, where 3 arbitrary frequencies of the periodogram have their exponential distribution plotted on the

‘density’ axis.

As n → ∞, I(ωk) ∼ind Exp(f(ωk)

Figure 5: Example: Distribution of periodogram observations
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The Whittle likelihood function of I(ωk)|θ is therefore∏
ωk∈Ω

p(I(ωk)|θ) =
∏

ωk∈Ω

fθ(ωk)
−1exp(− I(ωk)

fθ(ωk)
)

The log of the likelihood function is then taken, converting the function into a sum due to asymptotic indepen-

dence, allowing for fast computation. The Whittle log-likelihood lW (θ) is therefore

lW (θ) ≡ −
∑
ωk∈Ω

(log(fθ(ωk)) +
I(ωk)

fθ(ωk)
)

5.1 Re-arranging the Equation

When computing the periodogram and spectral density of the data based on the model in equation 1, the

equation is first re-arranged. Rather than computing with respect to yt, it is done with respect to yt − βxt.

As shown in equation 4, this ensures the spectral information is equal to that of an ARMA(p, q) process. Also

note in equation 4 the dependence of the periodogram on the value of β. This means that the periodogram will

need to be recomputed at each new value of β proposed.

yt − βxt = ηt

ηt ∼ ARMA(p, q)
(4)

6 Priors and Stationarity

For the spectral density and corresponding likelihood function to be accurate, η from equation 4 must have forced

stationarity. Values of ϕ and θ are proposed in the partial auto correlation space, and then reparamaterised to

the ordinary paramatrisation for computation of the posterior distribution.

Using this method, the process is certain to be stationary if all values of ϕ and θ are between −1 and 1

(Barndorff-Nielsen and Schou (1973)). A uniform prior between these values will therfore enforce stationarity.

σ2, representing the variance of ϵ, must be a positive value. As such, values of σ2 are proposed in the log

scale to ensure that after performing the inverse exponential transformation, they will always be positive. A

standard normal prior is therefore appropriate. We also use a standard normal prior for β, as alternate values

of the variance of p(β) were found to have an insignificant effect on estimation.
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7 Markov Chain Monte Carlo

The algorithm used is an example of a Markov Chain Monte Carlo (MCMC) algorithm, a popular and powerful

class of algorithms used for Bayesian inference.

7.1 Monte Carlo Methods

A Monte Carlo method can be described as one that uses repeated random sampling to obtain numerical

results. For example, Monte Carlo methods can be used to obtain the Expected Value of a function. As

shown in equation 5, by summing N draws of h(θ), then dividing by N , by the law of large numbers, this

converges almost surely to the E[h(θ)]. The relevance to the project is that repeated random sampling is used

to approximate the posterior distribution.

1

N

N∑
i=1

h(θ(i))
a.s−−→ E[h(θ)] (5)

7.2 Markovian Property

Let the collection of random variables {θ(t)}t≥0 be a process indexed a period t. The process is ‘Markovian’ if

the following condition is met.

Pr(θ(t) = ϕ(t)|θ(t−1) = ϕ(t−1), . . . θ(1) = ϕ(1)) = Pr(θ(t) = ϕ(t)|θ(t−1) = ϕ(t−1))

where ϕ(t) denotes the state of the process at period t

An intuitive interpretation of this condition is that the value of the process at period t only depends on the

value of the process at period t− 1. A sequence generated by a Markov process is called a Markov chain.
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7.3 Metropolis MCMC Algorithm

The type of MCMC algorithm employed in this project is the Metropolis MCMC algorithm. The algorithm in

general works as follows.

Let θc denote the current state of a Markov chain

• Choose arbitrary start point θc = θ(0)

For N = chosen number of iterations, repeat:

• Propose draw θp = q(θ|θc), where q is the proposal distribution

• Compute acceptance probability α as

α(θc, θp) = min(1,
π(θp)
π(θc)

) , π(θ) = p(θ|y)

• Sample u ∼ Uniform(0, 1)

• If u < α(θc, θp) → θ(i) = θp , else, θ(i) = θc

• Set θc = θ(i)

End For

• Discard an appropriate proportion of initial draws

What this algorithm means intuitively is that if the proposed position is more likely than the current position,

the draw is always accepted. If it is less likely, the draw is accepted with probability α. After the chain has

reached N iterations, an appropriate proportion of initial draws are discarded, or ‘burned’. This is to allow

the chain to converge to sampling from the true posterior distribution, as this will take time depending on the

efficiency of the chain and the accuracy of the starting values. The decision of an appropriate number of samples

to burn can be made by inspecting a plot of the cumulative mean of the likelihood function. When this appears

to stabilise to a constant value, previous draws should be burned and the remainder will be samples from the

true posterior distribution.
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8 Algorithm Implementation

The Metropolis MCMC algorithm was combined with the spectral methods described above to construct the

following algorithm that was implemented in the project. The variance of the proposal distribution is scaled by

c̃ = 2.38 · (Number of paramaters)
−1/2

, as this is shown to obtain an optimal acceptance rate of approximately

2.38 (Roberts and Gilks (1997)).

• The posterior distribution is first optimised to obtain the Maximum a posteriori(MAP), the mode of the

posterior distribution

• The posterior covariance is calculated as the inverse of the negative Hessian matrix, evaluated at the MAP

For N = 10, 000:

• θp vector of parameters is proposed in the reparamatrised space. The proposal distribution used is

q ∼ N(MAP , c̃ (Posterior covariance) )

• The parameters are transformed to the ordinary parametrisation to compute the periodogram and spectral

density of yt − βxt given θp and given θ(c)

• The Whittle log-likelihood of θp and θ(c) is computed

• The prior probabilities are computed in the log scale and summed to their respective likelihoods

• Acceptance probability α is computed and draw is accepted or rejected as per Metropolis MCMC

End For

• The cumulative mean of the likelihood is inspected over the N iterations and an appropriate number of

samples are burned

• The accepted proposals are transformed to the ordinary paramaterisation to obtain samples from the

posterior distribution

9 Results

To test the algorithm, data was randomly generated for 4 dynamic regression models with differing distributions

of the errors and differing number of parameters. The number of MCMC iterations N was set to 10, 000 for

each test. The number of data points n generated for each model was 14,401. The exogenous input x1, . . . xn

was generated as indpendant draws from a N(0, 1) distribution, otherwise known as a white-noise process. The

4 models tested were

• yt = βxt + ηt , ηt ∼ AR(2)

• yt = βxt + ηt , ηt ∼ MA(2)

• yt = βxt + ηt , ηt ∼ ARMA(1, 1)

• yt = βxt + ηt , ηt ∼ ARMA(3, 1)
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Figure 6: Cumulative mean for ηt ∼ AR(2)

Figure 7: Marginal Posterior Distributions for ηt ∼ AR(2)

Figure 8: Bivariate Marginal Posterior Distributions for ηt ∼ AR(2)
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Figure 9: Cumulative mean for ηt ∼ MA(2)

Figure 10: Marginal Posterior Distributions for ηt ∼ MA(2)

Figure 11: Bivariate Marginal Posterior Distributions for ηt ∼ MA(2)
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Figure 12: Cumulative mean for ηt ∼ ARMA(1, 1)

Figure 13: Marginal Posterior Distributions for ηt ∼ ARMA(1, 1)

Figure 14: Bivariate Marginal Posterior Distributions for ηt ∼ ARMA(1, 1)
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Figure 15: Cumulative mean for ηt ∼ ARMA(3, 1)

Figure 16: Marginal Posterior Distributions for ηt ∼ ARMA(3, 1)

Figure 17: Bivariate Marginal Posterior Distributions for ηt ∼ ARMA(3, 1)
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10 Conclusion and Future Research

As shown in figures 6 to 17, the parameters of the models were accurately estimated in all cases. The values

of the true model parameters all fell well within the 95% credible intervals. While an approximation of the

likelihood function was made to obtain independent observations, accurate results were still obtained. However,

as shown in equation 4, the dependency of the periodogram on the value of β means it must be re-computed at

every iteration, increasing the computational cost of the algorithm.

Future research in this area would be to employ state of the art ‘subsampling MCMC’ methods (Quiroz,

Kohn, Villani, and Tran (2019)) to estimate the likelihood function using a sub-sample of the data. This would

ensure faster computation of the periodogram, mitigating the issue of dependence on the model parameters.

When limiting the distribution of ηt to an ARMA(p, q) process, the ability of the model to capture long-term

dependencies in real world data is negatively effected. A future extension of this research would be to expand

the range of processes that ηt could be modelled by. This would increase the applicability of the algorithm to

many more data sets. Combining these models with sub-sampling methods would provide a faster and highly

accurate algorithm to estimate parameters for a wider range of processes.
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