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Abstract

Multi-scale Poisson method has been proposed to detect differences between samples of sequence of count

data with a binary group indicator. Previous methods used the idea of Wavelet transformation and factorize

the likelihood of independent data ∼ an inhomogeneous Poisson process into a product of Poisson and

Binomial. This report extend the 1-dimensional method into 2-dimensional using the idea of 2D Wavelet

transformation, By doing so, the multi-scale method can be applied in more real-life scenarios.

1 Introduction

Understanding and detecting differences between one-dimensional count data has lots of real-life application

scenarios. The basic setting for this problem is that the samples of the data are generated from an inhomogeneous

Poisson process and each sample has a group indicator. To be more precise, each sample of sequence of count

data has a set of intensity parameters captures different means in each location. The problem of interest is to

detect differences between samples of sequence count data. In biology context, this context can be extended as

a way of understanding the molecular basis of gene regulation. One of the most essential part of understanding

the molecular basis of gene regulation is to identify differences in molecular phenotypes (e.g., gene expression,

chromatin accessibility). These phenotypes are commonly measured using high-throughput sequencing assays

(e.g., RNA-seq, ATAC-seq), which provide high-resolution measurements that reflect how the phenotypes vary

along the genome in each sample. These assays, in particular, provide the number of sequences that arose

from each location in the genome, where the magnitude of the count represents the intensity of the underlying

phenotype at that location. Within this biology context, the problem of interest is to detect the difference

between the true cellular-level traits of multiple groups.

Previous popular methods to detect the difference between multiple different sequence data are called window-

based approach [2][4][6]. This method involves choosing a region size which could bring more challenge of the

task. To fully detect the signals from the data, several previous multi-scale methods have been proposed, aiming

to make better use of the high-resolution measurements from the data. However, the fundamental disadvantage

of these methods is that they approximate read counts using normal distribution, which works well when counts

are sufficiently large or sample sizes are sufficiently big, but performs badly when sample sizes are small or

counts are low [6]. To fully exploit the high-resolution measurements of the cellular-level traits of multiple

groups of samples, multiseq method [7] has been proposed. It is developed to detect and estimate differences

in the intensity among samples along the genome, taking account of both the high-resolution and the count

nature of the data. Specifically, it assumes that each sample’s count data is generated by an inhomogeneous

Poisson process with a spatially organized underlying intensity function. By extending this intensity function

from existing multi-scale models for inhomogeneous Poisson processes, it further estimates and tests for the

differences in the underlying intensity among samples.

Based on the multiseq method [7], 2-dimensional wavelet based multi-scale Poisson process method can be

proposed. The underlying problem of interest is to detect differences between samples of image count data.
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To be more specific, instead of each sample has a curve-shaped data, each sample has an image type data

consisting of counts. Each sample has a 2-dimensional data, that can be visualized using an image. This report

proposes a 2-dimensional multi-scale Poisson process method based on previous existing multi-scale models for

inhomogeneous Poisson processes and multiseq method [7] by extending 1-dimensional wavelet transformation to

2-dimensional. This report will first review the multiseq methods and then introduce the proposed 2-dimensional

method.

Statement of Authorship

Under the direction of my supervisor, I extended the 1-dimensional multiscale Poisson process methods to 2-

dimensional case and wrote this report. My supervisor assisted with the work throughout, answered questions,

and proofread this report.

2 Backgrounds

2.1 Window-based methods

Based on the characteristics of count nature and high-resolution measurements of the sequence data, previous

methods [2][3][4][6][7] failed to detect the full information of the samples. The simplest method is to divide the

sequences of data into sub-sections and add the total counts of each region followed by testing for differences in

these total counts using analysis methods available [2][4][6]. However, one limitation of this method is that the

size of the region is difficult to select: one needs balance between generating opposite conclusions or missing

signals from the data. To be more specific, if the region size is too big, then the method loses the sensitivity of

the inference, and it misses signals that affect smaller sub-regions of the data; if the region size is too small, then

one risks missing power of the method because each sub-regions will have low counts. Generally, window-based

approaches do not fully exploit the high-resolution information from the data.

Meanwhile, several methods have been proposed to solve this problem by making use of the multi-resolution

signals from the data [3][7]. Wavelet-based multi-scale methods can test for differences by taking multiple

resolutions into consideration, thus effectively avoid the problem of selecting a single resolution or region size.

In this way, it can capture more signals compared to window-based methods. The main limitation of these

methods is that they ignore the count nature of the data by approximating the read counts using a normal

distribution which performs poorly for relatively small sample sizes or low counts.

2.2 Wavelet transformation

Wavelet representations are effective tools from signal and image processing applications [5]. In this report,

Haar Discrete Wavelet Transformation (DWT) function has been used to applied to the multi-scale Poisson

model, and this section provides a brief description of the Haar Wavelet Transform.
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Consider a 1-dimensional count sequence of data. The 1-dimensional wavelet transformation involves reparam-

eterizing it into different wavelet coeffficients of each scale. Consider a sequence of count data of length T

with base locations from 1 to T. At scale s = 1, ..., log2(T ), wavelet transformation splits the sequence into 2s

sub-sections with equal lengths. The wavelet transformation consists of two types of transforms of data: plus

and minus which produce 2s transformed data of the orginal space at scale s.

Specifically, starting from the last scale (s = log2(T )), after splitting the data into 2s sub-sections, the “plus”

and “minus” transformations are applied separately on each pair of the sub-sections (i.e. the data point at

each location) which results in T transformed data. Then before going into the next resolution, the “plus” and

“minus” transformations are only applied on the previous resolution’s “plus” transformed data. In this way,

there are T/2 number of the transformed data involving in the next transformation where the same rule would

be applied by adding and subtracting each pair of the previous transformed data. The DWT decomposes the

data into “wavelet coefficients” (WCs), each of which captures the difference between intensity of the data in

different locations for each scale. At the “zeroth scale”, there is only one single WC, which is calculated as the

total sum of the elements of the data. At the first scale, there is also one WC which captures the difference

between the first half and the second half. At the second scale, there are two WCs, the first contrasts the first

quarter and the second quarter of the original sequence; and the second contrasts the third quarter and the

fourth quarter of the original sequence. This process continues reaching the final scale (i.e. s = log2(T )), and

at scale s there are 2s−1 WCs capturing contrasts between sub-sections of the original data of length 2T−s.

To give a more detailed explanation, consider an example of sequence of count data of length 8, data at each

base location is indexed as x1, x2, ...x8. According to the wavelet transformation, at the “zeroth scale” there

is only one total summation WC (θ01) which simply adds all the count data. At the first scale, the WC (θ11)

contrasts the first half and the second half of the data. That is, θ11 :=
∑4

i=1 xi −
∑8

i=5 xi. The second scale is

reparameterized by two WCs (θ21, θ22) respectively with the first calculated as θ21 :=
∑2

i=1 xi −
∑4

i=3 xi, the

second calculated as θ22 :=
∑6

i=5 xi −
∑8

i=7 xi. And the last scale (i.e. s = 3) contrasts each pair of data by

producing 4 WCs (θ31, θ32, θ33, θ34), where θ31 = x1 − x2, θ32 = x3 − x4, θ33 = x5 − x6, θ34 = x7 − x8.

Figure 1: 1D Wavelet transformation
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2.3 Multi-scale models for inhomogeneous Poisson processes

The multi-scale model for inhomogeneous Poisson process is build based on wavelet transformation and it

reparameterizes the Poisson model using a 1-1 multi-scale transformation [1]. To begin with, first consider the

model for sample size n=1. Suppose the observed data are y = (y1, ..., yB) with

yb ∼ Poisson(λb) (1)

where B is a power of 2, so B = 2J for some J. The model splits the data into different number of sub-sections at

each scale which results in a 1-1 multi-scale reparameterization of λ = (λ1, ..., λB) [1]. At scale s = 1, ..., log2(B)

define 2s−1 “locations” by dividing the indices 1, ..., B into 2s−1equal groups of consecutive indices, and let lsl

denote the indices of the location at scale s so formed. And the assumption is that data is spatially structured

which | λb-λb+1 | is small for most b. Here is a brief summary of the multi-scale model from previous work

[8][9]:

At each scale s = 1, ..., log2B define 2s−1 parameters capture the log difference between sub-sections by dividing

the data y into 2s equal length groups of different “locations” parameterized by Isl, that is, s stands for scale

and l stands for location. For example, at scale 3 there are 23−1 = 4 locations, that is:

I31 = [1, B/4], I32 = [B/4 + 1, B/2], I33 = [B/2 + 1, 3B/4], I34 = [3B/4 + 1, B]

where [a, b] denotes the base indices from a to b. Further define I−sl , I
+
sl as the first and second halves of the

indices in Isl. Then to define the α which captures the log differences of intensity between the first and the

second halves of indices in Isl, denote the sum of λ over the first half as λ+
sl, the sum of across the second half

as λ−
sl. At last, define the multi-scale parameter of each location and scale by

αsl := log(λ+
sl/λ

−
sl)

The intuition is the same as the wavelet transformation which captures the difference between sub-regions along

the sequence of the data. Specifically, if λ remains invariant in Isl then αsl = 0. This is the essential reason

that multi-scale model is applied to address such problem: it produces sparsity structure in the transformed

space which makes it easier to solve compared to the original data space.

Moreover, by applying a fundamental distributional result: if y1 and y2 are independent, with yi ∼ Pois(λi),

then

p(y1, y2|λ1, λ2) = Pois(y1 + y2;λ1 + λ2)Bin(y1; y1 + y2, λ1/(λ1 + λ2). (2)

By applying (2), the likelihood of parameters can be factorized into independent terms [1]:

p(y;α, λtot) = Pois(
∑
b

yb;λtot)
∏
sl

Bin(y−sl; y
−
sl + y+sl, exp(αsl)/(1 + exp(αsl)), (3)

where Pois(;λ) denotes the probability mass function of Poisson distribution given parameter λ, whileBin(;n, p)

denotes the probability mass function of inhomogeneous Poisson given parameters n and p. Moreover, y−sl, y
+
sl
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denote the sum of yb over the indices I
−
sl , I

+
sl . In this way, the data in each location can be modelled as binomial

distribution, where

y−sl ∼ Bin(y−sl + y+sl, psl) (4)

αsl = log(psl/(1− psl) (5)

3 Review of Multiseq

This section involves the review of previous 1-dimensional method called Multiseq [8].

3.1 Multi-scale models for inhomogeneous Poisson processes from multiple groups

of samples

Now consider there is a group of samples of data with samples size n. To estimate λ = (λ1, ..., λB) under the

assumption that λ is spatially structured, the model is

yib|αi, λ
i
tot ∼ Pois(λi

b)i = 1, ..., n, (6)

where λi
b represents the bth component of the 1-1 multi-scale transformation. The multi-scale models transfer

parameters of original space into the wavelet transformed space consists of WCs described above. The group

indicator is modelled as covariate Xi measured on each sample, Multiseq assumes that Xi ∈ {0, 1} which is a

binary group indicator. The effect of the group indicator on the intensity is modelled using a linear model. The

model involves two regression parts for the “zeroth” scale and other scales.

3.1.1 Poisson regression

Let yitot denotes the total count over the region for sample i, since the multi-scale model assumes the total count

follows a Poisson distribution with intensity λi
tot; see equation (6). Poisson regression is used to model the effect

of the group indicator Xi:

yitot ∼ Pois(λi
tot) (7)

log(λi
tot) = µ01 + β01Xi + ui

01 (8)

where ui
01 models the random effect of individual samples to handle the problem of overdisperssion, µ01 models

the average effect of covariate on the intensity when Xi = 0, β01 captures the difference in intensity between

groups. The model for “zeroth” scale is equivalent to generalised linear model of Poisson distribution with a

log link.

3.1.2 Binomial regression

For other scales, consider the single sample case, the likelihood factorizes into independent terms (4) (5). The

same rule is applied here, the information in µsl, βsl is contained in n binomial observations:

yi,−sl ∼ Bin(yi,−sl + yi,+sl , pisl) (9)
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log(pisl/(1− pisl)) = αi
sl = µsl + βslXi + ui

sl (10)

The model is a generalized (Binomial) linear model with a logit link function. βsl reveals how much response

variable change when Xi changes one unit which is the effect of Xi on αsl.

Moreover, mixture modelling is applied on the prior of βsl:

βsl ∼ γslN(0, τ2sl) + (1− τsl)δ0 (11)

γsl ∼ Bernoulli(πs) (12)

where γsl is the mixing parameter, δ0 is the zero point mass. Then with probability πs, βsl ∼ N(0, τ2sl); with

probability 1− πs, βsl = δ0.

3.2 Testing for differences between multiple groups of samples

To test/detect the difference between groups of samples is equivalent to test for non-zero effects over the region.

The null hypothesis is H0 : βsl = 0∀s, l which is equivalent to testing πs = 0∀s in the prior for β. To be more

specific, if πs = 0 then βsl is always equal to δ0.

Then likelihood ratio test is used to detect the non-zero effects over the sample regions [7], the test statistic is:

Λ̂ = Πsl
P (β̂sl|s2sl, π̂)

P (β̂sl|s2sl, π0 = 1
) (13)

where π̂ denotes the maximum likelihood estimator, that is π̂ := argmaxΠslP (β̂sl|s2sl).

3.3 Effect size estimation

To provide more interpretable estimates of the effect of X, the posteriors in the transformed multi-scale space is

transformed into the log-intensity logλ into the original observation space. We define the effect on base location

index in the original space as β0
b := log(λ

(1)
b /λ

(0)
b ) where λ(0),λ(1)denote the values for λ for individual sample

in group 0 or 1 respectively.

The group 0 is set to be the baseline, therefore, µ ≡ α0 and µ ≡ α1 − α0. The relationship between λi and

αi for i = 0, 1 is explored under the assumption that the random effects u = 0. From the elementary properties

of the Poisson distribution, the intensity parameter of Poisson at base b λi
b can be written as a product of the

total intensity λi
tot and the binomial probability of success and failure pisl, q

i
sl := 1− pisl, where

pisl =
eα

i
sl

1 + eα
i
sl

, qisl =
1

1 + eα
i
sl

(14)

To give a more specific example, the intensity at the two leftmost positions (i.e. b = 1, 2) can be written as

λi
1 = λi

tot[Π
J−1
s=1 p

i
sl]p

i
J1, λ

i
2 = λi

tot[Π
J−1
s=1 p

i
sl]q

i
J1 (15)

where pisl and qisl can be considered as the probabilities of assigning the count to the left half and the right half

of the sub-regions at the scale s and location l for a region.
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For group category variable (i.e. X = 0 or X = 1), the value of the covariate at the baseline is defined as

X0, and a unit increase from baseline is defined as X1 := X0 + 1. The the effect size β0
b is defined as:

β0
b = logλ1

b − logλ0
b , (16)

where λi
b denotes the intensity for Xi at position b. Using the relationship between λi and αi, equation (16)

can be rewritten as a sum of log(
λ1
tot

λ0
tot

) and log(
p1
tot

p0
tot

) or log(
q1tot
q0tot

).

4 2D Multi-scale models

4.1 2D Wavelet transformation

To extend the 1-dimensional model into 2-dimensional case, the problem of interest has now changed into de-

tecting differences between a sequence of image type data. For the previous 1-dimensional case, each samples

consists of s sequence of count numbers, while for 2-dimensional case, each sample has an image type data

consists of counts. Let us denote the image size by T × T , where T = 2J for some J . Each of the sample also

has a group indicator gi, gi ∈ {0, 1}.

The idea of 2-dimensional Wavelet transformation is widely used in image compression [5], and the wavelet

decomposition can be viewed as a decomposition using a set of independent frequency channels. The decompo-

sition of 2-dimensional wavelet can be divided into 4 sub-transforms. Each transformation involves a sub-section

of the original image space of 2 × 2 area, then the WCs are noted down before going into the next resolution.

By applying the same transformations on “plus” transformed WCs, further finer resolution’s wavelet transfor-

mations can be done.

To give a more specific example, consider an 8× 8 image count data as bellow (Figure 2). There are 4 types of

Figure 2: 8× 8 image data example Figure 3: 4 2D Wavelet transformation types

wavelet transforms in total which are shown in Figure 2, each of them involving transform an area of 2×2 count

data from the sample. Take the first transformation as an example (Figure 3), each consecutive 2 × 2 square
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area is transformed as a WC, and there are 16 WCs after the single transformation on the whole area over the

data region. The same rule is applied for other 3 types of transformations. After the first scale’s transformation,

64 WCs are produced before going into the next resolution.

The transformation of the next scale is then applied on 4 × 4 count image data which consists of WCs from

Figure 4: “Plus” transformation on image data

Figure 5: 4× 4 image data for the next resolution

the “plus” transformation of the previous scale [Figure 5]. Then the same rule is applied: before going into the

next resolution, 16 WCs are produced.

The finest resolution consists of a 4× 4 image data producing only 4 WCs.

4.2 Modelling

The idea of reparametrization of the independent likelihood shown in section 2.3 is also applied for the 2D

case. From the elementary distributional results, the likelihood can be written as the product of Binomial and

Poisson. In 2D case, the probability of success of the binomial distribution is defined as the total sum of “plus”

divided by the total sum over the corresponding region. In this way, there are 3 pslj for each scale and different

location where j indicates the type of transformation.

For example, in the last resolution, there are 3 parameters of probability of success for binomial, that are: psl1,

psl2, and psl3, each of them denotes the total sum of “plus” divided by the sum over the region: psl1 is calculated

as the top half of the data divided by the total sum, psl2 is calculated as the left half of the data divided by

the total sum, psl3 is calculated as the cross elements (i.e. top left and bottom right) divided by the total sum

[Figure 6].

5 Conclusion

Multi-scale methods [7][8] have been proposed to help exploit 1-dimensional high-resolution measurements for

sequence of count data. One of the most essential application in biology is the identification of differences in
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Figure 6: Probability of success in Binomial for 2D

molecular phenotypes using high-resolution measurements from some high-resolution assays. However, they are

designed to analyse single-end read high-throughput sequencing data, so it is not directly applicable to paired-

end read data. This project builds up on the multi-scale method proposed in [7] and develops and implements

statistical methods that better exploit high-resolution measurements in the 2-dimensional image count data.

Future work can be done by applying this proposed methods to identify differences using paired-end Hi-C data.
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