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1 Prelude

1.1 Abstract

In this report we construct a multiplet of 6 spacetime dimensional fields that are invariant (close) under local

transformations generated by the superconformal algebra. This multiplet is referred to in literature as a Weyl

multiplet. By using the superspace formalism, we construct this full set of fields, and determine their

equations of motion which are imposed by the constraints of the algebra. This is the first step of the

superconformal method to find the 6D Hyper-Dilaton-Weyl multiplet, analogous to the 4D construction by

Kitchin [1], which can then be used to create a 6D Poincare supergravity theory.

1.2 Statement of Authorship

The computations provided in this paper are my own. All gamma matrix identities and relations used in these

computations are appropriately referenced in the Appendix. The 6D superconformal algebra is well-known, and

it’s structure is given in the Appendix and used throughout.

2 Introduction

Supersymmetry, or the unification of bosons and fermions, is widely considered to be part of the resolution

to the issues between the Standard Model of Particle Physics, and General Relativity (GR). Currently, these

theories must be incomplete, as naive quantisation of GR yields a non-renormalisable theory of gravity. These

non-renormalisable theories have divergent integrals in the description of the theory, which cannot be recitfied by

usual renormalisation techniques such as the energy dependent rescaling of ”constants”. Furthermore, neither

theory has an explanation for the dark matter which is believed to make up about 85% of the matter in the

universe, nor can provide a prediction for the value of the cosmological constant which determines the rate

of expansion of the universe. When supersymmetry is realised in a theory as a local symmetry, gravity is

automatically incorporated due to the components in the connection term of the covariant derivative. Such

theories are called ”supergravity” (SUGRA) theories.

Field theories defined on Minkowski spacetimes (that treat space and time as oppositely-signed metric

components) are in agreement with Special Relativity if they possess invariance under the Poincare group. This

is the group of rotations, translations, and the so called ”boosts” which are generalised changes in velocity.

If a field theory is invariant under the group, this means that the laws of physics are unchanged under the

transformations of the group. This is what should be expected from a valid physical theory, as a fundamental

axiom of physics is that the laws of physics are the same regardless of your coordinates or your velocity. The

Poincare group can be described in terms of the Poincare algebra, given by the following Lie brackets:

[Pµ, P ν ] = 0, (1)
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[Mµν , Pσ] = i(Pµgνσ − P νgµσ), (2)

and

(3)[Mµν ,Mρσ]

= i (Mµσgνρ +Mνρgµσ −Mµρgνσ −Mνσgµρ) ,

where P is the generator of translations, g is the metric, andM is the generator of rotations and Lorentz boosts.

Examining the symmetries of a theory often yields interesting information about the physics of the theory. In

particular in physics, we are interested in primarily continuous symmetries of Lie Groups. As an example,

continuous symmetries give rise to conserved quantities by Noether’s theorem. In order to discover new physics,

one pathway is to examine the theory to determine if there are additional symmetries. Alternatively, one can

extend the underlying symmetry group, and see if there is a corresponding physical theory. Naturally, one

question arises: ”how can one extend a symmetry group, or algebra, and have a physically realisable theory?”.

According to the Coleman Mandula Theorem, the Poincare algebra is the largest Lie algebra that corresponds

to a physically realisable theory, up to the addition of arbitrarily many generators that commute with the entire

algebra (for example, in the Standard Model, this ”internal” symmetry group is SU(3)⊗SU(2)⊗U(1), which is

enough to unify 3 out of 4 fundamental forces). Thus, there is no non-trivial way of extending the Poincare Lie

algebra. Instead, however, one can generalise the Lie algebra to a graded Lie algebra, in this case a (Z2-graded)

”super” Lie algebra. This bypasses the Coleman Mandula Theorem, and, in fact, is the only way of doing so

(by the Haag, Lopuszanski-Sohnius Theorem). One can then extend the superalgebra non-trivially by adding

anticommuting ”fermionic” elements to the algebra. These fermionic generators are known as the supercharges,

denoted by Q. These elements are spinorial in nature, and are often denoted Qα and Qα̇, where α is the spinor

index.

In the simplest case, there is one such pair of generators. This is the case that we will focus on in this

project (N = 1). When these generators act on bosonic states, they are transformed into fermions, and vice

versa. This yields the supersymmetric extension of the Poincaré algebra, with additional relations

[Qα,M
µν ] = (σµν)α

βQβ , (4)

[
Q̄α̇,Mµν

]
= (σ̄µν)

α̇
β̇Q̄

β̇ , (5)

[Qα, P
µ] =

[
Q̄α̇, Pµ

]
= {Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (6)

and {
Qα, Q̄β̇

}
= 2 (σµ)αβ̇ Pµ, (7)

where σµ is the 4-vector of Pauli matrices, and σµν are the spin generators of the Lorentz group.

This yields the unification of bosons (force-carrying particles) and fermions (matter particles) via adding a

”supersymmetric partner” particle of opposite type for each particle in the standard model. Again, when the

fields of a theory are invariant under local transformations involving these generators, gravity is automatically
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incorporated in the theory via the connection. Supergravity theories are thus an exciting avenue for research,

as they unify the fundamental particles of the standard model with gravity.

In order to study a theory of supergravity, a set of fields must be constructed that are closed ”off-shell”.

This refers to a closed set of fields that transform into one another under the algebra, with the need to apply

the equations of motion of the fields as additional constraints (”on-shell”). Constructing an off-shell multiplet

of fields is far more powerful than constructing an on-shell set, as an off-shell multiplet is independent of the

particular model used (for example, if a particle is massless or massive).

To then determine the physics of the theory, fields can then be used to build an action, the mechanics

principle of least action can be applied to determine the dynamics of the theory. However, building these

actions are in practice quite difficult. One way of constructing these actions in a model independent manner

is to use the superconformal method. In essence, the Poincare superalgebra is extended to the superconformal

algebra by adding unphysical symmetries that violate the Coleman Mandula theorem. A theory can then be

constructed, and the unphysical symmetries can be removed via gauge fixing, thus yielding a physical theory.

The superconformal algebra extends the Poincare super algebra by adding the generators D for dilations, Ka

for the special conformal transformations, Y for chiral transformations, Jj
i for the so-called ”R-symmetry”, and

Si
α for special superconformal transformations. The full algebra structure is given in the Appendix. Each of

these generators has a corresponding connection, which gives the field content of the theory. These fields must

contain the same number of fermionic and bosonic degrees of freedom due to supersymmetry. This is often

not the case, and thus must be coupled to additional fields. Such representations of conformal supergravity

are known as Weyl multiplets. A superconformally invariant action can then be constructed. However, the

theory remains unphysical. In order to reduce to Poincare supergravity, one must introduce one or more matter

multiplets, known as compensating multiplets. This eliminates the extra unphysical degrees of freedom after

imposing some constraints. The result is an action invariant under Poincare supergravity, containing the gauge

fields coupled to the remaining matter fields.

In the 1980’s, Muller [2] constructed two (minimal) sets of fields which close under 4D N = 2 supergravity

transformations. These two irreducible representation are dubbed the vector and hyper Muller multiplets,

named after their field content. In order to construct an action for these Muller multiplets, it is far easier to

start with a Weyl multiplet that reduces to a Muller multiplet under the superconformal method. In 2017,

Butter et al [3] did this for the vector Muller multiplet, by developing the so-called 4D dilaton Weyl multiplet.

In 2021, Kitchin [1] recovered the Muller hypermultiplet by coupling the standard Weyl multiplet to an on-shell

hypermultiplet, yielding the 4D hyper-dilaton Weyl multiplet.

The paper will set out the groundwork for creating the analogous hyper-dilaton Weyl multiplet for the 6D

case. To construct their respective multiplets, both authors used the conformal superspace formalism. In this

formalism, the usually spacetime coordinates are extended by the addition of spinorial Grassman coordinates.

For example, in 6D, coordinates are given by

zM = (xm, θµi ), (8)
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where there are 6 regular spacetime coordinates (m = 0, 1, ..., 5), and 4 (2-component) fermionic coordinates

(µ = 1, ..., 4 and i = 1, 2). Instead of using fields written in terms of spacetime coordinates, superfields are used

written in terms of superspace coordinates. This effectively allows multiple fields to be combined (as Taylor

series coefficients) as a single superfield, and makes transformation laws simpler. For example, supersymmetry

translations are simply translations in superspace. In conformal superspace, the conformal generators and

connections are written in terms of superspace coordinates.

In this project, we take the first steps in recovering the 6D analogue of the Muller hypermultiplet. More

specifically, we build the superconformal on-shell hypermultiplet analogously to Kitchin [1], starting with the

superfield

qīi =

q̄i
qi

 (9)

This multiplet is the supersymmetric extension of the electron. We apply the constraints given by the 6D

algebra to determine the field content of the multiplet. We then begin the construction of the equations of

motion of the multiplet fields. This lays the groundwork for the reduction to a Poincare supergravity theory in

6D.

6D N = 1 theories are of interest due to their similarity of field content to the 4D N = 2 theories worked on

by Butter and Kitchin. 6D supergravity models (with two small space dimensions) have in fact been used in the

past to search for phenomenological extensions of GR and the standard model. In a string theory context, there

are proposals to study the entropy of Black Holes [4]. This task is highly simplified for largely supersymmetric

systems. Supersymmetric black holes in string theory work great as a toy model to understand the quantum

behaviour of black holes. Macroscopic black hole entropy arises naturally from supergravity theories. These

are very challenging to be constructed, and our techniques might be used in this direction. From a pure

mathematical point of view, it is also an interesting representation theory problem to classify the representation

of local superconformal and Poincare superalgebras.

3 Actions of the Algebra on Superfield q

3.1 Basic Constraints

We begin by imposing the constraints (hypermultiplet)

∇(i
αq

j)k = 0, (10)

and the superconformally primary constraint

Sα
i q

jk = 0 (11)

Kaqij = 0 (12)

Together, these two constraints imply that

{Sα
i ,∇

(j
β }qk)r = 0 (13)
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Further, qij is a Lorentz scalar, and thus

Mαβq
ij = 0. (14)

3.2 Action of J on Superfield q

Then, the action of J lp on qkr can be found. Indeed, beginning with the commutation relation

[Jij ,∇k
α]q

nm = −δk(i∇αj)q
nm (15)

Then,

[J lp,∇k
α]q

nm = −ϵliϵpjδk(i∇αj)q
nm (16)

Expanding out the permuation of indices

= −1

2
ϵliϵpj(δki ∇αj + δkj∇αi)q

nm (17)

= −1

2
(ϵlkϵpj∇αj + ϵliϵpk∇αi)q

nm (18)

= −1

2
(ϵlk∇p

α + ϵpk∇l
α)q

nm (19)

= (ϵk(l∇p)
α )qnm. (20)

Thus,

J lp∇k
αq

nm −∇k
αJ

lpqnm = (ϵk(l∇p)
α )qnm (21)

Note that from (10), one has

∇k
αq

nm = −∇n
αq

km (22)

Furthermore, this antisymmetry in indices means

∇k
αq

nm = −1

2
ϵkn∇r

αq
m
r (23)

Thus, (21) becomes

−1

2
ϵknJ lp∇r

αq
m
r −∇k

αJ
lpqnm = (ϵk(l∇p)

α )qnm (24)

=
1

2
(ϵkl∇p

αq
nm + ϵkp∇l

αq
nm) = −1

2
(ϵkl∇n

αq
pm + ϵkp∇n

αq
lm = −∇n

αϵ
k(lqp)m (25)

=⇒ −1

2
ϵknJ lp∇r

αq
m
r −∇k

αJ
lpqnm = −∇n

αϵ
k(lqp)m (26)

Now, setting k = n, this reduces to

−∇n
αJ

lpqnm = −∇n
αϵ

n(lqp)m. (27)

This implies

J lpqnm = ϵn(lqp)m (28)
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3.3 Computing the Dilaton Weight of q

Now, we aim to compute the dilaton weight,

Dqij = λqq
ij (29)

To do so, note that in the algebra, it is known that

{Sα
i ,∇

j
β} = 2δαβ δ

i
jD− 4δjiM

α
β + 8δαβJ

j
i (30)

Then, from (13), one has

(2δαβ δ
i
(jD− 4δ

(j
i M

α
β + 8δαβJ

(j
i )qk)h = 0 (31)

=⇒ (2δαβ δ
i
(jD+ 8δαβJ

(j
i )qk)h = 0 (32)

by the Lorentz scalar property of qii.

Expanding:

=⇒ δαβ (2δ
i
(jλqq

k)h + 8J
(j
i q

k)h) = 0 (33)

=⇒ δαβ ((δ
i
jλqq

kh + δikλqq
jh) + 4(Jj

i q
kh + Jk

i q
jh)) = 0 (34)

=⇒ δαβ ((δ
i
jλqq

kh + δikλqq
jh) + 4ϵim(Jmjqkh + Jmkqjh)) = 0 (35)

Applying (28),

=⇒ δαβ ((δ
i
jλqq

kh + δikλqq
jh) + 4ϵim(ϵk(mqj)h + ϵj(mqk)h)) = 0 (36)

Expanding permuation of indices

=⇒ δαβ ((δ
i
jλqq

kh + δikλqq
jh) + 2ϵim((ϵkmqjh + ϵkjqmh) + (ϵjmqkh + ϵjkqmh))) = 0 (37)

=⇒ δαβ ((δ
i
jλqq

kh + δikλqq
jh) + 2((−δikqjh + ϵkjqmh) + (−δji q

kh + ϵjkqmh))) = 0 (38)

=⇒ δαβ ((δ
i
jλqq

kh + δikλqq
jh) + 2((−δikqjh − δji q

kh)) = 0 (39)

=⇒ (λq − 2)δαβ ((δ
i
jq

kh + δikq
jh) = 0 (40)

This implies that

λq = 2 (41)

And thus,

Dqij = 2qij . (42)
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4 Constructing the Multiplet

4.1 First Spinorial Derivative of q

We will now compute the repeated action of the derivative ∇i
α on qjj . Firstly, note that

∇i
αq

jj = ∇(i
αq

j)j +∇[i
αq

j]j (43)

From (10),

∇i
αq

jj = ∇[i
αq

j]j (44)

Note that for a tensor M , M[ab] =
1
2!δ

cd
abMcd = − 1

2ϵabϵ
cdMcd. Thus,

∇i
αq

jj = −1

2
ϵijϵnm∇n

αq
mj (45)

=⇒ ∇i
αq

jj = −1

2
ϵij∇n

αq
j
n (46)

Then, defining the field ψα = ∇n
αq

j
n,

∇i
αq

jj = −1

2
ϵijψα (47)

4.2 Second Spinorial Derivative of q

Now, we aim to compute the 2nd spinorial derivative of q.

Note that

∇i
α∇

j
βq

kr =
1

2
[∇i

α,∇
j
β ]q

kr +
1

2
{∇i

α,∇
j
β}q

kr (48)

Then considering the first term of (48)

1

2
[∇i

α,∇
j
β ]q

kr =
1

2
(∇i

α∇
j
β −∇j

β∇
i
α)q

kr (49)

=
1

2
(∇i

α∇
j
β −∇j

β∇
i
α +∇j

α∇i
β −∇j

α∇i
β)q

kr (50)

= (∇[i
α∇

j]
β +∇j

[α∇
i
β])q

kr (51)

= (∇[i
(α∇

j]
β) +∇[i

[α∇
j]
β] +∇(j

[α∇
i)
β] +∇[j

[α∇
i]
β])q

kr (52)

= (∇[i
(α∇

j]
β) +∇(j

[α∇
i)
β])q

kr (53)

Considering the second term of (53)

∇(i
[α∇

j)
β]q

kr = −1

2
∇(i

[αϵ
j)kψ

r
β] =

1

2
ϵk(i∇j)

[αψ
r
β] =

1

2
ϵk(i∇j)

[α∇
p
β]q

r
p (54)

=
1

2
ϵk(i

(
{∇j)

[α,∇
p
β]} − ∇p

[β∇
j)
α]

)
qrp =

1

2
ϵk(i

(
{∇j)

[α,∇
p
β]}+∇p

[α∇
j)
β]

)
qrp (55)
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=
1

2
ϵk(i

(
{∇j)

[α,∇
p
β]}q

r
p + ϵps∇p

[α∇
j)
β]q

sr

)
=

1

2
ϵk(i

(
{∇j)

[α,∇
p
β]}q

r
p −

1

2
ϵpsϵ

j)s∇p
[αψ

r
β]

)
(56)

=
1

2
ϵk(i

(
{∇j)

[α,∇
p
β]}q

r
p +

1

2
δpj)∇p

[αψ
r
β]

)
=

1

2
ϵk(i

(
{∇j)

[α,∇
p
β]}q

r
p +

1

2
∇j)

[αψ
r
β]

)
(57)

Thus,

1

2
ϵk(i∇j)

[αψ
r
β] =

1

2
ϵk(i

(
{∇j)

[α,∇
p
β]}q

r
p +

1

2
∇j)

[αψ
r
β]

)
(58)

So

∇(j
[α∇

i)
β]q

kr =
1

2
ϵk(i∇j)

[αψ
r
β] = ϵk(i{∇j)

[α,∇
p
β]}q

r
p (59)

Substituting back into (53),

(∇[i
(α∇

j]
β))q

kr + ϵk(i{∇j)
[α,∇

p
β]}q

r
p (60)

= (−1

2
ϵijϵst∇s

(α∇
t
β))q

kr + ϵk(i{∇j)
[α,∇

p
β]}q

r
p (61)

= (−1

2
ϵij∇s

(α∇β)s)q
kr + ϵk(i{∇j)

[α,∇
p
β]}q

r
p (62)

We define ∇αβ = ∇s
(α∇β)s. Now, determine the action of ∇αβ on qjk.

∇αβq
jk = ∇s

(α∇β)sq
jk = −∇s(α∇s

β)q
jk =

1

2
ϵsi∇s(αψβ) = −1

2
∇i

(αψβ) (63)

Now, note that

∇i
(αψβ) = ∇i

(α∇
s
β)q

j
s =

1

2
(∇i

α∇s
β +∇i

β∇s
α)q

j
s (64)

=
1

2
({∇i

α,∇s
β} − ∇s

β∇i
α + {∇i

β∇s
α} − ∇s

α∇i
β)q

j
s (65)

= ({∇i
(α,∇

s
β)} − ∇s

(β∇
i
α))q

j
s (66)

= ({∇i
(α,∇

s
β)} − ∇s

(β∇
i
α))q

j
s (67)

By definition, this is

= {∇i
(α,∇

s
β)}q

j
s +∇s

(β

1

2
ϵinϵsnψα) (68)

= {∇i
(α,∇

s
β)}q

j
s −

1

2
δsi∇s

(βψα) (69)

= {∇i
(α,∇

s
β)}q

j
s −

1

2
∇i

(αψβ) (70)
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Thus,

∇i
(αψβ) =

2

3
{∇i

(α,∇
s
β)}qs (71)

So, from (64),

∇αβq
ik = −1

3
{∇i

(α,∇
s
β)}q

k
s (72)

This gives the expression

1

2
[∇i

α,∇
j
β ]q

kr = (−1

2
ϵij(−1

3
{∇k

(α,∇
s
β)}q

r
s) + ϵk(i{∇j)

[α,∇
p
β]}q

r
p)) (73)

Thus, from (48),

∇i
α∇

j
βq

kr =
1

2

(
ϵij

1

3
{∇k

(α,∇
s
β)}q

r
s + ϵαβϵ

k(j{∇i)δ,∇s
δ}qrs

)
+

1

2
{∇i

α,∇
j
β}q

kr (74)

Writing in terms of ψα,

ϵjk∇i
αψ

r
β = −

(1
3
ϵij{∇k

(α,∇
s
β)}q

r
s + 2ϵk(i{∇j)

[α,∇
p
β]}q

r
p

)
− {∇i

α,∇
j
β}q

kr (75)

ϵkjϵ
jk∇i

αψ
r
β = −

(1
3
ϵkjϵ

ij{∇k
(α,∇

s
β)}q

r
s − ϵjk2ϵ

k(i{∇j)
[α,∇

p
β]}q

r
p

)
− ϵkj{∇i

α,∇
j
β}q

kr (76)

2∇i
αψ

r
β = −

(
− 1

3
δki {∇k

(α,∇
s
β)}q

r
s −

(
ϵjkϵ

ki{∇j
[α,∇

p
β]}+ ϵjkϵ

kj{∇i
[α,∇

p
β]}

)
qrp

)
− {∇i

α,∇βk}qkr (77)

2∇i
αψ

r
β = −

(
− 1

3
δki {∇k

(α,∇
s
β)}q

r
s −

(
δij{∇j

[α,∇
p
β]}+ 2{∇i

[α,∇
p
β]}

)
qrp

)
− {∇i

α,∇βk}qkr (78)

∇i
αψ

r
β =

1

2

(
−
(
− 1

3
{∇i

(α,∇
s
β)}q

r
s − 3{∇i

[α,∇
p
β]}q

r
p

)
− {∇i

α,∇βk}qkr
)

(79)

And thus

∇i
αψ

r
β =

1

6
{∇i

(α,∇
s
β)}q

r
s +

3

2
{∇i

[α,∇
p
β]}q

r
p −

1

2
{∇i

α,∇βk}qkr (80)

Note that the algebra of covariant derivatives is known to be

(81)
{∇i

α,∇
j
β} = −(2iϵij(γc)αβ∇c)−

1

2
(4iϵij(γa)αβ

W acdMcd)− (−3

2
ϵijϵαβγδX

δkSγ
k )

− (iϵij(γa)αβ(
1

4
ηacY −∇bWabc +W ef

a Wcef )K
c)

It is thus clear that due to antisymmetry of the Levi-Civita symbol that

{∇(i
α ,∇

j)
β } = 0 (82)

Furthermore, (γc)αβ is antisymmetric, and thus

{∇i
(α,∇

j
β)} = 0 (83)

And

{∇i
[α,∇

j
β]} = {∇i

α,∇
j
β} (84)
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Thus, the derivative (80) becomes

∇i
αψ

r
β =

3

2
{∇i

α,∇
p
β}q

r
p −

1

2
{∇i

α,∇βp}qpr (85)

=
3

2
{∇i

α,∇
p
β}q

r
p +

1

2
{∇i

α,∇
p
β}q

r
p (86)

= 2{∇i
α,∇

p
β}q

r
p (87)

Appyling this anticommutator to q, and using the fact that q is superconformally primary (11) (12), and a

Lorentz scalar (14), one sees that

∇i
αψ

r
β = −2

(
(2iϵis(γc)αβ∇c)

)
qrs (88)

=⇒ ∇i
αψ

r
β = −4i(γc)αβ∇cq

ir = −4i∇αβq
ir (89)

4.3 Derivative of ψ

Now, we aim to compute the double spinor index derivative of ψ.

∇αβψ
i
β =

1

2
ϵαβγδ∇γδψ

i
β (90)

Now, recall the algebra of covariant derivatives is given by

(91)
{∇i

α,∇
p
β} = −(2iϵip(γa)αβ∇a)−

1

2
(4iϵip(γa)αβ

W acdMcd)− (−3

2
ϵipϵαβγδX

δkSγ
k )

− (iϵip(γa)αβ(
1

4
ηacY −∇bWabc +W ef

a Wcef )K
c)

(92)

=⇒ (γa)αβ∇a

=
i

4
ϵpi

(
− {∇i

α,∇
p
β} −

1

2
(4iϵip(γa)αβ

W acdMcd)

+ (
3

2
ϵipϵαβγδX

δkSγ
k )− (iϵip(γa)αβ(

1

4
ηacY −∇bWabc +W ef

a Wcef )K
c)

)

Thus,

(93)

∇αβψ
i
β =

1

2
ϵαβγδ∇γδψ

i
β

=
1

2
ϵαβγδ(γa)γδ∇aψ

i
β

=
i

8
ϵαβγδ

(
− {∇γp,∇p

δ}+ (4i(γa)γδ
W acdMcd)− (3ϵγδρτX

τkSρ
k)

+ (2i(γa)γδ(
1

4
ηacY −∇bWabc +W ef

a Wcef )K
c)

)
ψ
i
β

10



Now, expanding the first term of (93),

− i

8
ϵαβγδ{∇γp,∇p

δ}ψ
i
β = − i

8
ϵαβγδ(∇γp∇p

δ +∇p
δ∇γp)ψ

i
β (94)

From (89)

= − i

8
ϵαβγδ(∇γp(−4i∇δβ)q

pi + ϵpk∇p
δ(−4i∇γβ)q

ki) (95)

= − i

8
ϵαβγδ(∇γp(−4i∇δβ)q

pi −∇δp(−4i∇γβ)q
pi) (96)

= − i

8
(ϵαγδβ∇γp(−4i∇δβ)q

pi + ϵαδγβ∇δp(−4i∇γβ)q
pi) (97)

= − i

8
(∇γp(−4i∇αγ)qpi +∇δp(−4i∇αδ)qpi) (98)

= − i

4
(∇βp(−4i∇αβ)qpi) (99)

= −([∇βp,∇αβ ] +∇αβ∇βp)q
pi) (100)

= −([∇βp,∇αβ ]qpi +∇αβψ
i
β) (101)

Now, the commutator in the first term of (101) is given by

[∇βp,∇αβ ] = −(γa)αβϵpj [∇a,∇j
β ] (102)

(103)

= −(γa)αβϵpj

(
− (−1

2
(γa)βδ

W δγδjk)∇
k
γ − (− i

2
(γa)βγ

Xγj)D− 1

2
(R(M)jcdaβ

)Mcd − (2i (γa)βγ X
γ(kεl)j)Jkl − (R(S)jkαβγ)S

γ
k − (R(K)jαβc)K

c

)
Thus,

[∇βp,∇αβ ]qpi = (γa)αβϵpj

(
(−1

2
(γa)βδW

δγδjk)∇
k
γ + (− i

2
(γa)βγ X

γj)D+ (2i (γa)βγ X
γ(kεl)j)Jkl

)
qpi (104)

= (γa)αβ

(
ϵpj(−

1

2
(γa)βδW

δγδjk)∇
k
γq

pi − ϵpji (γa)βγ X
γjqpi + ϵpj2i (γa)βγ X

γ(kεl)jϵknϵmlϵ
p(nqm)i

)
(105)

Consider the last term of (105),

(106)

ϵpj2i (γa)βγ X
γ(kεl)jϵknϵmlϵ

p(nqm)i

= ϵpj
1

2
i (γa)βγ (X

γkϵljϵknϵmlϵ
pnqmi +Xγkϵljϵknϵmlϵ

pmqni

+Xγlϵkjϵknϵmlϵ
pnqmi +Xγlϵkjϵknϵmlϵ

pmqni)

11



(107)=
1

2
i (γa)βγ (X

γkϵljϵpjδ
p
kϵmlq

mi +Xγkϵjlϵpjϵknϵmlϵ
pmqni +Xγlδnj ϵpjϵmlϵ

pnqmi +Xγlδjnϵpjϵmlϵ
pmqni)

(108)=
1

2
i (γa)βγ (X

γkδkl ϵmlq
mi +Xγkδlpϵknδ

l
pq

ni − 2Xγlϵmlq
mi +Xγlϵnlq

ni)

(109)=
1

2
i (γa)βγ (−X

γ
mq

mi +Xγ
nq

ni + 2Xγ
mq

mi −Xγ
nq

ni)

(110)=
i

2
(γa)βγ X

γkqki

Substituting into (105),

= (γa)αβ

(
ϵpj(−

1

2
(γa)βδW

δγδjk)∇
k
γq

pi + i (γa)βγ X
γ
p q

pi +
i

2
(γa)βγ X

γ
p q

pi

)
(111)

= (γa)αβ

(
ϵpj(−

1

2
(γa)βδW

δγδjk)∇
k
γq

pi +
3i

2
(γa)βγ X

γ
p q

pi

)
(112)

Using this result in (93),

(113)

∇αβψ
i
β

= (γa)αβ

(
(
1

2
(γa)βδ

W δγ)∇pγq
pi − 3i

2
(γa)βγ X

γ
p q

pi

)
−∇αβψ

i
β +

i

8
ϵαβγδ

(
− (4i(γa)γδ

W acdMcd)

+ (3ϵγδρτX
τkSρ

k)− (2i(γa)γδ(
1

4
ηacY −∇bWabc +W ef

a Wcef )K
c)

)
ψ
i
β

(114)

∇αβψ
i
β

=
1

4
(γa)αβ

(
((γa)βδ

W δγ)∇pγ − 3i (γa)βγ X
γ
p

)
qpi +

i

16
ϵαβγδ

(
− (4i(γa)γδ

W acdMcd)

+ (3ϵγδρτX
τkSρ

k)− (2i(γa)γδ(
1

4
ηacY −∇bWabc +W ef

a Wcef )K
c)

)
ψ
i
β

Now, the action of each of the generators on ψ must be computed.

Firstly, note that

Mcdψ
i
β =Mcd∇j

βq
i
j = [Mcd,∇j

β ]q
i
j +∇j

βMcdq
i
j = [Mcd,∇j

β ]q
i
j (115)
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=
1

2
(γcd)

α
γ [M

γ
α ,∇

j
β ]q

i
j =

1

2
(γcd)

α
γ

(
− δγβ∇

j
α +

1

4
δαγ∇

j
β

)
q
i
j (116)

=
1

2
(γcd)

α
γ (−δ

γ
βψ

i
α +

1

4
δαγψ

i
β) =

1

2
(−(γcd)

α
βψ

i
α + (γcd)

α
α

1

4
ψ
i
β) = −1

2
(γcd)

α
βψ

i
α (117)

Where the tracelessness of γcd has been used. Now, in similar fashion,

Sρ
kψ

i
β = Sρ

k∇
j
βq

i
j = {Sρ

k ,∇
j
β}q

i
j −∇j

βS
ρ
kq

i
j = {Sρ

k ,∇
j
β}q

i
j (118)

Then,

{Sρ
k ,∇

j
β}q

i
j =

(
2δρβδ

j
kD− 4δjkM

ρ
β + 8δρβJ

j
k

)
q
i
j = 4δρβδ

j
kq

i
j + 8δρβJ

j
kq

i
j (119)

= 4δρβδ
j
kq

i
j + 8δρβϵkpϵjnJ

pkqin = 4δρβδ
j
kq

i
j + 8δρβϵkpϵjnϵ

n(pqk)i = 4δρβδ
j
kq

i
j + 4δρβ(δ

k
nϵjnq

ki − ϵkpδ
k
j q

pi) (120)

= 4δρβδ
j
kq

i
j + 4δρβ(ϵjkq

ki − ϵjpq
pi) = 4δρβq

i
k (121)

And

Kcψ
i
β = Kc∇j

βq
i
j = [Kc,∇j

β ]q
i
j −∇j

βK
cq

i
j = [Kc,∇j

β ]q
i
j (122)

= −i(γc)βγSγkq
i
j = 0 (123)

Applying these results to (114),

∇αβψ
i
β

=
1

4
(γa)αβ

(
((γa)βδ

W δγ)∇pγ − 3i (γa)βγ X
γ
p

)
qpi +

i

16
ϵαβγδ

(
− (4i(γa)γδ

W acd(−1

2
(γcd)

α
βψ

i
α)) + (3ϵγδρτX

τk(4δρβq
i
k)

)
(124)

(125)

∇αβψ
i
β

=
1

4
(γa)αβ

(
((γa)βδ

W δγ)∇pγ − 3i (γa)βγ X
γ
p

)
qpi +

i

8
ϵαβγδ

(
i(γa)γδ

W acd(γcd)
α
βψ

i
α + 6ϵγδβτX

τkq
i
k

)

(126)

∇αβψ
i
β

=
1

4
(γa)αβ

(
((γa)βδ

W δγ)∇pγ − 3i (γa)βγ X
γ
p

)
qpi − 1

8
ϵαβγδ

(
(γa)γδ

W acd(γcd)
α
βψ

i
α

)
− 36

8

(
Xαkq

i
k

)
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Now, note the identity

(γa)αβ(γa)γδ = 2ϵαβκλϵκλγδ = 2(δαδ δ
β
γ − δαγ δ

β
δ ) (127)

(128)

=⇒ ∇αβψ
i
β

=
1

2
(δαδ δ

β
β − δαβ δ

β
δ )W

δγ∇pγq
pi− 6i(δαγ δ

β
β − δαβ δβγ )Xγ

p q
pi− 1

8
ϵαβγδ

(
(γa)γδ

W acd(γcd)
α
βψ

i
α

)
− 36

8

(
Xαkq

i
k

)

=⇒ ∇αβψ
i
β = −1

8
ϵαβγδ

(
(γa)γδ

W acd(γcd)
α
βψ

i
α

)
− 36

8

(
Xαkq

i
k

)
(129)

Now, take the first term of (129),

−1

8
ϵαβγδ(γa)γδ

W acd(γcd)
α
βψ

i
α (130)

Note that

W acd = − 1

3!
ϵacdefgWefg (131)

and

Wefg =
1

8
(γefg)κλW

κλ (132)

Thus, the term (129) becomes

1

8
ϵαβγδ(γa)γδ

1

3!
ϵacdefg

1

8
(γefg)κλW

κλ(γcd)
α
βψ

i
α =

1

8 · 48
ϵαβγδ(γa)γδ

ϵacdefg(γefg)κλW
κλ(γcd)

α
βψ

i
α (133)

Now, note that

γdef = − 1

3!
ϵabcdefγ

abc (134)

=⇒ ϵabcdefγdef = − 1

3!
ϵabcdef ϵabcdefγ

abc = −6!

3!
γabc (135)

Thus,

γabc = − 1

5!
ϵabcdefγdef (136)

Using this in (133),

=⇒ − 5!

8 · 48
ϵαβγδ(γa)γδ

(γacd)κλW
κλ(γcd)

α
βψ

i
α (137)

Now, note that

(γa)αβ(γ
abc)γδ = −2ϵαβγϵ(γ

bc)ϵδ + 2(γ[b)αβ(γ
c])γδ (138)

Thus, (137) becomes

=⇒ − 5!

8 · 48
ϵαβγδ

[
− 2ϵγδκϵ(γ

cd)ϵλ + 2(γ[c)γδ(γ
d])κλ

]
Wκλ(γcd)

α
βψ

i
α (139)

Also, note

14



(γcd)ϵλ(γcd)
α
β = −8δαλ δ

ϵ
β + 2δϵλδ

α
β (140)

And,

(γd)κλ(γcd)
α
β = −(γd)κλ(γdc)

α
β = −ηca(γd)κλ(γda)αβ = ηca(−2ϵκλβϵ(γ̃

a)ϵα − (γa)δκλ
α
β) (141)

And, similarly,

(γc)κλ(γcd)
α
β = ηda(2ϵκλβϵ(γ̃

a)ϵα + (γa)κλδ
α
β ) (142)

Substituting this into (139)

(143)

=⇒ − 5!

8 · 48
ϵαβγδ

[
− 2ϵγδκϵ(−8δαλ δ

ϵ
β + 2δϵλδ

α
β ) + (γc)γδ(−2ηcaϵκλβϵ(γ̃

a)ϵα − (γa)κλδ
α
β )

− (γd)γδ(ηda(2ϵκλβϵ(γ̃
a)ϵα − (γa)κλδ

α
β ))

]
Wκλψi

α

There are also the relations

(γd)γδ(γ̃d)
ϵα = 2(δϵγδ

α
δ − δϵδδ

α
γ ) (144)

And,

(γd)γδ(γd)κλ = 2ϵγδκλ (145)

Using these two relations in (143)

(146)=⇒ − 5!

8 · 48
ϵαβγδ

[
− 2ϵγδκϵ(−8δαλ δ

ϵ
β + 2δϵλδ

α
β ) + [−8ϵκλβϵ(δ

ϵ
γδ

α
δ − δϵδδ

α
γ )− 4ϵγδκλδ

α
β ]

]
Wκλψi

α

(147)=− 5!

8 · 48

[
−2ϵγδκϵ(−8ϵαβγδδαλ δ

ϵ
β +2ϵαβγδδϵλδ

α
β )+ [−8ϵαβγδϵκλβϵ(δ

ϵ
γδ

α
δ − δϵδδαγ )−4ϵαβγδϵγδκλδ

α
β ]

]
Wκλψi

α

(148)= − 5!

8 · 48

[
− 2ϵγδκϵ(−8ϵλϵγδ + 2ϵββγδδϵλ) + [−8ϵκλβϵ(ϵ

αβϵα − ϵγβγϵ)− 4ϵββγδϵγδκλ]

]
Wκλψi

α

(149)= −16 · 5!
8 · 48

ϵγδκϵϵ
λϵγδWκλψi

α

(150)= − 5!

24
ϵγδκϵϵ

λϵγδWκλψi
α

(151)= − 5!

24
ϵκδγϵϵ

δλγϵWκλψi
α

(152)= −5!

4
δλκW

κλψi
α

(153)= −30Wκκψi
α

Returning to (129),

=⇒ ∇αβψ
i
β = −30Wκκψi

α − 36

8
Xαkq

i
k (154)
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5 Conclusion

In this report, we have determined field content of the on-shell 6D hypermultiplet. We have also determined

most of the equations of motion for the multiplet fields. It remains to compute the d’Alembertian of q (□q).

Once this has been completed, compensating fields can be used and constraints applied to reduce the theory

to a Poincare supergravity theory. This work can then be corroborated with the work of Jessica Hutomo,

Gregory Gold, Saurish Khandelwal, William Kitchin and Gabriele Tartaglino Mazzucchelli, that should lead to

a publication sometime this year.
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7 Appendix

7.1 Notation and conventions

Then notations and conventions for this paper are taken from Butter [4].

The Lorentzian metric is ηab = diag(−1, 1, 1, 1, 1, 1), the Levi-Civita tensor εabcdef obeys ε012345 = −ε012345 =

1, and the Levi-Civita tensor with world indices is given by εmnpqrs := εabcdefea
meb

nec
ped

qee
ref

s.

The Pauli-type 4× 4 matrices (γa)αβ and (γ̃a)
αβ

are antisymmetric and related by

(γ̃a)
αβ

=
1

2
εαβγδ (γa)γδ , (γa)

∗
= γ̃a, (155)

where εαβγδ is the canonical antisymmetric symbol of su∗(4). They obey

(γa)αβ
(
γ̃b
)βγ

+
(
γb
)
αβ

(γ̃a)
βγ

= −2ηabδγα,

(γ̃a)
αβ (

γb
)
βγ

+
(
γ̃b
)αβ

(γa)βγ = −2ηabδαγ ,
(156)
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The Grassmann coordinates θαi and the parameters ηiα of S-supersymmetry are both symplectic Majorana-

Weyl.

We define the antisymmetric products of two or three Pauli-type matrices as

γab := γ[aγ̃b] :=
1

2
(γaγ̃b − γbγ̃a) , γ̃ab := γ̃[aγb] = − (γab)

T

γabc := γ[aγ̃bγc], γ̃abc := γ̃[aγbγ̃c]

(157)

Note that γab and γ̃ab are traceless, whereas γabc and γ̃abc are symmetric. Further antisymmetric products

obey

γabc = − 1

3!
εabcdefγ

def , γ̃abc =
1

3!
εabcdef γ̃

def ,

γabcd =
1

2
εabcdefγ

ef , γ̃abcd = −1

2
εabcdef γ̃

ef ,

γabcde = εabcdefγ
f , γ̃abcde = −εabcdef γ̃f ,

γabcdef = −εabcdef , γ̃abcdef = εabcdef .

(158)

Making use of the completeness relations

(γa)αβ (γ̃a)
γδ

= 4δγ[αδ
δ
β],(

γab
)
α

β (γab)γ
δ = −8δα

δδγ
β + 2δα

βδγ
δ,(

γabc
)
αβ

(γ̃abc)
γδ

= 48δ(α
γδβ)

δ,(
γabc

)
αβ

(γ̃abc)γδ =
(
γabc

)αβ
(γ̃abc)

γδ
= 0,

(159)

Vectors V a and antisymmetric matrices Vαβ = −Vβα are related by

Vαβ := (γa)αβ Va ⇐⇒ Va =
1

4
(γ̃a)

αβ
Vαβ . (160)

Antisymmetric rank-two tensors Fab are related to traceless matrices Fα
β via

Fα
β := −1

4

(
γab
)
α

βFab, Fα
α = 0 ⇐⇒ Fab =

1

2
(γab)β

αFα
β = −Fba. (161)

Self-dual and anti-self-dual rank-three antisymmetric tensors T
(±)
abc ,

1

3!
εabcdefT

(±)
def = ±T (±)abc, (162)

are related to symmetric matrices Tαβ and Tαβ via

Tαβ :=
1

3!

(
γabc

)
αβ
Tabc = Tβα ⇐⇒ T

(+)
abc =

1

8
(γ̃abc)

αβ
Tαβ

Tαβ :=
1

3!

(
γ̃abc

)αβ
Tabc = T βα ⇐⇒ T

(−)
abc =

1

8
(γabc)αβ T

αβ
(163)
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7.2 Conformal superspace identities

These 6D identities are taken from Butter [5].

The Lorentz generators act on the superspace covariant derivatives ∇A =
(
∇a,∇i

α

)
as

[Mab,Mcd] = 2ηc[aMb]d − 2ηd[aMb]c

[Mab,∇c] = 2ηc[a∇b][
Mα

β ,∇k
γ

]
= −δβγ∇k

α +
1

4
δβα∇k

γ

(164)

where Mα
β = − 1

4

(
γab
)
α

βMab. The SU(2)R and dilatation generators obey

[
J ij , Jkl

]
= εk(iJj)l + εl(iJj)k,

[
J ij ,∇k

α

]
= εk(i∇j)

α ,

[D,∇a] = ∇a,
[
D,∇i

α

]
=

1

2
∇i

α.
(165)

The Lorentz and SU(2)R generators act on the special conformal generators KA = (Ka, Sα
i ) aS

[Mab,K
c] = 2δc[aKb],

[
Mβ

α , S
γ
k

]
= δγαS

β
k − 1

4
δβαS

γ
k ,

[
J ij , Sγ

k

]
= δ

(i
k S

γj) (166)

while the dilatation generator acts on KA as

[D,Ka] = −Ka, [D, Sα
i ] = −1

2
Sα
i (167)

Among themselves, the generators KA obey the only nontrivial anti-commutation relation

{
Sα
i , S

β
j

}
= −2iεij (γ̃c)

αβ
Kc (168)

The algebra of KA with ∇A is given by

[Ka,∇b] =2ηabD+ 2Mab,[
Ka,∇i

α

]
=− i (γa)αβ S

βi,{
Sα
i ,∇

j
β

}
=2δαβ δ

j
iD− 4δjiMβ

α + 8δαβJi
j ,

[Sα
i ,∇b] =− i (γ̃b)

αβ ∇βi +
1

10
Wbcd

(
γ̃cd
)α

γS
γ
i − 1

4
Xα

i Kb

+

[
1

4
(γ̃bc)

α
βX

β
i +

1

2
(γbc)

γ
β Xγi

βα

]
Kc.

(169)

The anticommutator of two spinor derivatives,
{
∇i

α,∇
j
β

}
, has the following non-zero torsion and curvatures

T ijc
αβ = 2iεij (γc)αβ ,

R(M)ijcdαβ = 4iεij (γa)αβ W
acd,

R(S)ijkαβγ = −3

2
εijεαβγδX

δk,

R(K)ijαβc = iεij (γa)αβ

(
1

4
ηacY −∇bWabc +Wa

efWcef

)
.

(170)
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The non-zero torsion and curvatures in the commutator
[
∇a,∇j

β

]
are:

T jγ
aβk =− 1

2
(γa)βδW

δγδjk,

R(D)jaβ =− i

2
(γa)βγ X

γj ,

R(M)jcdaβ =iδ[ca

(
γd]
)
βγ
Xγj − i

(
γcda
)
γδ
Xjγδ

β + 2i (γa)βγ
(
γcd
)ρ
δ
Xjγδ

ρ ,

R(J)jklaβ =2i (γa)βγ X
γ(kl)j

ε ,

R(S)jkaβγ =− i

4
(γa)βδ Y

δjk
γ +

3i

20
(γa)γδ Y

δjk
β − i

8
(γa)βδ ∇γρW

δρ
ε

jk

+
i

40
(γa)γδ ∇βρW

δρεjk − i

8
(γa)δϵ εβρτγW

δρW ϵτεjk,

R(K)jaβj =
i

4
(γc)βγ ∇aX

γj − i

4
(γacd)γδ ∇

dXjγδ
β +

i

3
(γa)βδ (γcd)

γ
ρ ∇

dXjδρ
γ

− i

8
(γa)βγ (γc)δρW

γδXρj +
5i

12
(γa)βρ (γc)γϵW

γδXjρϵ
δ

+
i

4
(γa)γρ (γc)βϵW

γδXjρϵ
δ − i

2
(γa)γρ (γc)δϵW

γδXjρϵ
β .

(171)

The commutator of two vector derivatives, [∇a,∇b], has the following non-vanishing torsion and curvatures:

T γ
abk

= (γab)β
αXβγ

αk

R(M)cdab = Y cd
ab =

1

4
(γab)

α
γ

(
γcd
)β
δ
Yαβγδ

R(J)klab =
1

2
(γab) δ

γY δkl
γ = Y kl

ab

(172)

R(S)kabγ =− i

3
(γab)

α
δ ∇γβX

kβδ
α − i

6
(γabc)αβ ∇

cXkαβ
γ − i

6
εγβϵρ (γab)

ρ
δ W

αβXkδϵ
α ,

R(K)abc =
1

4
∇dYabcd +

i

3
Xkβγ

α Xαδ
βk (γabc)γδ + i (γab)

α
ϵ (γc)γδX

kβγ
α Xβkδϵ

+
i

4
XαkXβkγδ (γab)

β
γ (γc)αδ .

(173)

7.3 Gamma matrix identities

These gamma matrix relations are taken from Tartaglino-Mazzucchelli [6].

Some useful identities are

γabγcd =
1

2
ϵabcdefγ

ef + 4δ
[a
[c γ

b]
d] − 2δ

[a
[c δ

b]
d](

γab
)γ
α
(γcd)γ

β =
1

2
εabcdef

(
γef
)
α

β + 4δ
[a
[c

(
γ
b]
d]

)
α

β − 2δ
[a
[c δ

b]
d]δ

β
α

(174)

Also,

(
γab
)γ
α
(γbd)

β
γ = 4δ

[a
[b

(
γ
b]
d]

)
α

β − 2δ
[a
b δ

b]
d δ

β
α(

γab
)
α

γ (γbd)γ
β = δab

(
γbd
)
α

β − δbb (γ
a
d)α

β + δbd (γγb
a)α

β − δab δ
b
dδ

β
α + δbbδ

a
dδ

β
α

(γac)α
γ (γcb)γ

β = −4 (γab)α
β + 5δab δ

β
α

(175)

next
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(
γ̃ab
)α

γ (γ̃cd)
γ
β = (γcd)

γ
β

(
γab
)α
γ
=

1

2
εabcdef

(
γef
)
β

α + 4δ
[a
[c

(
γd]

b]
)
β

α − 2δ
[a
[c δ

b]
d]δ

α
β(

γ̃ab
)α

γ (γ̃cd)
γ
β = −1

2
εabcdef

(
γ̃ef
)α

β + 4δ
[a
[c

(
γ̃
b]
d]

)α
β − 2δ

[a
[c δ

b]
d]δ

α
β

γ̃abγ̃cd = −1

2
εabcdef γ̃

ef + 4δ
[a
[c γ̃

b]
d] − 2δ

[a
[c δ

b]
d]

(176)

There is a completeness relation

1

2
(γm)αβ (γm)γδ = εαβγδ (177)

Contraction with εγ
′δ′γδ implies the completeness relation

1

2
(γm)αβ (γ̃m)

γδ
= δγαδ

δ
β − δγβδ

δ
α (178)

and that

1

2
εαβγδ (γm)γδ = (γ̃m)

αβ ⇒ (γm)αβ =
1

2
εαβγδ (γ̃m)

γδ
(179)

This gives

1

4
(γ̃mn)

α
β (γmn)γ

δ = −1

2
δαβ δ

δ
γ + 2δδβδ

α
γ (180)

and

(
γ̃abc

)αβ
(γabc)γδ = 24

(
δαγ δ

β
δ + δαδ δ

β
γ

)
(181)

and also

(
γabc

)
αβ

(γabc)γδ = 0 and
(
γ̃abc

)αβ
(γ̃abc)

γδ
= 0 (182)

Note that in general

εabcdefεa′b′c′d′e′f ′ = −6! δ
[a
[a′ δ

b
b′δ

c
c′δ

d
d′δee′ , δ

f ]
f ′] = −6! δa[a′ δbb′δ

c
c′δ

d
d′δee′δ

f
f ′] = −6! δ

[a
a′δ

b
b′δ

c
c′δ

d
d′δee′δ

f ]
f ′

εabcdemεa′b′c′d′e′m = −5! δ
[a
[a′ δ

b
b′δ

c
c′δ

d
d′δ

e]
e′] = −5! δa[a′ δbb′δ

c
c′δ

d
d′δee′] = −5! δ

[a
a′δ

b
b′δ

c
c′δ

d
d′δ

e]
e′

εabcdmnεa′b′c′d′mn = −2(4! )δ
[a
[a′ δ

b
b′δ

c
c′δ

d]
d′] = −2(4! )δa[a′ δbb′δ

c
c′δ

d
d′] = −2(4! )δaa′δbb′δ

c
c′δ

d]
d′

εabcmnpεa′b′c′mnp = −(3! )2δ
[a
[a′ δ

b
b′δ

c]
c′] = −(3! )2δa[a′ δbb′δ

c
c′] = −(3! )2δ

[a
a′δ

b
b′δ

c]
c′

εabmnpqεa′b′mnpq = −2(4! )δa[a′ , δ
b]
b′] = −2(4! )δa[a′ δbb′] = −2(4! )δaa′δ

b]
b′

εmnpqrtεmnpqrt = −6!

(183)

Other useful relations are
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(γa)αβ
(
γab
)
γ
δ = 2εαβγϵ

(
γ̃b
)ϵδ

+
(
γb
)
αβ
δδγ

(γa)αβ
(
γabc

)
γδ

= −2εαβγϵ
(
γbc
)
δ
ϵ + 2

(
γ[b
)
αβ

(
γc]
)
γδ

(γabc)αβ
(
γbc
)
γ
δ = −8 (γa)γ(α δ

δ
β)

(γ̃a)
αβ (

γab
)
γ
δ =

1

2
εαβα

′β′
(
2εα′β′γϵ

(
γ̃b
)ϵδ

+
(
γb
)
α′β′ δ

δ
γ

)
= 4δ[αγ

(
γ̃b
)β]δ

+
(
γ̃b
)αβ

δδγ

(γ̃a)
αβ (

γabc
)
γδ

=
1

2
εαβα

′β′
(
−2εα′β′γϵ

(
γbc
)ϵ
δ
+ 2

(
γ[b
)
α′β′

(
γc]
)
γδ

)
= 4δ[αγ

(
γ̃bc
)β]

δ + 2
(
γ̃[b
)αβ (

γc]
)
γδ

(184)

and also

1

2
(γa)αβ (γ̃

a)
γρ (

γbc
)
ρ
δ = δγαδ

ρ
β

(
γbc
)
ρ
δ − δγβδ

ρ
α

(
γbc
)
ρ
δ = δγα

(
γbc
)
β

δ − δγβ
(
γbc
)
α

δ

(γa)αβ
(
γ̃abc

)γδ
= 4δ

(γ
[α

(
γbc
)
β]

δ)

(185)

and also

(
γab
)
α

β (γab)α′
β′

= 2δβαδ
β′

α′ − 8δβ
′

α δ
β
α′ (186)
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