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1 Prelude

1.1 Abstract

In this report we construct a multiplet of 6 spacetime dimensional fields that are invariant (close) under local
transformations generated by the superconformal algebra. This multiplet is referred to in literature as a Weyl
multiplet. By using the superspace formalism, we construct this full set of fields, and determine their
equations of motion which are imposed by the constraints of the algebra. This is the first step of the
superconformal method to find the 6D Hyper-Dilaton-Weyl multiplet, analogous to the 4D construction by

Kitchin [1], which can then be used to create a 6D Poincare supergravity theory.

1.2 Statement of Authorship

The computations provided in this paper are my own. All gamma matrix identities and relations used in these
computations are appropriately referenced in the Appendix. The 6D superconformal algebra is well-known, and

it’s structure is given in the Appendix and used throughout.

2 Introduction

Supersymmetry, or the unification of bosons and fermions, is widely considered to be part of the resolution
to the issues between the Standard Model of Particle Physics, and General Relativity (GR). Currently, these
theories must be incomplete, as naive quantisation of GR yields a non-renormalisable theory of gravity. These
non-renormalisable theories have divergent integrals in the description of the theory, which cannot be recitfied by
usual renormalisation techniques such as the energy dependent rescaling of ”constants”. Furthermore, neither
theory has an explanation for the dark matter which is believed to make up about 85% of the matter in the
universe, nor can provide a prediction for the value of the cosmological constant which determines the rate
of expansion of the universe. When supersymmetry is realised in a theory as a local symmetry, gravity is
automatically incorporated due to the components in the connection term of the covariant derivative. Such
theories are called ”supergravity” (SUGRA) theories.

Field theories defined on Minkowski spacetimes (that treat space and time as oppositely-signed metric
components) are in agreement with Special Relativity if they possess invariance under the Poincare group. This
is the group of rotations, translations, and the so called "boosts” which are generalised changes in velocity.
If a field theory is invariant under the group, this means that the laws of physics are unchanged under the
transformations of the group. This is what should be expected from a valid physical theory, as a fundamental
axiom of physics is that the laws of physics are the same regardless of your coordinates or your velocity. The

Poincare group can be described in terms of the Poincare algebra, given by the following Lie brackets:

[PH7PV] =0, (1)
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(M, P = i(Prg"” — Pgh), 2)

and O
(M, MP7] (3)

=i (MM g"P 4+ MYPgh? — MHP g7 — MY gh?)

where P is the generator of translations, g is the metric, and M is the generator of rotations and Lorentz boosts.
Examining the symmetries of a theory often yields interesting information about the physics of the theory. In
particular in physics, we are interested in primarily continuous symmetries of Lie Groups. As an example,
continuous symmetries give rise to conserved quantities by Noether’s theorem. In order to discover new physics,
one pathway is to examine the theory to determine if there are additional symmetries. Alternatively, one can
extend the underlying symmetry group, and see if there is a corresponding physical theory. Naturally, one
question arises: "how can one extend a symmetry group, or algebra, and have a physically realisable theory?”.

According to the Coleman Mandula Theorem, the Poincare algebra is the largest Lie algebra that corresponds
to a physically realisable theory, up to the addition of arbitrarily many generators that commute with the entire
algebra (for example, in the Standard Model, this ”internal” symmetry group is SU(3) @ SU(2) ® U(1), which is
enough to unify 3 out of 4 fundamental forces). Thus, there is no non-trivial way of extending the Poincare Lie
algebra. Instead, however, one can generalise the Lie algebra to a graded Lie algebra, in this case a (Zz-graded)
”super” Lie algebra. This bypasses the Coleman Mandula Theorem, and, in fact, is the only way of doing so
(by the Haag, Lopuszanski-Sohnius Theorem). One can then extend the superalgebra non-trivially by adding
anticommuting ”fermionic” elements to the algebra. These fermionic generators are known as the supercharges,
denoted by Q. These elements are spinorial in nature, and are often denoted Q,, and Q, where « is the spinor
index.

In the simplest case, there is one such pair of generators. This is the case that we will focus on in this
project (N = 1). When these generators act on bosonic states, they are transformed into fermions, and vice

versa. This yields the supersymmetric extension of the Poincaré algebra, with additional relations

[Qa, M*] = ("), " Qp, (4)
[Q%, ] = ()" 5Q7, (5)
[QQ,P‘U’] = [Qd,Pﬂ] = {QOMQ[?} = {deQB} =0, (6)
and
{@aQs} =200 05 P (7)

where o# is the 4-vector of Pauli matrices, and o*” are the spin generators of the Lorentz group.
This yields the unification of bosons (force-carrying particles) and fermions (matter particles) via adding a
?supersymmetric partner” particle of opposite type for each particle in the standard model. Again, when the

fields of a theory are invariant under local transformations involving these generators, gravity is automatically
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incorporated in the theory via the connection. Supergravity theories are thus an exciting avenue for research,
as they unify the fundamental particles of the standard model with gravity.

In order to study a theory of supergravity, a set of fields must be constructed that are closed ”off-shell”.
This refers to a closed set of fields that transform into one another under the algebra, with the need to apply
the equations of motion of the fields as additional constraints (”on-shell”). Constructing an off-shell multiplet
of fields is far more powerful than constructing an on-shell set, as an off-shell multiplet is independent of the
particular model used (for example, if a particle is massless or massive).

To then determine the physics of the theory, fields can then be used to build an action, the mechanics
principle of least action can be applied to determine the dynamics of the theory. However, building these
actions are in practice quite difficult. One way of constructing these actions in a model independent manner
is to use the superconformal method. In essence, the Poincare superalgebra is extended to the superconformal
algebra by adding unphysical symmetries that violate the Coleman Mandula theorem. A theory can then be
constructed, and the unphysical symmetries can be removed via gauge fixing, thus yielding a physical theory.
The superconformal algebra extends the Poincare super algebra by adding the generators D for dilations, K,
for the special conformal transformations, Y for chiral transformations, Jij for the so-called "R-symmetry”, and
S¢ for special superconformal transformations. The full algebra structure is given in the Appendix. Each of
these generators has a corresponding connection, which gives the field content of the theory. These fields must
contain the same number of fermionic and bosonic degrees of freedom due to supersymmetry. This is often
not the case, and thus must be coupled to additional fields. Such representations of conformal supergravity
are known as Weyl multiplets. A superconformally invariant action can then be constructed. However, the
theory remains unphysical. In order to reduce to Poincare supergravity, one must introduce one or more matter
multiplets, known as compensating multiplets. This eliminates the extra unphysical degrees of freedom after
imposing some constraints. The result is an action invariant under Poincare supergravity, containing the gauge
fields coupled to the remaining matter fields.

In the 1980’s, Muller [2] constructed two (minimal) sets of fields which close under 4D N = 2 supergravity
transformations. These two irreducible representation are dubbed the vector and hyper Muller multiplets,
named after their field content. In order to construct an action for these Muller multiplets, it is far easier to
start with a Weyl multiplet that reduces to a Muller multiplet under the superconformal method. In 2017,
Butter et al [3] did this for the vector Muller multiplet, by developing the so-called 4D dilaton Weyl multiplet.
In 2021, Kitchin [1] recovered the Muller hypermultiplet by coupling the standard Weyl multiplet to an on-shell
hypermultiplet, yielding the 4D hyper-dilaton Weyl multiplet.

The paper will set out the groundwork for creating the analogous hyper-dilaton Weyl multiplet for the 6D
case. To construct their respective multiplets, both authors used the conformal superspace formalism. In this
formalism, the usually spacetime coordinates are extended by the addition of spinorial Grassman coordinates.

For example, in 6D, coordinates are given by

M= (2™, 0)), (8)
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where there are 6 regular spacetime coordinates (m = 0,1,...,5), and 4 (2-component) fermionic coordinates
(p=1,...,4and i = 1,2). Instead of using fields written in terms of spacetime coordinates, superfields are used
written in terms of superspace coordinates. This effectively allows multiple fields to be combined (as Taylor
series coefficients) as a single superfield, and makes transformation laws simpler. For example, supersymmetry
translations are simply translations in superspace. In conformal superspace, the conformal generators and
connections are written in terms of superspace coordinates.

In this project, we take the first steps in recovering the 6D analogue of the Muller hypermultiplet. More
specifically, we build the superconformal on-shell hypermultiplet analogously to Kitchin [1], starting with the
superfield

=" (9)

This multiplet is the supersymmetric extension of the electron. We apply the constraints given by the 6D
algebra to determine the field content of the multiplet. We then begin the construction of the equations of
motion of the multiplet fields. This lays the groundwork for the reduction to a Poincare supergravity theory in
6D.

6D N =1 theories are of interest due to their similarity of field content to the 4D N = 2 theories worked on
by Butter and Kitchin. 6D supergravity models (with two small space dimensions) have in fact been used in the
past to search for phenomenological extensions of GR and the standard model. In a string theory context, there
are proposals to study the entropy of Black Holes [4]. This task is highly simplified for largely supersymmetric
systems. Supersymmetric black holes in string theory work great as a toy model to understand the quantum
behaviour of black holes. Macroscopic black hole entropy arises naturally from supergravity theories. These
are very challenging to be constructed, and our techniques might be used in this direction. From a pure
mathematical point of view, it is also an interesting representation theory problem to classify the representation

of local superconformal and Poincare superalgebras.

3 Actions of the Algebra on Superfield q

3.1 Basic Constraints

We begin by imposing the constraints (hypermultiplet)

Vgt =0, (10)
and the superconformally primary constraint
Segik =0 (11)
K1 =0 (12)
Together, these two constraints imply that
{2, V5P =0 (13)
4
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Further, ¢ is a Lorentz scalar, and thus
Magqii =0. (14)
3.2 Action of J on Superfield q
Then, the action of J'? on ¢** can be found. Indeed, beginning with the commutation relation
[Jij, VEla™ = =86V ajyd™ (15)

Then,
7, TR = — eI g (16)

Expanding out the permuation of indices

1 ..
— _Ee“ew((sfvaj + 08V ai) g™ (17)
1 . .
= —i(elkemvaj + €1’V o) g (18)
1
= (T kL) (19)
= (V) g, (20)
Thus,
J”’V’;q"m — V’é.]””q"m = (6’“(ZV’§2)qnm (21)
Note that from (10), one has
Ve = v gkm (22)

Furthermore, this antisymmetry in indices means

1
Vag"t = =5 Vg (23)
Thus, (21) becomes
1
— €IV = VT g = (VR (24)
1 1
= S(FIVEgME + VL) = — (Vg + PV = Vg (25)
= —%ek"leV:;qrm — VEJgrgnm = _yneklgrm (26)
Now, setting k = n, this reduces to
—VnJrgnm = —Vge”(lq”)m. (27)
This implies
leqnm — En(lqp)m (28)
5
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3.3 Computing the Dilaton Weight of q

Now, we aim to compute the dilaton weight,

Dq'? = \,q (29)

To do so, note that in the algebra, it is known that

{85, Vi) = 26581 — 467 Mg + 865 J7 (30)
Then, from (13), one has
(20367, — 467 Mg + 805 )" = 0 (31)
= (2056, D + 893J9)g" = 0 (32)
by the Lorentz scalar property of g%.
Expanding:
= 05(20; 00" +8.7 ") = 0 (33)
—> S5 ((O5Agq™ + 5 Agq™) + A(T/ g™ + TFg'™)) = 0 (34)
= 65 ((6iAgq™ + 0hAg@™) + dei (J ™ g + T g)) = 0 (35)
Applying (28),
— 65((6§Aqqkh + 0i A1) + Qe (Pt 4 @ (mgRhyy — (36)
Expanding permuation of indices
—> 5((5 20" + TiAg@™) + 260 (¥ + M g™E) + (7'M + Fq™))) = 0 (37)
= 05 (05 0™ + 01 Age™) + 2((= 53,4’ + g™ + (=57 ¢" + *q™))) = 0 (38)
= 05 ((05Aga™ + 0iAge™) + 2((= 84" — 6]q")) = 0 (39)
= (A — 2)05((5;¢™ + 5¢"") = 0 (40)
This implies that
Ag =2 (41)
And thus,
Dg'L = 2¢%. (42)
6
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4 Constructing the Multiplet

4.1 First Spinorial Derivative of q
We will now compute the repeated action of the derivative V¢ on ¢’. Firstly, note that
Vig'l = Vg + Vgt (43)
From (10),
Vig' = Vg (44)

Note that for a tensor M, My = 2,654 Meq = — 1 €qpe“*Meq. Thus,

o 1 .. ‘
V= =5 e Vad™ (45)
— V! s 1 ijon I
Va@ = =5 Vadn (46)
Then, defining the field ¢, = ng%’
i J] 1 ij
Vad® = =5 Ve (47)

4.2 Second Spinorial Derivative of q

Now, we aim to compute the 2nd spinorial derivative of q.

Note that
i ) kr 1 i j T 1 i j T
VoVt = 5[Ve, Vald™ + 5{V0, Vitd™ (48)
Then considering the first term of (48)
l[vz Vj] kz_l(vivj _Vjvi) kr (49)
2 ar VB q - 2 aVp BY«a q
L oiwi j i i i i ik
= 5(VaVh = ViV + VIV — Vi Vi)™ (50)
= (VEV) + VI, Vi)™ (51)
— (vl vl i 4] (4t U il kr
= (v(avﬁ) + Vi Vg + VR Vg + v[avm)q (52)
— (vl il (R vORW A
= (Vi Ve T Vi Vaa (53)
Considering the second term of (53)
v(l v]) kr _ _lv(l Gj)k¢£ _ lek(ivj)lpi — lek(ivj)vp T (54)
oV 519 2V ¥ T 5 %8 = 3 oY 5%
_ Lk o or p o) e — Lok o) or p i) | or
= 5€ ({V[a, Vit = VisVa | % = ¢ {(Vie: Ve + VLV |4 (55)

YA
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_ 56Ic(z <{vfo)ﬂvp Y& + Epsvf vé)]qm‘> = — ¢k ({Vﬁ,vp Yap — epse Vfadjﬁ]) (56)
1 .
= e (Wfi’vp]}% + 507V, %) <{V@,Vp]}qp +3V1 %]) (57)
Thus,
P
_ek(zvfo)[%] — 56k( ({V{i,vp]}qp + V[adjﬁ]) (58)
So
V(JV kr _ k(zVJ w/j] — kG {V[a’ Ié]}q% (59)
Substituting back into (53),
(VELVJ))qkz_‘_ek(z{V]) Vp]}qp (60)
1 ..
= (—5¢7eaViu V) )gr + FO{V) Vg (61)
1
= (—5€7ViaVa)a)a™ + VL Vi e (62)

We define V5 = Vfavlg)s. Now, determine the action of V.3 on ¢k

j s j s j 1 £ 1 i
Vapq™® = Vi, Vet = =V oVt = 3¢ Vsa¥p) = —5Via¥p) (63)
Now, note that
. . o1 Y

Viats) = ViaVie = 5(VaVi + ViVa)as (64)

1 7 s s 7t i 7S ERwi] ]
= 5({Vi. Vi) = ViV +{ViVa} - ViVi)as (65)
= ({Via: Vi) = VisViy)ds (66)
= (Vi Vi) = V{sViy)ds (67)

By definition, this is

= {Vi{a: vz)}q% + Vfﬁ%ei”emzpa) (68)
= {Vie Vfa)}q% N %(5siv231/}a) (69)
= (Vi Vi)t — 5 Vi) (70)
8
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Thus,
i 2 % s
(a¥p) = g{v(m Vi) tas (71)
So, from (64), X
Vasd® = =3{Via, Vi et (72)
This gives the expression
1 % j r 1 ij 1 s r [ j T
S [Ver VAl = (57 (~3{VEa. Vi) )a8) + VL V5 bap) (73)
Thus, from (48),
i x7J kr 1 ij 1 s r j i s\, T 1 i j r
ViV = (92 {Vh, Vi Y+ capt U (VD T3aE) + 5V, Vi }a'E (74
Writing in terms of 1,
. i 1 ii s r i j r 1 j T
i = = (3VE Vi bt + 2V Vg ) — {VE, T4} (75)
j i T 1 ij s r i j T i j r
er € VG = _(gfk]‘f IV, Vi baE — €126k {Vf,L Vg]}%) — e {Ve, Vi ™" (76)

i T 1 s r i j j i r i r
ZVawE = —( — §5f{V’(“a, Vﬁ)}q; — (ij€k {Vfa, Vg]} + ijGkJ{V[a, V%}) q:g) - {Va, Vﬁk}qk* (77)

i, 1 s T i j % T i T
2V = —( = 30H{VE, Vi et - <6 VL, Vi + 2{v[a,vg]}> 65) — {Vi, Varla™ (78)
i ,T 1 1 % s T 4 T i T
Vah = 5 (= (= 3{Via Vi bat = 3{Vi0, Vi e ) — (V5. Vsi}d™) (79)
And thus
i ,T 1 i s T 3 i P r 1 i kr
Voﬂl’g = B{V a’ ﬂ)}q§+ i{v[ou Vﬂ]}qﬁ - §{VQ7 vﬁk}q N (80)

Note that the algebra of covariant derivatives is known to be

i i i (ac Lo ij ac 3 i
{Va V%} = —(2ie” (7)apVe) — 5(4“ (Ya)as W ndd) - (_56 ]eaﬁ'ytstkSg)

(81)
- 1

0T ) acY — VW + W Wee ) K°)

It is thus clear that due to antisymmetry of the Levi-Civita symbol that
Vi, vi}=0 (82)

Furthermore, (7¢)qs is antisymmetric, and thus
(Vi Vi =0 (83)
And

{Via Vi = {Vi, V) (84)
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Thus, the derivative (80) becomes

i T 3 i T 1 i T
Voﬂf’B = E{Vav Vg}qﬁ - i{va’ vﬁp}qIL (85)
3 7 P r 1 7 P r
= §{VQ7V5}115+ i{vwvg}% (86)
=2{V,,Vile (87)

Appyling this anticommutator to ¢, and using the fact that q is superconformally primary (11) (12), and a

Lorentz scalar (14), one sees that
Velbs = —2 ((22’6“(76)@%)) @ (88)
— Vi = —4i(7)apVeq'" = —4iVapq™ (89)

4.3 Derivative of ¢

Now, we aim to compute the double spinor index derivative of .

i 1o, i
Vel = 3¢ POV 515 (90)

Now, recall the algebra of covariant derivatives is given by

] R} a L. ) ac 3 i
{Va, Vg} = —(2ie” (v )aﬁva) - 5(47'6 p('Ya)aBW ndd) - (_56 peaﬁ’Y(;X&kS]Z)

(91)
3 a 1 e c
- (7’6 p(,), )aﬁ(znacy - vbWabc + Wachef)K )
= (Y")asVa
i 7 1 ) acd
= Zepi ( - {vou vl,(;} - 5(47’6 p('ya)aﬁw Mea) (92)
3 ip ok o - ip/.a 1 b ef c
+ (56 eaﬂ'y(;X Sk) - (Ze (7 )aﬂ(znacY - V" Wape + W chf)K )
Thus,
i 1, i
VOthB = 56 ﬁ’ytSV’y&d}B
1 i

= §€a675(7a>75va'¢é

_ i afyd D . acd Tk op (93)

= gf —{Vop, V5t + (4i(7a) s W Mea) — (3€46pr X7 SE)

-/ a 1 e c )
+ (21(7 )Wé(znacy - VbVVabc + Wachef)K )) 'QZ)E
10
- 4
NYAMSI




2 VACATIONRESEARCH

2 SCHOLARSHIPS 2021-22

Now, expanding the first term of (93),

) @ i 1 a 1

_gf B’yg{vvmvg}‘% = —ge ﬂ'yé(vwvg + vgvvp)l% (94)
From (89)
= — TV, (~4iV35)¢" + € V3 (~4iV,5)¢") (95)
- _%eaw(vw(—ﬁﬁvéﬁ)qz’ L — Vip(—4iV,5)q™) (96)
— L8y (—4ivs ¢Pt + €PV 5, (—4iV ., 5) P 97
S P B P VB
i R wies A T i
= 5 (Vyp (V) 4 Vs, (~4i7)g) (98)
{ R wiel 7

=1 (Vap(—4iV*7)g™) (99)
~([Vgp, VY] + V¥ 3,)g%) (100)
~([Vp, Vg7 + VPy5) (101)

Now, the commutator in the first term of (101) is given by

[Vap, V] = —(7")*%€[V a, V] (102)

; i
WG)VE — (=5 () (103)
Thus,

4 1 : i , _
[V, Vg2 = (4%)*P ey <(—§ (Ya) s W)V + (=5 (Va) gy X)D + (21 (7a) g, X7 )J’“l> (104)

1 . ) , ,
_ (,ya)a,ﬁ <€pj<_§ (7‘1)[35 76])qup3 — i (%) . XWght 4 e,;2i (7“)67 x (k) 6ImﬁmlEzo(nqmﬁ) (105)

Consider the last term of (105),

€521 (Ya) g Xk er, €n€P g™

1. ; ; ; ; 106
= €pj 51 (,}/G)IB»Y (X’Ykel] eknemlepnqml + X’Ykeljeknfmlfpmqnl ( )

+ X R e €mi P g™ + X”lekjeknemlepmq”i)

11
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1 . . . , . .
= 52 (Va) g (X% e, ;60 €miq™ + X e 1€ €rneme’™ g™ + X”l(s?epjemlep”qml + X80 € i€mie?™q™) (107)
1 . 4 . .
= 51 () gy (XS ema™ + X760 = 2X g™ + X epuq™) (108)
1 . . . .
= 51 (Va) gy (Xmg™ + X7¢™ +2X7,¢™ — X1¢™) (109)
i i 110
) (’Ya)gfy X7k (110)
Substituting into (105),
1 . o g .
= () (em<—§ () s WOSDVEGE 4 (30) 3y X707+ 5 () ngm) (111)
_ a\af 1 (Sfy(sj k _pi 3i v, pi
= ()" ei(=5 (V) gs W) V5™ + 5 () 5, Xpa™ (112)
Using this result in (93),
B,k
_ (~ra\aB 1
= (v") (5 (%)55
. . 113
WY pi _ 31 X0t | — weByt 1 LeaBys [y, weed pp (113)
)Vprq B) ('Ya),afy p4 Vs + g€ (4i(Va)~s cd)
- a 1 € C i
+ (Beapr XTHSE) = (200 )y (JhacY = V" Wane + Wil Wee) K )) o
verys
1 ayapf
= Z(’Y ) ((’Ya)ﬁa
, (114)
. % Lo - ac
Wéw)vp'y —3i (7‘1),87 X;) "+ 1_6e - ( - (42(%)%W ndd)
T - a 1 € C i
+ (Berpr XTES]) = (261 )15(J1acY = V' Wae + Wil Weey) K >> v
Now, the action of each of the generators on v must be computed.
Firstly, note that
Meathy = MeaVigh = [Mea, V315 + Vi Meaqh = [Mea, V3] g (115)
12
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1 1 « j 1 a7y (4
= 5 (7ea)5 (Mg, AL = 5(%ea)] < - OyVi + 19 Vé) q; (116)
1 - 1 o1 1 o i
= 5(7ea)5 (=9 JUL + 20995) = 5= (Yea) 305 + (Yea)ay¥s) = =5 (rea)§va (117)
Where the tracelessness of .4 has been used. Now, in similar fashion,
St = SEVhay = {81, ViYa; — ViSia; = (S, Vi) (118)
Then,
{0, Vit = (25P5JD 5] M5 + 85PJJ) g5 = 4656705 + 804.J1q (119)

= 45géiq§ + 86§6kpej"kaqi" = 4655%(1% + 85gekpejne"(qu)1 = 46561# + 495 (6Fejng™ — ekpéfqm) (120)

= 48567 q% + 405 (1™ — €;pq™) = 455} (121)

And
Ky = K°Viq: = [K¢, Vi]q; — V4K q: = [K°, Viq; (122)
= —i(¥*)gy S q; = 0 (123)

Applying these results to (114),

verys
1 ayapf
=70 ((a)gs
5y . v\, pi i aBys . acd 1 a, i Tk p L
W)V, — 3i ('Ya)ﬁfy X, |a™ + E‘E — (4i(Ya )y W (_5(7cd)3¢a)) + (Beyspr X (455%)
(124)
vty
1 a\af
= Z(’Y ) ((Va) gs (125)
W&’y V.. —3i X7 DL 3 aBys | s Wacd a1 6 XTk i
)Vpy Z(’Ya)m p |4 T 86 i(Va)vs (’)’cd)ﬁ¢a + beysp7 qy
veryg
1 ayaf
= Z(V ) ((’Ya)ﬁ& (126)
W&y . v\, pi 1 aByé acd a, i 30 ak 1
Wy = 3i(Va)g, Xp | @™ — 3¢ (Ya)vs WU (vea) 305 | — 3 Xq,
13
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Now, note the identity

(fya)o‘ﬁ('ya),ﬂ; = 26&,6/%)\6&)\76 = 2(5?(55 — 5,?(5?) (127)
B,
- Va ’(/)ﬁ
128
_l(éa(;ﬁ_(;a(gﬁ)wé‘vv Pi_GZ‘(Ja(;ﬁ_(;a(gﬁ)X’y pi_l afys (Ya) Wacd( )awi _% ok i (128)
T 9\ TB BYs py4q Y8 B9y )Apd 86 Ya)vs Yed)3Va 3 9k
af, b 1 afvyd acd a1 36 ak i
= T = — e () W)k | - T X (120)
Now, take the first term of (129),
1 )
=37 (a)3s W (ea) 505 (130)
Note that
1
Wacd _ _aﬁacdefgwefg (131)
and
1 K
Werg = g(esg)axW A (132)
Thus, the term (129) becomes
1 afyé 1 acdefg 1 KA a, i afyé acdefg KA a, i
ge (Va)vs 56 g(%fg)fc)\W ('ch)ﬁ"/’& = 3. 486 (Va)~s€ (Yefg)aW ('ch)ﬁ"‘/’& (133)
Now, note that
1
Ydef = _geabcdefP}/abc (134)
1 6!
— fadeef’Ydef _ _aeadeefeabcdef'Yabc _ _g,yabc (135)
Thus,
abe 1 abede f
1= e Vdef (136)
Using this in (133),
5! e .
= —mﬁaﬂws(%)w(ﬁ’aw)mw MVed)FUL (137)
Now, note that
(a)as(Y**)vs = —2€apre(17)5 + 2(10)as ()1 (138)
Thus, (137) becomes
5! )
= —méaﬁvé l = 263556 (Y75 + 2(7[6)76(7‘1])m] W (Yea) §005 (139)

Also, note
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(D5 (vea)§ = —8855 + 26505 (140)
And,
(YD (rea)§ = =(7)er (1) § = —1ea(Y)mrn (V') = Nea (26028 (7)™ = (7*)03) (141)
And, similarly,
(V) er(Yea)5 = Nda(2€xn8e(F*)° + (7")r205) (142)
Substituting this into (139)
= =T | ey 80305 + 25508) + (1) (~2eacrrsc (7 — (1)srd5)

8- 48
(143)

= (75 (Maa (268 (7)™ — (v*)xnd5)) | WL

There are also the relations

(v)r5(Fa)** = 2(8565 — 0565) (144)
And,
()6 (V) s = 26355 (145)

Using these two relations in (143)

5! '
— ——8 - 48604,3’)’5 [ — 267656(_86362 + 265\5%) + [_865)\Be(6»€y5? — 6;6";‘) _ 46755A5g]1 Wﬂkwg (146)

5! .
— __8 A8 [— 267&66(—860‘6766?5;3 + 260‘5755;(5%) =+ [_860“8"{566)\,35 (5;5? — 5;62‘) _ 4EQB’Y66755)\6§]‘| WHA'I/JZ; (147)
5! .
=58 [ — 2esge (8T 26791955) - [Bepae(P — ) 4eﬁﬁ"5emm1] WL (148)
16 - 5! .

= —mefyg,@eG)‘E’yéWK}\’l,/}g (149)

5! YOI KA, )0
= _ﬂe'y&ief W ¢a (150)

5! SAYETITRA )L
= _ﬂené’yee v W ’I/Ja (151)

5! ATAT KA, )2
= =Ry (152)
= —30W "yl (153)
Returning to (129),
: 36 o

= VOl = —30WYG — Xy (154)
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5 Conclusion

In this report, we have determined field content of the on-shell 6D hypermultiplet. We have also determined
most of the equations of motion for the multiplet fields. It remains to compute the d’Alembertian of q (Og).
Once this has been completed, compensating fields can be used and constraints applied to reduce the theory
to a Poincare supergravity theory. This work can then be corroborated with the work of Jessica Hutomo,
Gregory Gold, Saurish Khandelwal, William Kitchin and Gabriele Tartaglino Mazzucchelli, that should lead to

a publication sometime this year.
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7 Appendix

7.1 Notation and conventions

Then notations and conventions for this paper are taken from Butter [4].

The Lorentzian metric is 4, = diag(—1,1,1, 1,1, 1), the Levi-Civita tensor Eabedef ODEYS €012345 = —g012345 —
1, and the Levi-Civita tensor with world indices is given by £™"P4"¢ := sadeefeameb”ecpedqee’“efs.
The Pauli-type 4 x 4 matrices (v%),5 and (579)*” are antisymmetric and related by
~a\ & 1 * ~

(3 = 3 (105 (1) =, (155)
where %79 is the canonical antisymmetric symbol of su*(4). They obey
(1)as (1) + (1) 5 (397" = —20°%07

az o o (156)
G (1) 5, + (31) (1) g, = —20"65,
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The Grassmann coordinates ¢ and the parameters n’, of S-supersymmetry are both symplectic Majorana-
Weyl.
We define the antisymmetric products of two or three Pauli-type matrices as
1 T

Yab = Va Vo] = 3 (Yo — VVa) s Yab = FjaVe] = — (Vab) (157)

Yabe ‘= 'y[a;}’/b')/c]a Yabe = f’?[a'yb;yc]
Note that v45 and 7, are traceless, whereas vqpc and Jgp. are symmetric. Further antisymmetric products
obey
f 1 !

d ~ ~d
Yabe = _gsabcdef'y © ) Yabe = Esabcdef'y © y

1 . 1 -
Yabed = §5abcdef76f7 Yabed = _ieabcdeffyefa (158)

Yabede = Eabcdef'yfa ’?abcde = _gabcdef’?fy

Yabedef = —Eabedef s ﬁabcdef = Eabcdef -

Making use of the completeness relations

a ~ )
(V) e ()™ = 487,83,
(’Yab)a g (Vab)’y ’ = _860¢55'y'3 + 260/86757
(V%) g Glabe) ™" = 480(6765)°,

aB
abc) ('Yabc)‘wS =0,

(159)

(,_Yabc)

Vectors V' and antisymmetric matrices V,3 = —Vj, are related by

aB (’S’abc),ﬂ; = (Py

1
Vs 1= (1) Vo = Vi = 7 ()™ Vs, (160)

Antisymmetric rank-two tensors F,;, are related to traceless matrices F,” via

1 1
F,p = -1 ("), PFap, Fo®=04= Fu= 3 (Yav) g YFoP = —Fy,. (161)

7

Self-dual and anti-self-dual rank-three antisymmetric tensors T ; ~,

%Eabcdethgj}) _ :l:T(:I:)abc’ (]_62)

are related to symmetric matrices Ths and 7% via

|
Tape = Tﬁa <~ T(EZ_C) = g (ﬁ)/abc) ? Ta,ﬁ

a 1 ~abc af o (=) 1 *
T p = 5 ("}’ ) Tabc = Tﬁ — Tabc = g (’Yabc)aﬁT ’

1
Tap = 5; (v*)
ol o0 (163)
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7.2 Conformal superspace identities

These 6D identities are taken from Butter [5].

The Lorentz generators act on the superspace covariant derivatives V4 = (Va, V;) as

[Mab7 Mcd] = 277c[aMb]d - 2nd[aMb]c
[Mab’ VC] = 2nc[avb] (164)
1
k1 _ k k
[Mo?, V] = =00V5 + 100V,

where M,? = —}—1 ('y“b)a BMg,p. The SU(2)g and dilatation generators obey

I:Jlja Jkl] _ 5k(iJj)l + Sl(ijj)k’ I:JZJ’V];] _ 5k(iv£)7

‘ 1 (165)
[]D)a va] = vm []D)7 Vla] = §v1a
The Lorentz and SU(2)r generators act on the special conformal generators K4 = (K¢, S%) aS
1 y P
[May, K| = 206, Ky, [ME, S]] = 628) - 200k, [J9,87] = 50579 (166)
while the dilatation generator acts on K4 as
1
[DaKa] =-K*, [D’ S?] = _iszq (167)
Among themselves, the generators K4 obey the only nontrivial anti-commutation relation
{7,587} = —2i (0" K° (169
The algebra of K4 with V4 is given by
[Ka, Vb] :277ab]D) + 2Mab7
[Kaa Vla] =-—1i (Pya)aﬂ Sﬁia
{50,V } =20561D — 457 M" + 86577, (169)
oY s~ e 1 ~cd\® o 1 a
[S{, V] = —i(3)™" Vi + mecd (4" ,S57 = ZXi Ky
]- ~ [e3% ]' « C
+ [71 (be)® s X7 + 3 (Vo) g X ] K"

The anticommutator of two spinor derivatives, {fo, V%}, has the following non-zero torsion and curvatures

T,5 = 2ie” (v%) 055

«

R(M)J5" = die” (ya) g W,

3 . (170)
R(S)Ofgv =3¢ Ieaprs X OF,
. . 1
R(K)gﬁc =ie" (7a)a5 (ZnacY - vbVVabc + Waechef> .
18
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The non-zero torsion and curvatures in the commutator [Va, VJB} are:

1
@ 2
R(D)zﬁ Y (P)/a),gfy X,

jed . ¢le j s (A C 0 . cd\P j
R(M)) —ig! (’Yd])BVX” —1(fyad)75Xé7 +2i(Ya) g, (v d)éXZ'Y‘;,

T]gk =—35 (')’a)ﬁ(; Wév(;i’

R(J)jkl 2 (7a) 5, x (kY ,

af =
ik 1 : 3i Sik i .
R(S)ig»y = 1 (’Ya)ﬁs Y—;s]k + 20 (%)75 Yﬁ] ) (’Ya)ﬁa vawésp]k (171)
i 6p ~J i 9 €T _j
+ E (’7@)75 VBPW pE]k - g (’7{1)55 EHPT"/W W Ejka
R(K )35 =7 (1) gy Vo X = 5 Claca)s VXG4 2 () g5 (2ea), VX5
aBi 4 Ve By Va 4 Yacd ~6 B 3 Ya Bé Ved p ~
i . b1 e
) ('Ya)ﬂry (70)5,; W0 XP 12 (Va)gp (’YC)'ye WﬁY&Xgp
i . i )
ty (Va)p (Ye) e WX~ 2 (Ya)y, (V) se W’Y(;leipe'

The commutator of two vector derivatives, [V,, V}], has the following non-vanishing torsion and curvatures:

T, = (ab) B X5)

ROMYGE = Vit = 7 (o) (), Yoo (72)
R = & () ¥4 = ¥4
R(S)I;Im = % (%b)? V’YBXQ,B(S - % ('Vabc)aﬁ VCXZYM'B - ésvﬁep (’Yab)§ WaﬂXgéev
R(KYate =3 ¥atea + 5 XEVXE (a4 1 () (), X477 X (173)

L va
+ X * X giy0 (’Yab)f (Ye) as -

7.3 Gamma matrix identities

These gamma matrix relations are taken from Tartaglino-Mazzucchelli [6].

Some useful identities are

1 a a
fyab’YCd = _eggef’)ﬁf + 45{c 72% - 26[[6 63%

1 ) [a (Y] [a cb] (174)
a Y a e a a
()% (ea),, = 5 eaes (1), 7 4462 (+f) 7 = 28{203}08
Also,
ab\7 B _ 45[0 b\ B 25[a6b]5ﬁ
(v )a (Ybd)5 w \ V), b 94 %a
("), (wa), P =05 (75) .7 = b (Y a)o P+ 05 (vw™)o = 650500 + 65556, (175)
(") (Yeb)y = =4 (7)), * + 5655
next
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~ab\ % ~ ab\ & ]. a e o a « a o
(7)" 5 (Gea) 5 = (vea)y (1) = 5% caer (1) 5 + 43, (’yd]b]>ﬁ — 251%5%] 53
sab) ¥ 5 1 a ~ef\* a [~ @ a o
()" 3 Gea)" B = =5 eaes (7°7)" 5+ 402 (5) 5 — 20{203103 (176)

1
~abx _ ab ~e la~b] [a ¢b]
Y Yed = —55 cdef?Y F 4 45[ Ya) — 25[c5d]

c

There is a completeness relation

1
3 (™)ag (Ym)ys = €aprs (177)

Contraction with 7% implies the completeness relation

1, . o
3 (s (m)"" = 33,65 — 0300 (178)
and that
1 afyé ~ B 1 ~ \76
€77 (hm)as = ()™ = (Ymdap = 5€aps (Im) (179)
This gives
1 ~mmn\ o é 1 a 5o § sa
Z (7 ) B (7mn)-y = —55557 + 25[957 (180)
and
~abc\ B e a
(7)™ (ave), 5 = 24 (567 + 5507 (181)
and also
abc ~abc\ B [~ J
(’Y b )ag (’Yabc)wg =0 and ('Y b ) ('}/abc)’y =0 (182)
Note that in general
abede f —_ _6|6[a 5b C(Sd e 5f} = _gl e 6b c6d e(sf _ _6|6[a(5b c(sd e(sf]
€ 8a’b’c’d’e’f’ Ol b 00 0g/0¢ry £ *Ola Opr0cr0gr Ocr £ 0g70p10cr0qr0erOpr
M e = — B B 0000585, = —B oL, 08,8503,6% = —516L50, 5% 6%6)
€ gt armn = —2(41)01%, 8,06,0%, = —2(41)8t, 5},058%, = —2(41)3% 6,55 04) (153
€I o = —(31)20]0, 0,00, = —(31)200,, 4,05 = —(31)20% 6,00
€ g = —2(41)6L , B = —2(41)6, 5y = —2(41)5% )
Emnpqrtgmnpqrt = —6!
Other useful relations are
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a 1\ €0
(Ya)up (v b)7 ® = 2eapye ('Yb) + (v )aﬂ 53

(edas (7)1 = ~22ane (), +2(4) (+7) |

(’Yabc)aﬁ (Pch),y 0 =-8 (’Ya)'y(a 5?3)
1

- aB/ a afal g N a (B8 |y aB
() (1°0),* = 567 (2eape () + (1) o 85) = 400 (1) + (5%)" o

" 5 = 3o (<t O 2 () () ) =0 592 () ().

and also

1

2 o G077 (),° = 3005 (), ° = 5386 (47), " = 81 (57, * = 83 (29,

abe\ 79 be
(o (3°)"" = 480 (4") ¥

and also

(7)., % (rab) o ¥ = 25285, — 8567,
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