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1 Abstract

This project presents infilling methods of missing climate time series values considering three

types of patterns of missing data, with both scattered and continuous gaps. Three time

series variables, namely solar farm output, wind farm output and ambient temperature were

studied. An additive model consisting of a Fourier series and an autoregressive model was

applied to model and simulate the seasonal and stochastic variations.

2 Introduction

Detecting and handling missing data could be the essential pre-processing task in the time

series modelling area. The occurrence of the missing values might be attributed to several

reasons, e.g., faulty measuring instruments or human errors. In climate time series analysis,

construction of forecast models depends on the quality of the data as parameter estimation

is affected by the gaps [Ramos-Calzado et al. 2008].

Some conventional methods to deal with missing values such as simply deleting or replacing

the gaps with mean values, could be applied for a small amount of missing values. However,

the model results under this approach will be inaccurate or even biased for the increasing

number of missing records [Pratama et al. 2016]. More advanced missing data imputation

for the time series variables could be dealt with using interpolation e.g., linear or using cubic

splines. However, for longer gaps of days or weeks, which is often the case in some climate

variables, more sophisticated techniques will have to be employed.

In this project, we used Fourier series and autoregressive (AR) model [Farah & Boland 2021,

Boland 2020] to infill missing data for solar farm output, wind farm output and ambient

temperature. The results of ambient temperature are shown in the Appendix.

Statement of Authorship

John and Sleiman conceived the main idea and outline for the infilling methods, guided and

supervised the project work, and proofread the report. John designed the proposal as well

as provided the data. Under the continuing academical assistance from John and Sleiman,

Hanyi designed and created the missing values, developed the code in R, built the models,

produced the infilling outcome, and wrote this report. AMSI and the Australian Department
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of Education funded the project.

3 Data

The data used in this project is kindly provided by my proposal supervisor, Professor John

Boland, which is collected from two areas in Australia, i.e., New South Wales and South

Australia (see Table 3.1). All variables are complete.

Two types of models are typically used to decompose time series data, additive and multi-

plicative. Equation 3.1 is the equation of additive time series and Equation 3.2 is the equation

of multiplicative time series. In this project, we are using additive model in particular.

Additive TS = Trend+ Seasonality+ Random Noise (3.1)

Multiplicative TS = Trend× Seasonality× Random Noise (3.2)

Table 3.1 describes those variables with their locations and data characteristics. In this

project, we consider the variables at both low-resolution levels such as daily, and high-

resolution levels such as 5 and 30 minutes.

Table 3.1: Data Characteristics.

Variable Location Interval Duration Characteristics

Solar Farm Output Broken Hill 5-minute 2 years No Trend

Wind Farm Output Snowtown 30-minute 15 years No Trend No Seasonality

Maximum Temperature Kent Town Daily 43 years No Trend

We simulate the scattered and continuous gaps among the variables such that the situations

where data is missing are generated, and we assume the records were missing completely

at random for simplicity, such that our models don’t require additional algorithms for inves-

tigating the cause of missing patterns and the likely values for the gap [Moritz et al. 2015,

Rubin 1976].

What’s more, we use day as unit for data in high-resolution level, and year as unit for data in

low-resolution level.

Three types of artificial gaps are studied. The first one is the case when the observations are

missing within one day (or one year), the second one is the case when the observations are
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missing more than one day (or one year), the last one is the case when there is a miscella-

neous missing situation with both scattered and continuous gaps at random.

If there is more than 1/3 of values missing within one-day (or one-year) period, then we

define it as a single day (year) missing. For solar farm output, a single day missing is defined

by if more than 1/3 of values missing in the mid-day where the sunshine comes, such that

we get rid of the meaningless zero values.

4 Models and Results

4.1 Methods

The first step is determining the type of time series, that is, detect whether the variable has

inherent trend and seasonality, or with some random noise, and find whether to use additive

decomposition or multiplicative decomposition. This could be reviewed in Table 3.1.

The way we infill the gaps is based on patterns of missing data and types of the time series

for each variable, as shown in Figure 4.1.1.

Figure 4.1.1: Roadmap of the methodology.

The easiest case is when one data record is missing, we could take the average of the previous
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and next value to fill that missing place. If the data is missing for a whole day, then we simply

take the average of the day before and day after the missing values.

If there is a gap missing, we have several solutions depending on the cases. If another year of

data is available, we could just fill the gaps with the same days from this year. If there is no

other year available, and the variable has seasonality, we could use the Fourier series model.

Otherwise, we may need to simulate the synthetic data.

If data is missing at random times, we need to model the data and simulate the synthetic data

according to the data characteristics. In summary, different modelling techniques are utilised

to handle different parts of the series (see Figure 4.1.2).

Figure 4.1.2: Roadmap of the methodology for miscellaneous missing situation at random.

For an additive time series which is the case in this project, the following forecast models are

considered. We first detect the trend using a linear model with a result of fitted values F1 and

residuals R1. R1 is simply the difference between the original data and fitted values. Then

the seasonality of the data could be modelled using the Fourier series model on R1, and we

obtain the new fitted values F2 with its residuals R2. Apart from the trend and seasonality,

autoregressive model can be used to model to the remaining stochastic variations which is R2
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here using its autocorrelation. The last fitted values F3 is calculated. The final result is the

sum of all fitted values which is F1 + F2 + F3.

If there is no trend, we skip the linear model. If there is no seasonality, we skip the Fourier

series model. Similarly, if there is no stochastic variation, then we skip the autoregressive

model.

When we start to infill the missing values, Fourier series model is trained first from a complete

series and then the same parameters are applied to the testing series; linear model and

autoregressive model are used for generating the synthetic data for testing data directly. To

validate our results, we could either look at the line plot or find whether our models did the

work properly. For example, the residuals of the autoregressive model should be uncorrelated

and their mean should be zero.

4.1.1 Fourier Series Model

To identify the significant seasonal component, one way is to use the power spectrum when

we are not able to find the cycles clearly by looking at the graph. Power spectrum is a

plot of the signal power lying at each frequency, the more significant cycles, the more the

contribution to the variance of the series, the greater the power [Boland 2010].

As long as we find the most significant cycles during the sample interval n, we could minimize

the sum of the squared deviations of the model from the data to find the optimal ai and bi

using the equation as follows

F (t) = a0 +
k∑
i

(aicos(2πit/n) + bisin(2πit/n)) (4.1)

t = 1, 2, 3, . . . , n, a0 = avg(St),

k = significant cycles during the sample intervaln

Consequently, power model F (t) is able to be calculated using Equation 4.1, given a complete

training series St.

4.1.2 Autoregressive Model and Synthetic Generation

An autoregressive model forecasts the target variable using a linear combination of past val-

ues of itself. The reason we did this is because of the autocorrelation existing within the time
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series.

Autocorrelation describes the linear dependences between the current series Ct and its lagged

version Ct−1, Ct−2, . . . , Ct−k therefore providing insights on how their degree of similarity and

tendency evolves in time. As such, it is a key element in refining information from the data

and filling in the gaps.

An autoregressive model of order p can be written as

Ct = α0 + α1Ct−1 + α2Ct−2 + . . .+ αpCt−p + εt, (4.2)

where t = 1, 2, . . . , n, α0 is the constant, α1, α2, . . . , αp is the coefficients of the AR model,

Ct−1, Ct−2, . . . , Ct−p are lagged values of Ct, and εt is the remaining random noise. It is

assumed that the εt is independent and identically distributed (i.i.d.).

Equation 4.2 is also used for the situation when we need to simulate the synthetic data. It

happens when there is a large gap of missing data, that there is not enough existed lagged

data to guide the further fluctuation appropriately. Therefore, we have to manually detect

the missing places and fill those missing records after we perform the AR model.

This could be done using the form of Equation 4.2 and the AR model parameters we obtained

previously. The procedure is shown in Algorithm 1. As a first approximation, a normal

distribution is investigated to sample εt here, and this would be refined by working on the

distributional characteristics in our further work.

Moreover, if there is trend in the series, then the constraint in Algorithm 1 will change to

MIN(St) < Ct+F (t)+Y (t) < MAX(St) is true, where Y (t) is the fitted values we got when

we model its trend.

Akaike information criterion (AIC) is used to find the optimal p order. Given a set of candidate

models with different parameter, the preferred model is the one with the minimum AIC value.

AIC could be written as

AIC = T ln

(
SSE

T

)
+ 2(k + 2),

where T is the number of observations used for estimation and k is the number of predictors

in the model [Hyndman & Athanasopoulos 2021].
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Algorithm 1: Filling the Missing Values using Fourier series plus Autoregressive Algorithm when the Series

has no Trend.
Input: Incomplete Ct, Incomplete raw series St, Complete seasonal model fits F (t)

Output: Complete Ct

1 M ←MAX(St);

2 m←MIN(St);

3 for t = 1 to n do

4 if Ct == null ∧ Ct−1 ! = null ∧ . . . ∧ Ct−p ! = null then

5 Ct ← α0 + α1 × Ct−1 + . . .+ αp × Ct−p;

6 Ct ← Ct + εt ; // where εt ∼ N(0, σ2
t )

/* make sure MIN(St) < Ct + F (t) < MAX(St) */

7 while Ct + F (t) > M ∨ Ct + F (t) < m do

8 Ct ← α0 + α1 × Ct−1 + . . .+ αp × Ct−p + εt;

9 end

10 end

11 end

12 return Ct;

4.2 Infilling Results of Solar Farm Output

Figure 4.2.1: Solar Farm Output Power Spectrum.

We take five-day data to train our model for

solar farm output. There is no trend de-

tected in the data, so we use power spec-

trum to find the significant cycles first. In the

power spectrum, the significant spikes deter-

mine which frequencies are to be included in

the Fourier series model.

Figure 4.2.1 demonstrates that there are 5,

10 and 20 cycles in 5 days. We note that

these frequencies are reasonable because they match our knowledge for solar radiation; once-

a-day distinguishes the days, twice-a-day and four-times-a-day point to the fluctuation of

solar radiation within a day.
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We define the Fourier series representation of the solar farm output series as follows:

F (t) = 14.5 +

{5, 10, 20}∑
i

(aicos(2iπt/1440) + bisin(2iπt/1440)) , (4.3)

t = 1, 2, 3, . . . , 1440.

Table 4.1 lists the ai, bi values that minimise the sum of squared deviations of the model from

the data.

Table 4.1: Values of the Fourier Series Model Parameters of Solar Farm Output.

i ai bi

5 −22.7960 −4.2534

10 9.4369 3.8729

20 −4.0137 −2.4325

Figure 4.2.2 shows the model results we got from training set, it verifies that the summarised

result of Fourier series model and AR(5) model is sufficient for modelling the solar farm

output. Figure 4.2.3 is the result we got when we apply the same Fourier series model to

testing set.

The optimal AR model for the testing residuals we got from Fourier series model is

Ct = 0.6713×Ct−1−0.0479×Ct−2+0.1586×Ct−3+0.0568×Ct−4+0.1240×Ct−5+ εt. (4.4)

To be noted that equation of AR(5) for training set is different from Equation 4.4 as testing

set has different autocorrelation from training set. We simulate the synthetic data using

Equation 4.4 to fill the missing values in the case when the data is missing quite a lot.

Figure 4.2.4, Figure 4.2.5 and Figure 4.2.6 demonstrate the results we got for solar farm

output. It could be seen in Figure 4.2.4, that our filled data perfectly covers the raw data

which is great. In Figure 4.2.5, we use the data from previous year so the fluctuations are

not similar, but it is still reasonable. Figure 4.2.6 illustrates the synthetic data we simulated.

Our model result here is in between the minimum and maximum of the raw data which

looks successful. Meanwhile, Figure 4.2.6 proves that different subsets of data from the same

variable have their own AR models, and the presence of missing records do reduce the model

quality.
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(a) Fourier Series Model. (b) Fourier Series Model + AR(5) Model.

Figure 4.2.2: Model Results of Solar Farm Output Training Set.

Figure 4.2.3: Fourier Series Model for Solar Farm Output Testing Set.

(a) Single Day Missing. (b) Filled using Average of Day before and Day after.

Figure 4.2.4: Result of Single Day Missing for Solar Farm Output Testing Set.
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(a) Multiple Days Missing. (b) Filled using Previous Year Data.

Figure 4.2.5: Result of Multiple Days Missing for Solar Farm Output Testing Set.

(a) Miscellaneous Missing Values. (b) Fourier Model + AR(5) Model.

Figure 4.2.6: Result of Miscellaneous Missing Values for Solar Farm Output Testing Set.

Other possible variations for the second day in Figure 4.2.6 are shown in Figure 4.2.7. It

could be seen that the sequences are overall similar. The variation of either of them is not

large, which means there couldn’t be any large fluctuations generated on the synthetic data

using a normal distribution.
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Figure 4.2.7: Possible Variations generated using Normal Distribution for Solar Farm Output Testing Set.

4.3 Infilling Results of Wind Farm Output

There is no trend or seasonality in wind farm output, so we only need to construct the AR

model for this variable. In this case, 30-day data is enough to train the model.

Two similar AR models are used here. The equation of the AR model for the multiple days

missing is

Ct = 1.4378× Ct−1 − 0.6042× Ct−2 + 0.2482× Ct−3 − 0.1096× Ct−4 + εt.

The equation of the AR model for the miscellaneous missing is

Ct = 1.4277× Ct−1 − 0.5894× Ct−2 + 0.2567× Ct−3 − 0.1207× Ct−4 + εt.

Figure 4.3.1, Figure 4.3.2 and Figure 4.3.3 demonstrate the results we got for wind farm

output. It could be found that our filled data match the raw data for all three cases very well,

even for the case when we need to simulate the synthetic data.
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(a) Single Day Missing. (b) Filled using Average of Day before and Day after.

Figure 4.3.1: Result of Single Day Missing for Wind Farm Output Testing Set.

(a) Multiple Days Missing. (b) Filled using AR(4) Model.

Figure 4.3.2: Result of Multiple Days Missing for Wind Farm Output Testing Set.

(a) Miscellaneous Missing Values. (b) Filled using AR(4) Model.

Figure 4.3.3: Result of Miscellaneous Missing Values for Wind Farm Output Testing Set.
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5 Conclusion

In this project, we used the additive model for solar farm output, wind farm output and

ambient temperature. The strategies we used were modelling and simulating the different

part of the time series based on the data characteristics. What we mean by the latter is,

whether the variable has inherent trend and seasonality, or with some random noise. Then

we could model the trend component using the linear model, model the seasonal component

using Fourier series model, model and simulate the remaining stochastic variation using AR

model. Once the models have been developed, the model results could be added to infill the

missing data.

This approach is simple and flexible. There is no complicated algorithm involved, and it does

not require any other year of data, sheet of data or data from neighbouring stations. We

would only need one model if the variable has one component. As long as there is enough

complete continuous piece of data in the data set for us to model the data characteristics

of the variable, then we are able to fill the missing values of the same variable at whatever

places in the data set.

However, the way we did is the simplest approach, for example, the distribution used to sim-

ulate the synthetic sequences is the most common and simplest one, the normal distribution.

Thus the following work has been considered for further step

• Experiment with other distributions for the synthetic sequences, e.g., beta distribu-

tion [Grantham et al. 2018].

• Investigate the infilling methods for the multiplicative time series such as rainfall.
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7 Appendix

7.1 Infilling Results of Ambient Temperature

Figure 7.1.1: Ambient Temperature Power Spectrum.

Temperature is similar to solar farm output,

it has no trend but seasonality. We do the

similar procedure with temperature as what

we did for solar farm output, and this time

we built the model based on the data on 5

years, and test the model using data on an-

other 5 years. Once-a-year frequency is quite

reasonable as the summer is different from

the winter.

From Figure 7.1.1, it could be seen that there is only one significant frequency in this 5-year

series, and it stands for once a year.

The Fourier series representation of the Temperature is shown as follows:

F (t) = 22.98 + (a5cos(5× 2πt/1833) + b5sin(5× 2πt/1833)) . (7.1)

The value of a5 and b5 here is 7.0969 and 2.0225.

Figure 7.1.2 shows the result of Fourier series model and Fourier series model + AR(3)

model applied on training set we got from Equation 7.1. It is noticeable that our approach

successfully modelled the training set of temperature variable. Figure 7.1.3 is the result we

got when we apply the same Fourier series model to the testing set.

Similarly, we use the average of a year before and a year after the missing values to fill a

single year missing. The result is shown in Figure 7.1.4, our filled data still perfectly covers

the raw data as before.

To fill the missing gaps which is shown in Figure 7.1.5, we use the synthetic generation. The

AR equation here is

Ct = 0.6662× Ct−1 − 0.1864× Ct−2 + εt.

It could be seen that the stochastic variation is lying in between the minimum and maximum,

however our model is not able to catch the peak of each year.
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(a) Fourier Series Model. (b) Fourier Series Model + AR(3) Model.

Figure 7.1.2: Model Results of Ambient Temperature Training Set.

Figure 7.1.3: Fourier Series Model for Ambient Temperature Testing Set.

(a) Single Year Missing. (b) Filled using Average of Year before and Year after.

Figure 7.1.4: Result of Single Year Missing for Ambient Temperature Testing Set.
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(a) Multiple Years Missing. (b) Fourier Model + AR(2) Model.

Figure 7.1.5: Result of Multiple Years Missing for Ambient Temperature Testing Set.

As we find there is not much difference between the AR models of two missing patterns

when we work on the wind farm output, hence we simply apply the AR model which we got

from gap missing of temperature on miscellaneous missing this time. The result could be

considered as an appropriate output (see Figure 7.1.6).

(a) Miscellaneous Missing Values. (b) Fourier Model + AR(2) Model.

Figure 7.1.6: Result of Miscellaneous Missing Values for Ambient Temperature Testing Set.
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7.2 An Example of R Code

The following example is the code for solar farm output, implemented in R.

1 # AMSI 2021 -2022 Winter Vacation Project

2 # Fourier Analysis Model and ARIMA Model for Solar Farm Output data at Broken hill.

3 # Author: Wang , Hanyi

4 #

5 # This code file perform the infilling approach for solar farm output

6 #

7 # Input: Data sets of solar farm output

8 #

9 # output: 1. series with newly generated gaps

10 # 2. series with completed gaps

11

12 # Libraries

13 library(readxl)

14 library(ggplot2)

15 library(dplyr)

16 library(tidyr)

17 library(writexl)

18 library(naniar)

19 library(missMethods) # for MCAR function

20 library(forecast) # ARIMA

21

22 # Generate NA value

23 ## a day = 288 rows

24 ## three days = 288*3 = 864

25 ## five days = 288*5 = 1440

26 ## 2 hours = 288/24*2 = 12*2 = 24

27

28 # one single value

29

30 # a single day missing

31 # mid -day length is 128, whole day length is 288

32

33 # more than one day missing

34 # missing three days in five days

35

36 # mixed

37 # in three days , missing percentage be 30% non -zero value , with a single mid -day and two -hour missing

38 generate_na_func <- function(data){

39

40 # for reproductivity

41 set.seed (2022)

42

43 # get the row number for those non -zero values

44 # we will create missing data from these non -zero values

45 sunshine.row <- which(data$SolarFarmOutput != 0)

46

47 ########### single data point ############################

48 # the place for a single missing value

49 randomNum1 <- sample(sunshine.row ,1)

50

51 ########### single day ##################################
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52 # row index of sunshine.row where the sunshine of each day start

53 sunshine.day <- c(1, 129, 258, 392, 525)

54

55 # randomly select index of one day here for start

56 randomIndex2 <- sample(sunshine.day ,1)

57 # randomly select the missing start at that day

58 # randomNum2 .1 <- floor(runif(1, min=randomNum2 , max=randomNum2 +64))

59 # to the end of the sunshine (index as well)

60 randomIndex2 .1 <- randomIndex2 + 127

61 # Make a vector for those random numbers

62 randomVector2 <- sunshine.row[c(randomIndex2:randomIndex2 .1)]

63

64 ########### 3-day block ##################################

65 # for 3 days missing block

66 # randomly select one day here for start

67 randomNum3 <- sample(sunshine.day ,1)

68 randomNum3 .1 <- randomNum3 + 863

69

70 ########### Mixed ##################################

71 # row index of sunshine.row where the sunshine of each day start

72 sunshine.day3 <- c(1, 129, 258)

73 # randomly select index of one day here for start

74 randomIndex4 <- sample(sunshine.day3 ,1)

75 # to the end of the 3 days (index as well)

76 randomIndex4 .1 <- randomIndex4 + (127*3)

77 # Make a vector for those random numbers

78 randomVector4 <- sunshine.row[c(randomIndex4:randomIndex4 .1)]

79

80 # get a random number for this two -hour gap start

81 randomNum5 <- sample(randomVector4 ,1)

82 # find the corresponding index in vector

83 randomIndex5 <- which(randomVector4 == randomNum5)

84 # find the index of the end of the two weeks in vector

85 randomIndex5 .1 <- randomIndex5 + 24

86 # make a vector for those randomly generated two -week rows

87 twoWeeksVector <- randomVector4[c(randomIndex5:randomIndex5 .1)]

88

89 # get a random number for this one -mid -day gap start

90 randomNum6 <- sample(sunshine.day ,1)

91 # to the end of that mid -day

92 randomNum6 .1 <- randomNum6 + 70

93

94 ########### generator ##################################

95 data_missing <- data %>%

96 mutate(single = SolarFarmOutput) %>%

97 mutate(oneDay = SolarFarmOutput) %>%

98 mutate(threeDays = SolarFarmOutput) %>%

99 mutate(mixed = SolarFarmOutput)

100

101 # randomly create missing values in the mid -day

102 data_missing[randomVector2 ,"oneDay"] <- delete_MCAR(data_missing[randomVector2 ,"SolarFarmOutput"], 0.5, "

SolarFarmOutput")

103 data_missing[randomVector4 ,"mixed"] <- delete_MCAR(data_missing[randomVector4 ,"SolarFarmOutput"], 0.3, "

SolarFarmOutput")

104
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105 # generate na values

106 data_missing$single[randomNum1] <- NA

107 data_missing$threeDays[c(randomNum3:randomNum3 .1)] <- NA

108 data_missing$mixed[twoWeeksVector] <- NA

109 data_missing$mixed[c(randomNum6:randomNum6 .1)] <- NA

110

111 return(data_missing)

112 }

113

114 ################################################################################

115 ################################################################################

116 # Read Solar Farm Data

117 solarfarm.year2 <- read_excel("SolarFarm.xlsx", sheet = 3)

118 colnames(solarfarm.year2) <- "SolarFarmOutput"

119

120 # cut the data , only keep first five days

121 solarfarm.year2.2 <- solarfarm.year2[c(1:1441) ,]

122

123 # make the data frame for the missing records

124 solarfarm.year2.missing <- generate_na_func(solarfarm.year2 .2)

125

126 # check the na value - correct

127 df <- solarfarm.year2.missing [,2]

128 df <- df[rowSums(is.na(df)) > 0,]

129

130 # check mixed missing data

131 plot(ts(solarfarm.year2.missing$mixed))

132

133 write_xlsx(solarfarm.year2.missing ,"~/Desktop/TestFiveDaysWithMissing.xlsx")

134

135 ################################################################################

136 ################################################################################

137 # Cycles

138 cycle4 <- 5*2*pi/1440

139 cycle5 <- 10*2*pi/1440

140 cycle6 <- 20*2*pi/1440

141

142 # 5 cycles

143 par4.1 <- -22.7960057563174

144 par4.2 <- -4.25335259753835

145

146 # 10 cycles

147 par5.1 <- 9.43694889034436

148 par5.2 <- 3.87286813681687

149

150 # 20 cycles

151 par6.1 <- -4.01370195966213

152 par6.2 <- -2.43247508659813

153

154 # average

155 avg <- 14.50461

156

157 # create seasonalities

158 solarfarm.year2.model <- solarfarm.year2.missing %>%

159 mutate(ID = row_number ()) %>% # generate id columns
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160 mutate(s4 = par4.1 * cos(cycle4*ID) + par4.2 * sin(cycle4*ID)) %>%

161 mutate(s5 = par5.1 * cos(cycle5*ID) + par5.2 * sin(cycle5*ID)) %>%

162 mutate(s6 = par6.1 * cos(cycle6*ID) + par6.2 * sin(cycle6*ID)) %>%

163 mutate(model = avg + s4 + s5 + s6) %>%

164 mutate(r1 = mixed - model)

165

166 # check the Fourier Model

167 plot(ts(solarfarm.year2.model$model))

168

169 ################################################################################

170 ################################################################################

171 # AR Model from previous year

172 solarfarm.pre <- read_excel("SolarFarm.xlsx", sheet = 2)

173

174 # col12 = cycle 5 + cycle 10 + cycle 20

175 solarfarm.pre.r1 <- as.numeric(pull(solarfarm.pre[c(3:1443) ,12]))

176 auto.arima(solarfarm.pre.r1) # 5,0,3 - AIC 8060

177 # col 12: AR(5) -8031 AR(4)- 8046 AR(3)-AIC 8044 AR(2) - 8047

178 arima.fit.pre <- Arima(solarfarm.pre.r1 , order=c(5,0,0))

179

180 # coeficients

181 unlist(arima.fit.pre[’coef’])

182

183 # model 2 fitted value

184 model2 <- as.data.frame(unlist(arima.fit.pre[’fitted ’]))

185 write_xlsx(model2 ,"~/Desktop/model2.xlsx")

186

187 ################################################################################

188 ################################################################################

189 # AR model - for mixed gaps

190 auto.arima(solarfarm.year2.model$r1) # AIC 6179

191 #AR(3): 6067 AR(2): 6137 1:6233 4:6046 5:6030

192 arima.fit <- Arima(solarfarm.year2.model$r1 , order=c(5,0,0), include.constant=FALSE)

193

194 # AR(5)

195 ar.pars <- unlist(arima.fit[’coef’])

196 ar1 = ar.pars [1]

197 ar2 = ar.pars [2]

198 ar3 = ar.pars [3]

199 ar4 = ar.pars [4]

200 ar5 = ar.pars [5]

201

202 # add the Ar(5) model to the df

203 solarfarm.year2.model$model2 <- unlist(arima.fit[’fitted ’])

204 summary(solarfarm.year2.model$model2 - solarfarm.year2.model$r1)

205

206 # make a copy for data frame

207 model.copy <- solarfarm.year2.model

208

209 # maximum solar farm output

210 M <- max(na.omit(solarfarm.year2.missing$mixed))

211

212 # residuals

213 residuals <- unlist(arima.fit["residuals"])

214 hist(residuals)
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215 # mean and var of this error terms with ignoring nas

216 residuals.var <- var(na.omit(residuals))

217 residuals.mean <- mean(na.omit(residuals))

218

219 set.seed (2022)

220 for (row in 1:nrow(model.copy)) {

221 if(is.na(model.copy$model2[row]) == TRUE){

222

223 # if lag1 and lag2 are existed

224 if(is.na(model.copy$model2 [(row -1)]) == FALSE & is.na(model.copy$model2 [(row -2)]) == FALSE){

225

226 model.copy$model2[row] = ar1*as.vector(model.copy$model2 [(row -1)]) +

227 ar2*as.vector(model.copy$model2 [(row -2)]) +

228 ar3*as.vector(model.copy$model2 [(row -3)]) +

229 ar4*as.vector(model.copy$model2 [(row -4)]) +

230 ar5*as.vector(model.copy$model2 [(row -5)])

231

232 # Add random noise

233 model.copy$model2[row] = model.copy$model2[row] + rnorm(1, mean = residuals.mean , sd = sqrt(residuals

.var))

234

235 # Add constraint on filled data

236 while (model.copy$model2[row] + model.copy$model[row] > M | model.copy$model2[row] + model.copy$model[

row] < 0) {

237 model.copy$model2[row] = ar1*as.vector(model.copy$model2 [(row -1)]) +

238 ar2*as.vector(model.copy$model2 [(row -2)]) +

239 ar3*as.vector(model.copy$model2 [(row -3)]) +

240 ar4*as.vector(model.copy$model2 [(row -4)]) +

241 ar5*as.vector(model.copy$model2 [(row -5)]) + rnorm(1, mean = residuals.mean , sd = sqrt(residuals.

var))

242 }

243 }

244 }

245 }

246

247 # additive model

248 model.copy$finalModel3 = model.copy$model + model.copy$model2

249

250 # check the fitted

251 # model fit

252 summary(model.copy$SolarFarmOutput - model.copy$finalModel3)

253 # check the plot

254 plot (1:1441 , # Draw first time series

255 model.copy$SolarFarmOutput ,

256 type = "l",

257 col = 2,

258 xlab = "Time",

259 ylab = "SolarFarmOutput")

260 lines (1:1441 , # Draw second time series

261 model.copy$model ,

262 type = "l",

263 col = 3)

264 lines (1:1441 , # Draw third time series

265 model.copy$finalModel3 ,

266 type = "l",
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267 col = 4)

268 legend("bottomright", # Add legend to plot

269 c("Raw data", "Fourier Model", "Fourier Model + AR(2)"),

270 lty = 1,

271 col = 2:4)

272

273 # plot

274 plot (1:900 , # Draw first time series

275 model.copy$SolarFarmOutput [1:900] ,

276 type = "l",

277 col = "dodgerblue3",

278 lwd=2,

279 xlab = "Time",

280 ylab = "SolarFarmOutput")

281 lines (1:900 , # Draw third time series

282 model.copy$finalModel3 [1:900] ,

283 lwd=2,

284 type = "l",

285 col = "chocolate1")

286 legend("bottomleft", # Add legend to plot

287 c("Raw data","Fourier Model + AR(2)"),

288 lty = 1,

289 col = c("dodgerblue3","chocolate1"))

290

291 ################################################################################

292 ################################################################################

293 # for single one day gap

294 # mean between row -288 and row +288

295

296 # make a copy for the data frame and target column

297 model.copy.single <- model.copy %>%

298 mutate(modelSingleDay = oneDay)

299

300 # define the day length

301 day.length <- 288

302

303 # find the na in a loop for the row as before

304 for (row in 1:nrow(model.copy.single)) {

305 if(is.na(model.copy.single$modelSingleDay[row]) == TRUE){

306 model.copy.single$modelSingleDay[row] = mean(c(model.copy.single$modelSingleDay[row -287], model.copy.

single$modelSingleDay[row +287]))

307

308 }

309 }

310 ################################################################################

311 ################################################################################

312 # for more than one day gap

313 # copy the days from previous year and paste to this year

314 # rows <- c(258:1122)

315

316 # copy the days from previous year

317 rows.pre <- as.numeric(pull(solarfarm.pre [258+2:1122+2 ,2]))

318 # make a copy for thr data frame

319 model.copy.final <- model.copy.single %>%

320 mutate(modelThreeDays = threeDays)
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321

322 # paste to this year

323 model.copy.final$modelThreeDays [258:1122] <- rows.pre

324

325 # plot

326 plot (1:1441 , # Draw first time series

327 model.copy.final$SolarFarmOutput [1:1441] ,

328 type = "l",

329 col = "dodgerblue3",

330 lwd=2,

331 xlab = "Time",

332 ylab = "SolarFarmOutput")

333 lines (1:1441 , # Draw third time series

334 model.copy.final$modelThreeDays [1:1441] ,

335 lwd=2,

336 type = "l",

337 col = "chocolate1")

338 legend("bottomleft", # Add legend to plot

339 c("Raw data","Filled Data"),

340 lty = 1,

341 col = c("dodgerblue3","chocolate1"))

342

343 ################################################################################

344 ################################################################################

345 write_xlsx(model.copy ,"~/Desktop/final1.xlsx")

346 write_xlsx(model.copy.single ,"~/Desktop/final3.xlsx")
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