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Abstract

Because of the limited availability of labelled data and computing resources, it is often challenging to

deploy machine learning algorithms to real-world scientific applications. Domain adaptation, which aims

to transfer a well-trained model for a specific machine learning task to similar tasks within the same class,

offers a viable route to solve scientific machine learning problems of this type. For example, how can the

decision strategy for the COVID management plan of City M be adapted to City S? It is necessary to find the

optimal plan without repeating the expensive experiments. By casting scientific machine learning tasks into

a probabilistic framework, we want to investigate various avenues in applying (optimal) transport methods

to address problems in domain adaptation.
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1 Introduction

Modern machine learning tasks often requires the access to high volumes of labelled data to produce exceptional

and reliable performance. But even when given a large amount of both data and computing resources, it can

still be challenging to apply a well-trained model to new sets of data in the real-world applications. This can

be seen as due to the differences in the distributions of the new data and the ones that were used for training

such model. A simple solution is to obtain more and more observations from the new sets of data, but it can

expensive and requires continuous acquisition, which can be burdensome or infeasible. Domain adaptation is

a sub-field of machine learning that focuses on applying learnt information from the sets of labelled source

data to some target data with unknown labels. In particular, it deals with the cases where the distributions of

the source and target domains are different. Such differences (called domain drift) can be caused by multiple

reasons with potential physical interpretations. In the case of computer vision, the drift can occur due to the

changes in the angles, lightings, backgrounds, random noises or simply due to different acquisition devices. In

the task of detecting epilepsy using data from Electroencephalogram (EEG) test, deploying predictive model

developed with one patient’s data to other patients can be obstructed because of the differences in patients’

conditions.

In this work, we investigate the case of unsupervised domain adaptation with a single source domain

associated with the outputs/labels and a single unlabelled target domain. This is to separate from semi-

supervised domain adaptation with few known outputs/labels in the target domains, and multiple domain

adaptation with multiple source and target domains. In more detail, we want to explore the least effort

principle approaches [1] [2] to tackle the problem of domain adaptation with the assumption that the domain

drift is in the form of some transformation from the source to the target domains, so that the transformation is

minimal with respect to some cost metric. From this principle, the domain adaptation problem can be expressed

as first finding a transformation making the distribution in the source domain to be similar to that in the target

domain, and then making use of the learnt transformation to estimate the target outputs/labels. Our problem

can then be formulated under the framework of Optimal Transportation (OT) theory, which has been well

studied and applied in multiple fields due to the ability to compute distance between probability distribution

with potentially non-overlapping support spaces. With two different formulations of domain adaptation problem

under OT framework, we explore their properties in some examples to provide some deeper knowledge about

such formulations.

Statement of Authorship

With the guidance from my supervisor, I produced analytical solutions to some simple optimal transport

problems. I wrote the Python code to numerically compute the solution and visualize some examples as well

as adapting the existing Python libraries to solve the problems. I presented some interpretations of the results

inspired with the insights from my supervisor in the form of the report with included figures.
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2 Domain Adaptation

2.1 Notation

Let Ω ⊂ Rd be the input sample space and C be the set of all possible outputs/labels. Then we define P(Ω) as

the the set of all probability measures over the input sample space Ω.

In the normal setting of machine learning, we can assume the existences of a set of training data Xs =

{xs
i}

Ns
i=1, with xs

i ∈ Ω, associated with a set of outputs/labels Ys = {ysi }
Ns
i=1, with ysi ∈ C, and a set of test data

Xt = {xt
i}

Nt
i=1, where xt

i ∈ Ω, with an existing but unknown set of outputs/labels Yt = {yti}
Nt
i=1, with yti ∈ C.

To estimate the set of outputs/labels Yt of the test data Xt, we can relies on learning or estimating the joint

probability distribution P(x, y) ∈ P(Ω×C) from the training data and outputs/labels (Xs,Ys), and then apply

it to the test data Yt under the assumption that Xs and Xt are drawn from the same distribution P(x) ∈ P(Ω).

2.2 Domain Adaptation

In the case of domain adaptation, we assumes that the joint probability distributions Ps(x
s, y) and Pt(x

t, y)

of the training and testing data are different. Here the two sets of data Xs and Xt will then be called as source

and target data as they are corresponding to a source and a target domains, which are denoted as Ωs and Ωt.

We also denote the marginal distributions over X of the source and target domains as µs and µt.

According to [1], two popular assumptions, that are frequently made in most domain adaptation approaches,

relies on the similarity of conditional probability distributions while the marginal distributions are supposed

to be different. One assumption related to the case of Class Imbalance states that the source and target

output/labels distributions are different (Ps(y) ̸= Pt(y)) while the conditional distributions of the input with

respect to the outputs/labels are the same (Ps(x
s|y) = Pt(x

t|y)). Another popular assumption presents the

case of Covariate Shift through the argument that the conditional distributions of the outputs/labels with

respect to the inputs are the same (Ps(y|xs) = Pt(y|xt)) while the source and target input distribution are

different (Ps(x
s) ̸= Pt(x

t)).

2.3 Domain Adaptation as Optimal Transportation problem - An Initial Formu-

lation

In the real world application, the difference in the joint distributions often occurs due to the changes in both

the marginal and conditional distributions. Following the work in [1], it is proposed that such difference, called

domain drift, is caused by a transformation solely in the input space T : Ωs → Ωt. This transformation can be

explained as the differences in the physical process of obtaining the input data (e.g. different lighting, angles,

backgrounds, random noises, etc in pictures) or the inherent but small differences in the input data (e.g. between

pictures of a product from one manufacturer and pictures of the same product from another manufacturer).

Subsequently, it is supposed to preserve the conditional probabilities of the source and target domains under
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the transformation, i.e.

Ps(y|x) = Pt(y|T(x)), ∀x ∈ Ωs,

that is, to maintain the outputs/labels of the source input data under the source true regression/labelling

function fs : Ωs → C before the transformation, and under the target true regression/labelling function ft :

Ωt → C after the transformation T, i.e.

fs(x) = ft(T(x)), ∀x ∈ Ωs.

Furthermore, the transformation T can be understood as a push-forward from the source input measure

µs to the target input measure µt, i.e.

T#µs = µt

where for any measure α ∈ P(Ωs) and any measurable set B ⊂ Ωt, the push-forward measure T#α ∈ P(Ωt) is

defined as

T#α(B) = α({x ∈ Ωs : T(x) ∈ B}) = α(T−1(B)).

Intuitively speaking, while the transformation T moves a single point between the input spaces, the operator

T# moves the whole probability measure from the input space Ωs towards the input space Ωt.

To reduce the search space of all possible transformations, [1] proposed to search for the transformation T

that minimize a transportation cost

C(T) =

∫
Ωs

c(x,T(x))dµ(x), T#µs = µt (1)

where c : Ωs × Ωt → R+ is a distance function, while satisfying .

The total cost C(T) can be interpreted as the total energy cost to transport the every probability masses

from the measure µs in the source domain to the measure µt in the target domain.

2.4 Joint Distribution Optimal Transport - Second Formulation

The initial formulation given as a minimization problem might be hindered by the two main factors:

• It assumes the preservation of the conditional distributions under the transformation, and subsequently

the marginal distributions of the outputs/labels between the source and target domains. Such assumptions

might not hold for many circumstances, for example, when the ranges of outputs in the two domains are

clearly not aligned or simply when the set of labels of one domain has a much higher proportion of one

class than that of the other domain.

• It also lacks a natural integration of the source outputs/labels in the searching for the optimal transforma-

tion. This has been partially resolved in the same work [1] proposing such formulation by adding additional

regularization terms to accommodate the known information regarding the source outputs/labels but not

at the fundamental level.
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To handle the changes in both the marginal and conditional distributions between the source and target

domains, instead of finding a transformation only in the input space Ω, [2] proposed to search for a transformation

T : Ωs×C → Ωt×C that would be able to directly align the joint distributions of the source and target domains,

denoted as µXs,Ys and µXt,Yt , by minimizing a similar transportation cost

C(T) =

∫
Ωs×C

D(x, y;T(x, y))dµ(x, y), T#µXs,Ys
= µXt,Yt

where D : (Ωs × C)× (Ωt × C) → R+ is a joint cost distance function.

In [2], they also adopted a separable type of cost functions D(xs, ys;xt, yt) = αc(xs,xt) + L(ys, yt) instead

of a more generic one. The distance function c : Ωs × Ωt → R+ in the first term is similar to the one in the

initial formulation in Equation 1, while the second term L : C × C → R+ is another distance function on the

output/label space measuring the difference of the source and target outputs/labels. Finally, the coefficient

α ∈ R+ is a trade-off parameter to balance the cost function in the input and output/label spaces.

Here, given the problem of unsupervised domain adaptation, the information regarding the outputs/labels in

the target domain is often unknown. Thus, the joint distribution µXt,Yt in the target domain can be replaced

with an estimate µXt,f(Xt) through a regression/classification function f : Ωt → C. At the same time, the

function f should be chosen such that the estimated target joint distribution would be similar to that in the

source domain. This leads to the problem of searching for a pair of function f and transformation T that

minimizes the following transportation cost

C(T) =

∫
Ωs×C

D(x, y;T(x, y))dµ(x, y), T#µXs,Ys
= µXt,f(Xt) (2)

3 Optimal Transportation

3.1 Monge formulation

For two arbitrary probability measures α and β supported on two spaces X and Y, and a distance function

c : X × Y → R+, Monge formulation of the optimal transportation problem searches for a transformation

T : X → Y that satisfies the following minimization problem

min
T

{∫
X
c(x,T(x))dα(x) : T#α = β

}
(3)

3.2 Kantorovich relaxation

To relax the deterministic nature of the transportation in Monge formulation, that is, each point x in the source

domain X is assigned to another point T(x), Kantorovich’s idea is to adopt a probabilistic transportation by

allowing each source point x to be split towards multiple targets.

Let Π(α, α) ⊂ P(X × Y be the set of all probabilistic couplings with marginals α and α. For two arbitrary

probability measures α and β on two spaces X and Y, and a distance function c : X × Y → R+, Kantorovich
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formulation searches for a coupling γ ∈ Π(α, β) that satisfies the minimization problem

min
γ∈Π(α,β)

{∫
X×Y

c(x,y)dγ(x,y)

}
(4)

3.3 Wasserstein distance

With the Kantorovich formulation, it allows the definition of the Wasserstein distance of order p between α and

β as

Wp(α, β) =

(
inf

γ∈Π(α,β)

∫
X×Y

d(x,y)pdγ(x,y)

) 1
p

(5)

where d : X × Y → R+ is a distance and c(x,y) = d(x,y)p.

3.4 Discrete Optimal Transport

In many practical problems, we often relies on empirically estimated distribution, which can be represented as

discrete probability measures. A discrete probability measure α with weights a ∈ Rn
+ s.t.

∑n
i=1 ai = 1 and

locations x1, ...xn ∈ X can be expressed as

α =

n∑
i=1

aiδxi

where δx is defined as the Dirac at point x.

For two discrete probability measures

α =

n∑
i=1

aiδxi and β =

m∑
j=1

bjδyj ,

and a distance function c : X×Y → R+, Monge formulation searches for a transportation mapT : {x1, ...,xn} →

{y1, ...,y2} that assigns each point xi to a single point y1 and satisfies the following discrete minimization

problem

min

{
n∑

i=1

c(xi,T(xi)) : T#α = β

}
(6)

where the condition T#α = β for discrete optimal transportation problem can be expressed as

∀j ∈ 1, 2, ...,m,bj =
∑

i:T(xi)=yj

ai.

For the discrete case of Kantorovich formulation, the set of all probabilistic couplings with marginals α and β

can be defined as

Γ(α, β) = {γ ∈ Rn×m
+ |γ1n = α,γ⊤1m = β} (7)

where 1d is a d-dimensional vector of ones. Then Kantorovich formulation then searches for a coupling γ ∈

Γ(α, β) that satisfies the following discrete minimization problem

min
γ∈Γ(α,β)

⟨γ,C⟩F (8)

where ⟨., .⟩F is the Frobenius dot-product and C ∈ Rn×m
+ is the cost matrix with Cij = c(xi,yj).
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4 Solving the discrete optimization problems of domain adaptation

4.1 Reformulate the problems with Kantorovich formulation

4.1.1 The inital formulation

In our first formulation of the domain adataption problem given in Equation 1, to apply it to practical source

and target data, we relies on empirically estimating the distributions of the source and target input data Xs

and Xt, which can be represented as discrete measures

µs =

Ns∑
i=1

1

Ns
δxs

i
and µs =

Nt∑
j=1

1

Nt
δxt

j
(9)

Following the discrete optimization problem under Kantorovich formulation given in Equation 8, the task is

to find a coupling γ ∈ Γ(µs, µt) that satisfies the following discrete minimization problem

min
γ∈Γ(µs,µt)

⟨γ,C⟩F (10)

with a cost matrix C ∈ RNs×Nt
+ .

4.1.2 The second formulation

Similarly, for the second formulation of the domain adaptation problem given in Equation 2, the empirically

estimated joint distributions of the source and target, with the use of regression/classification function f , can

be expressed as

µXs,Ys
=

Ns∑
i=1

1

Ns
δ(xs

i ,y
s
i )

and µXt,f(Xt) =

Nt∑
j=1

1

Nt
δ(xs

i ,f(x
s
i ))

(11)

Then follow the discrete optimization problem under Kantorovich formulation given in Equation 8, the

problem can be defined as

min
f,γ∈Γ(µXs,Ys ,µXt,f(Xt)

)
⟨γ,D⟩F (12)

with a cost matrix D ∈ RNs×Nt
+ between each data point in source and target domains.

4.2 Solving the optimal transportation problem in 1-dimensional space

For abitrary measures in high dimensional spaces, analytical solutions to Monge or Kantorovich formulations are

often hard to find even if the minimizers exist especially for continuous measures. But in the simple cases where

the source and target spaces Ωs and Ωt are in 1-dimensional space and the cost function c(xs,xt) = |xs − xt|

is a 1-norm function, the Monge map T : Ωs → Ωt [3] is given by

T(xs) = F−1
t (Fs(xs)) (13)

where Fs : Ωs → [0, 1] and Ft : Ωs → [0, 1] are the Cumulative Distribution Function (CDF) in the source and

target domains.
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4.3 Solving the optimal transportation problem in high dimensional space for

Gaussian distributions

Let N (µ,Σ) denote the multivariate Gaussian distribution on Rd with mean µ ∈ Rd and covariance matrix Σ ∈

Rd×d. The 2-Wasserstein distance between two multivariate Gaussian distributions N (µa,Σa) and N (µb,Σb)

has a closed-form solution [4] [5] called the Wasserstein-Bures or Fréchet distance

W2 (N (µa,Σa),N (µb,Σb)) = ∥µa − µb∥2 + tr(Σa) + tr(Σb)− 2tr

((
Σ

1
2
aΣbΣ

1
2
a

) 1
2

)
(14)

5 One Dimensional Examples

5.1 Process description

5.1.1 Data generation

The set of source data Xs = {xs
i}

Ns
i=1 with xs

i ∈ R is sampled from a Gaussian mixture distribution of ns
g number

of component Gaussian distributions. It corresponds to the set of known and available output Ys = {ysi }
Ns
i=1 =

{fs(xs
i )}

Ns
i=1 through the function fs : R → R

The set of target data Xt = {xt
i}

Nt
i=1 with xt

i ∈ R is sampled from a Gaussian mixture distribution of nt
g

number of component Gaussian distributions with existing but unknown labels.

5.1.2 Target ouput generation

To ensure the distributions of the outputs in the source and target spaces are similar, a set of intermediate

output for the target data is generated as Ȳt = {ȳti}
Nt
i=1 = {gt(xt

i)}
Nt
i=1 with gt : R → R, then it is transformed

to the final set of unknown output Yt = {yti}
Nt
i=1 = {F−1

Ys
(FȲt

(ȳti))}
Nt
i=1.

5.1.3 Data samples transformation

The target data samples Xt is transformed to follow the distribution of the source data samples as

X̄t = {x̄t
i}

Nt
i=1 = {F−1

Xs
(FXt(x

t
i))}

Nt
i=1

where F−1
Xs

is the approximated inverse CDF of the source distribution and FXt
(xt

i)) is the approximated CDF

of the target distribution.

The transformed data samples are then evaluated under the true regression function fs to produce the

predicted outputs of the target data samples.
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5.2 Examples and Observations

Figure 1: The three figures are of the cases where the function fs and gt are both monotonically increasing

(left), fs is monotonically increasing while gt is monotonically decreasing (middle), and fs and gt are both

non-monotonic(right).

The Figure 1 contains three prominent one-dimensional examples, more examples can be found in the Appendix

A.

From these examples, our first formulation of domain adaptation problem given in Equation 1 can work well

for the cases when the true regression functions fs and ft are both either monotonically increasing or decreasing.

This is due to the monotonic nature of the Cumulative Distribution Functions (CDFs), which in turn making

the Monge map in Equation 13 monotonic.

Differently, for the cases when the true regression functions fs and ft are both monotonic but one is increasing

while the other is decreasing, or when either of them are non-monotonic, the estimated regression functions on

the target domains are not able to produce the same results. This is also due to the monotonic nature of the

Monge map, leading to the inability to deal with non-monotonic regression functions.

6 An example of Optimization Surface of Joint Distribution Opti-

mal Transportation Approach

6.1 Analytical Solution to Simple Gaussian Distributions

Define the following random variable as follows:

Xs ∼ N (µs, σs)

Xt ∼ N (µt, σt)

ϵs ∼ N (0, 1)

ϵt ∼ N (0, 1)

Ys = aXs + bϵs

Yt = cXt + dϵt
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where Xs, Xt, ϵs and ϵt are independent random variables, µs, µt, a, b, c, d ∈ R and σs, σt ∈ R+.

Then the joint distribution of Xs and Ys can be written asXs

Ys

 =

1 0

a b

Xs

ϵs

 (15)

Based on the independent of Gaussian random variables Xs and ϵs, their joint distribution is also normally

distributed as Xs

ϵs

 ∼ N

µs

0

 ,

σs 0

0 1

 (16)

Thus, the joint distribution of Xs and Ys is normally distributed asXs

Ys

 ∼ N


1 0

a b

µs

0

 ,

1 0

a b

σs 0

0 1

1 0

a b

⊤


= N

 µs

aµs

 ,

 σs aσs

aσs a2σs + b2


(17)

Similarly, the joint distribution of Xt and Ys is normally distributed asXt

Yt

 ∼ N

 µt

cµt

 ,

 σt cσt

cσt c2σt + d2

 (18)

Follow Equation 14, the 2-Wasserstein distance between the joint distributions of (Xs,Ys) and (Xt,Yt) is

W2

N

 µs

aµs

 ,

 σs aσs

aσs a2σs + b2

 ,N

 µt

cµt

 ,

 σt cσt

cσt c2σt + d2


= (µs − µt)

2 + (aµs − cµt)
2 + (σs + a2σs + b2) + (σt + c2σt + d2)

− 2tr


 σsσt + acσsσt cσsσt + aσs(c

2σt + d2)

aσsσt + (a2σs + b2)cσt acσsσt + (a2σs + b2)(c2σt + d2)

 1
2


(19)
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6.2 Optimization Surfaces

Figure 2: The optimization surfaces with respect to the coefficients c and d of target regression functions for

the cases of µs = 0, σs = 1, a = 1, b = 1, µt = 0, σt = 1 (left) and µs = 0, σs = 1, a = 1, b = 1, µt = 10, σt = 2

(right)

For our continuous Gaussians distribution with linear regression functions, as shown in Figure 2, the optimization

surfaces of the second formulation of domain adaptation problem are seemingly convex for the coefficient c of

the inputs while being bimodal with respect to the coefficient d of the error term. It is expected since this is a

simple problem and d only affects the size of the variance of the error term.
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7 Examples of Joint Distribution Optimal Transport (JDOT)

Figure 3: Two examples of applying JDOT formulation, with the cost functions chosen to use Support Vector

Machines (SVMs) for estimated regression functions, to some toy examples with data generated from Gaussians

distributions with different regressions functions in the source domains (For estimated target data distributions,

small noises are added to visualize degenerate joint distribution).

As shown in Figure 3, the second formulation given in Equation 2 can provides estimates for the true regression

functions in the target domains using the information from the joint distribution of source data. Note that it

is still unclear about the properties of such estimates.

8 Discussion

Under the first formulation of domain adaptation problem given in Equation 1, it provides a great performance

for monotonic regressions equations in 1 dimensional spaces. In higher dimensional space, the concept of

monotonicity is less of a problem, thus further research can be carried out on the performance and properties

of this formulation for high dimensional spaces. Additionally, there exists different ways to use the optimal

transportation plan to estimate the target outputs/labels under different motivations, which can greatly affect

the performance and properties of the estimated functions.

For the second formulation of domain adaptation in Equation 2, without any further assumptions on the

distributions of the unknown target outputs/labels, it can only provide an initial estimate on the target regres-

sion/classification functions without clear properties and guaranteed performance. Future work can be used on

detecting its properties and limitation, as well as how to incorporate some assumptions on the distribution of

the target outputs/labels.
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At the same time, our formulation relies heavily on the ability to solve the optimal transportation problem or

equivalently computing the Wasserstein distance. Thus, although solving the optimal transportation problems

for empirical discrete measures numerically is feasible despite high computational complexity, it is important to

consider the cases between continuous and discrete distributions and how to compute the Wasserstein distance

effectively.

A One Dimensional Example Results

A.1 Data descriptions

The source data Xs consist of Ns = 100000 samples from a Gaussian mixture distribution of ns
g = 3 component

Gaussian distribution as shown in Figure (4).

Figure 4: The histogram of the source data samples with bin size of 1000.

The target dataXt consist of Nt = 90000 samples from a Gaussian mixture distribution of nt
g = 2 component

Gaussian distribution as shown in Figure (5).
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Figure 5: The histogram of the target data samples with bin size of 1000.

A.2 Example results

A.2.1 Example 1.1: fs and gt are both linearly increasing function

The functions fs and gt are of the forms

fs(x) = x+ 2

and

gt(x) = 9x+ 2

The histograms of the source true regression outputs, the target intermediate regression outputs and the

target true regression outputs are shown in Figure (6).

Figure 6: (Example 1.1) The histograms of the source true outputs (left), the target intermediate outputs

(middle), the target true outputs (right) with bin size of 1000.

The target true regression outputs and predicted outputs are shown in Figure (7)

15



Figure 7: (Example 1.1) The target true outputs and predicted outputs.

A.2.2 Example 1.2: fs and gt are both linearly decreasing

The functions fs and gt are of the forms

fs(x) = −x+ 2

and

gt(x) = −9x+ 2

The histograms of the source true regression outputs, the target intermediate regression outputs and the

target true regression outputs are shown in Figure (8).

Figure 8: (Example 1.2) The histograms of the source true outputs (left), the target intermediate outputs

(middle), the target true outputs (right) with bin size of 1000.

The target true regression outputs and predicted outputs are shown in Figure (9)

16



Figure 9: (Example 1.2) The target true outputs and predicted outputs.

A.2.3 Example 1.3: fs is linearly increasing and gt is linearly decreasing

The functions fs and gt are of the forms

fs(x) = x+ 2

and

gt(x) = −9x+ 2

The histograms of the source true regression outputs, the target intermediate regression outputs and the

target true regression outputs are shown in Figure (10).

Figure 10: (Example 1.3) The histograms of the source true outputs (left), the target intermediate outputs

(middle), the target true outputs (right) with bin size of 1000.

The target true regression outputs and predicted outputs are shown in Figure (11)
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Figure 11: (Example 1.3) The target true outputs and predicted outputs.

A.2.4 Example 1.4: fs is linearly decreasing and gt is linearly increasing

The functions fs and gt are of the forms

fs(x) = −x+ 2

and

gt(x) = 9x+ 2

The histograms of the source true regression outputs, the target intermediate regression outputs and the

target true regression outputs are shown in Figure (12).

Figure 12: (Example 1.4) The histograms of the source true outputs (left), the target intermediate outputs

(middle), the target true outputs (right) with bin size of 1000.

The target true regression outputs and predicted outputs are shown in Figure (13)
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Figure 13: (Example 1.4) The target true outputs and predicted outputs.

A.2.5 Example 1.5: fs and gt are monotonically increasing

The functions fs and gt are of the forms

fs(x) = 10ex

and

gt(x) = (x− 5)3

The histograms of the source true regression outputs, the target intermediate regression outputs and the

target true regression outputs are shown in Figure (14).

Figure 14: (Example 1.5) The histograms of the source true outputs (left), the target intermediate outputs

(middle), the target true outputs (right) with bin size of 1000.

The target true regression outputs and predicted outputs are shown in Figure (15)

19



Figure 15: (Example 1.5) The target true outputs and predicted outputs.

A.2.6 Example 1.6: fs and gt are monotonically decreasing

The functions fs and gt are of the forms

fs(x) = −10ex

and

gt(x) = −(x− 5)3

The histograms of the source true regression outputs, the target intermediate regression outputs and the

target true regression outputs are shown in Figure (16).

Figure 16: (Example 1.6) The histograms of the source true outputs (left), the target intermediate outputs

(middle), the target true outputs (right) with bin size of 1000.

The target true regression outputs and predicted outputs are shown in Figure (17)
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Figure 17: (Example 1.6) The target true outputs and predicted outputs.

A.2.7 Example 1.7: fs is monotonically increasing and gt is monotonically decreasing

The functions fs and gt are of the forms

fs(x) = 10ex

and

gt(x) = −(x− 5)3

The histograms of the source true regression outputs, the target intermediate regression outputs and the

target true regression outputs are shown in Figure (18).

Figure 18: (Example 1.7) The histograms of the source true outputs (left), the target intermediate outputs

(middle), the target true outputs (right) with bin size of 1000.

The target true regression outputs and predicted outputs are shown in Figure (19)
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Figure 19: (Example 1.7) The target true outputs and predicted outputs.

A.2.8 Example 1.8: fs is monotonically decreasing and gt is monotonically increasing

The functions fs and gt are of the forms

fs(x) = −10ex

and

gt(x) = (x− 5)3

The histograms of the source true regression outputs, the target intermediate regression outputs and the

target true regression outputs are shown in Figure (20).

Figure 20: (Example 1.8) The histograms of the source true outputs (left), the target intermediate outputs

(middle), the target true outputs (right) with bin size of 1000.

The target true regression outputs and predicted outputs are shown in Figure (21)
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Figure 21: (Example 1.8) The target true outputs and predicted outputs.

A.2.9 Example 1.9: fs and gt are non-monotonic

The functions fs and gt are of the forms

fs(x) = x2

and

gt(x) = 2 ∗ sin(x− 2) + 2

which are shown in Figure (22).

Figure 22: (Example 1.9) The plots of the functions fs (left) and gt (right) on the range of data samples.

The target true regression outputs and predicted outputs are shown in Figure (23)
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Figure 23: (Example 1.9) The target true outputs and predicted outputs.
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