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Abstract

Geometric evolution equations provide a powerful method of studying the geometry of manifolds

by evolving a metric in a particular “direction of improvement”. A famous example is the use of the

Ricci flow by Perelman to resolve the Poincaré conjecture. The Bach flow is a fourth order geometric

flow defined on four-manifolds which arises as the gradient of the Weyl curvature energy functional

on compact manifolds. In this paper we study the Bach flow on four-dimensional simply connected,

indecomposable nilpotent Lie groups. Combining our results with previous results of Helliwell gives

a complete description of the behaviour of the Bach flow on simply-connected nilmanifolds.
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1 Introduction

A central question in Riemannian geometry is if a given manifold M admits some class of metrics which could

be considered distinguished in some sense [3]. Of related interest is how we can improve an initial metric g0 on

M . Geometric evolution equations provide a method to deform a metric in a chosen ‘direction of improvement’

[14]. In this paper we study the Bach flow. The Bach flow is a fourth order geometric flow on 4-manifolds that

was introduced by Bahuaud and Helliwell in [1].

In this project, we study the Bach flow on four-dimensional simply connected nilpotent Lie groups which

have an indecomposable Lie algebra. The Bach flow has been studied previously on simply-connected Lie

groups which are a product of a 3-dimensional unimodular Lie group with R by Helliwell [7]. In particular,

Helliwell determines the behaviour of the Bach flow on simply-connected Lie groups whose Lie algebra is a

four-dimensional, decomposable, nilpotent Lie algebra.

Our main result is the following:

Theorem. Let N4 be a four-dimensional, simply connected, nilpotent Lie group whose Lie algebra is indecom-

posable. Then, the Bach flow, g(t), beginning at an arbitrary left-invariant metric g on N4 exists for all t > 0

and converges to the Euclidean metric on R4 in the pointed Cheeger-Gromov sense as t → ∞. Moreover, if

st = s(g(t)) denotes the scalar curvature of g(t) then the normalised metrics

g̃(t) := |st|g(t)
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converge in the pointed Cheeger-Gromov sense to a Bach soliton, g∞.

We study the Bach flow by following the framework set out by Lauret to study the Ricci flow on a simply

connected Nilpotent Lie group [11]. In particular, we apply Lauret’s method of varying the bracket [12] rather

than varying the metric.

The main challenge we face is the complexity of the Bach tensor due to it being fourth order. To overcome

this, we use the symmetries of the system to reduce the number of variables so that we can give an explicit

computation of the Bach tensor. We show that up to isometry, any simply connected nilpotent Lie group

equipped with a left invariant metric can be described by a three real variables a, b, c (§2.2 and §2.3) and that

the Bach tensor is then given by a fourth order polynomial in a, b, c (§3.3). By gauging the flow the solution

can be described by a curve t 7→ (a(t), b(t), c(t)) ∈ R3 (§3.2) so our study reduces to the study of ODEs in R3.

2 Background

There is a deep theory manifolds (c.f [15]), however, since our considerations can essentially be reduced to

the study of vector spaces and of Rn we will largely avoid this to simplify the exposition. The point of view

adopted here is taken from [11].

2.1 Nilpotent Lie groups as Euclidean Space

Consider the group N := {x ∈ Rn : xi > 0∀i = 1, ..., n} under component wise multiplication. The Lie

algebra of this group is Rn with the abelian Lie bracket, µ(x, y) = 0 for all x, y ∈ Rn. The exponential map

exp : Rn → N is the diffeomorphism given by

exp(x) = (ex1 , ..., exn).

We can identify N with (Rn,+) via exp since

exp(x+ y) = exp(x) · exp(y) ∀x, y ∈ Rn

For any x ∈ Rn, the left translation map L(x) : Rn → Rn, L(x)y := x + y, is a diffeomorphism. The

differential dL(x)0 : T0Rn → TxRn is therefore an isomorphism of vector spaces. A metric g on Rn is left-

invariant if the isomorphisms dL(x)0 are isometries, that is, if

g(x)(dL(x)0v, dL(x)0w) = g(0)(v, w), ∀v, w ∈ T0Rm ' Rn,∀x ∈ Rn.

A simply connected Nilpotent Lie group is a generalisation of the above situation. Any µ ∈ Λ2(Rn)∗ ⊗ Rn

which is nilpotent and satisfies the Jacobi identity defines a Nilpotent Lie algebra. The bracket µ is nilpotent

and satisfies the Jacobi identity if for all x ∈ Rn the map adµ x : Rn → Rn defined by (adµ x)y = µ(x, y) is a

nilpotent derivation. That is, if for each x ∈ Rn we have (adµ x)n = 0 and

adµ x(µ(y, z)) = µ(adµ x(y), z) + µ(y, adµ x(z)), ∀y, z ∈ Rn.
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The set

(1) Nn = {µ ∈ Λ2(Rn)∗ ⊗ Rn : µ is nilpotent and satisfies the Jacobi Identity.}

parametrises n dimensional nilpotent Lie algebras (see Section 3 in [11]).

If (Rn, µ) is a Lie algebra, there is a unique simply connected Lie group Nµ which has µ as its Lie algebra

([8], Section I.10). When µ is nilpotent, the exponential map expµ : Rn → Nµ is a diffeomorphism and the

Campbell-Baker-Hausdorff formula implies

expµ(x) expµ(y) = expµ(x+ y + pµ(x, y)), ∀x, y ∈ Rn

where pµ(x, y) is a polynomial in x, y. Therefore, in the same manner as we did above, we can identify Nµ with

Rn under the operation

x ·µ y := x+ y + pµ(x, y), ∀x, y ∈ Rn.

The left translation maps, Lµ(x) : Rn → Rn defined by Lµ(x)y = x ·µ y, are again diffeomorphisms. A

metric g on (Rn, ·µ) is left-invariant if

g(x)(dLµ(x)0v, dLµ(x)0w) = g(0)(v, w), ∀v, w ∈ T0Rm ' Rn,∀x ∈ Rn.

Left-invariant metric are completely determined by their value at the identity. Therefore, there is a one-to-one

correspondence between left-invariant metrics on (Rn, ·µ) and inner products on T0Rn ' Rn.

2.2 Correspondence Between Bracket and Metrics

Recall that the subset Nn ⊂ Λ2(Rn)∗⊗Rn defined by (1) parametrises n dimensional nilpotent Lie algebras.

There is a natural ‘change of basis’ action of GLn(R) on Λ2(Rn)∗ ⊗ Rn given by

h · µ = hµ(h−1·, h−1·), ∀h ∈ GLn(R).

Observe that two Lie brackets µ1 and µ2 define isomorphic Lie algebras if and only if there is a h ∈ GLn(R)

such that h · µ1 = µ2.

Remark. If h ∈ GLn(R) takes the basis {ei} to the basis {ẽi} then h ·µ = µ̃ if and only if µ(ei, ej) = µ̃(ẽi, ẽj).

This follows from

h · µ(ẽi, ẽj) = hµ(h−1ẽi, h
−1ẽj) = hµ(ei, ej) = hµkijek = µkij ẽk.

Let 〈·, ·〉 be the standard inner product on Rn. Then any other inner product on Rn can be written as

(·, ·) = 〈h·, h·〉

for some h ∈ GLn(R). If (·, ·) is an inner product on Rn, we denote by gµ,(·,·) the left-invariant metric on (Rn, ·µ)

which agrees with (·, ·) on T0Rn. When (·, ·) is the standard inner product on Rn, we will write gµ instead of

gµ,(·,·). We then have
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Proposition 2.1 ([19], see also Thm 4.1 in [11]). For µ, λ ∈ Nn and an inner product (·, ·) = 〈h·, h·〉 on Rn,

the metrics gµ and gλ,(·,·) are isometric if and only if λ = h · µ. In particular, gµ and gλ are isometric if and

only if λ ∈ O(n) · µ.

The previous proposition allows us to see the main equivalence which we exploit in this project: The family

of left-invariant metrics gµ(t) = gµ,(·,·)t on the fixed Nilpotent Lie group (Rn, ·µ) is isometric at each point in

time to the metric gµ(t) on (Rn, ·µ(t)) where (·, ·)t = 〈h(t)·, h(t)·〉 and µ(t) = h(t) · µ. That is, rather than

varying the inner product we may instead vary the bracket µ. This equivalence was first exploited by Lauret in

[12] to study the Ricci flow on homogeneous manifolds.

Observe that there is a geometric rescaling action of R∗ = R∗ · I ⊂ GLn(R) on Λ2(Rn)∗ ⊗Rn(Section 3.2 in

[13]). Under this, we have c · µ = c−1µ. By Proposition 2.1, the bracket gc·µ is isometric to the metric which

agrees with 〈cI·, cI·〉 = c2 〈·, ·〉 at the origin. But this is c2gµ. This says that rescaling the bracket by c−1

corresponds to rescaling the metric by a factor of c2. We can make sense of this as follows: If we start with a

fixed bracket µ, then shrinking µ homothetically towards the abelian bracket should flatten (Rn, gµ) (since we

are approaching Euclidean space). But to make a metric flatter we need to expand it (think of a sphere, for

example).

We also note that the inner product 〈·, ·〉 on Rn induces the following inner products of Λ2(Rn)∗ ⊗ Rn and

gln:

〈µ, λ〉 =

n∑
i,j=1

〈µ(ei, ej), λ(ei, ej)〉 , ∀µ, λ ∈ Λ2(Rn)∗ ⊗ Rn 〈α, β〉 =

n∑
i=1

〈αei, βei〉 = trαtβ, ∀α, β ∈ gln

where {ei} is any orthonormal basis.

2.3 Four-Dimensional Nilpotent Lie algebras

In dimension 4 we can give a concrete description of Nilpotent Lie algebras since they have been classified

(Section 5.5 in [5]). By [5], any element µ ∈ N4 is isomorphic to one of the three following Lie algebras:

1. R4: with the abelien Lie bracket µ(x, y) = 0 for all x, y ∈ R4.

2. R ⊕ h3: This is the product of the 3 dimensional Heisenberg algebra with R. The non-trivial bracket

relations are µ(e1, e2) = −µ(e2, e1) = e3.

3. n4: This is not a product Lie algebra. The non-trivial relations are

µ(e1, e2) = −µ(e2, e1) = e3, µ(e1, e3) = −µ(e3, e1) = e4.

These three isomorphism classes correspond to three GL4(R) orbits in N4. Note that 1. and 2. are

decomposable Lie algebras.

Suppose now that µ ∈ N4 is a four dimensional Nilpotent Lie algebra and 〈·, ·〉 is the standard inner product

on R4. Proposition 2.2 below gives a convenient basis of R4 for us to work in.
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Proposition 2.2. Let µ ∈ N4 such that µ ' n4 and let 〈·, ·〉 be the standard inner product on R4. Then, there

is a orthonormal basis {ei} of R4 such that

(2) µ(e1, e2) = ae3 + be4, µ(e1, e3) = ce4

for some a, b, c ∈ R with a, c > 0.

Proof. It follows from Theorems 3.1 and 3.2 in [18] that there is a basis such that (2) holds for some b ∈ R and

a, c 6= 0. To see that we may assume a, c > 0, we observe that replacing e1 with −e1 changes the sign of both a

and c and replacing e4 with −e4 changes the sign of only c. Clearly neither of these break orthonormality.

Suppose now that {ẽi} is the standard basis of Rn and µ̃ ∈ N4 has the relations

µ̃(ẽ1, ẽ2) = −µ̃(ẽ2, ẽ1) = aẽ3 + bẽ4, µ̃(ẽ1, ẽ3) = −µ̃(ẽ3, ẽ1) = cẽ4.

Then if h ∈ GL4(R) is the matrix which sends ei → ẽi we have h · µ = µ̃ by Remark . Clearly it also holds that

h ∈ O(n), so (Rn, gµ) and (Rn, gµ̃) are isometric Riemannian manifolds by Proposition 2.1.

Let us define

(3) O = {µ ∈ N4 : µ = µa,b,c with respect to the standard basis of R4}.

It follows from the above discussion that if (Rn, gµ) is a simply connected Nilpotent Lie group with left-invariant

metric gµ, then up to isometry we may assume that µ ∈ O. Clearly we can identify O with the set

{(a, b, c) ∈ R3 : 0 < a, c}.

We will use this in §3 in order to reduce our study of the bracket flow (Definition 7). In particular, our

problem reduces to the study of an ODE in an open subset of R3.

It will also be useful to have an explicit description of an arbitrary derivation D ∈ Der(µ) of a bracket µ ∈ O.

We can obtain this by differentiating the description of an automorphism of n4 given in [18].

Lemma 2.1. Let µ = µa,b,c ∈ O. Then, any derivation D ∈ Der(µ) has the form

D =


α 0 0 0

∗ β 0 0

∗ aγ + bβ α+ β 0

∗ ∗ cγ 2α+ β

 .

For convenience, we summarise our progress in Proposition 2.3 below. Note that if g is a left-invariant

metric on a simply connected nilpotent Lie group N4, then (N4, g) = (R4, gµ̃,,(·,·)) where (·, ·) := g(e) is the

inner product induced by restricting g to Lie(N) and µ̃ is the Lie bracket of Lie(N).

Proposition 2.3. Let (Rn, gµ̃,(·,·)) be an arbitrary four dimensional, simply connected Nilpotent Lie group

equipped with a left-invariant metric gµ̃,(·,·)). Then, there exists µ = µa,b,c ∈ O such that (Rn, gµ̃,(·,·)) is

isometric to (Rn, gµ). That is, up to isometry, we can describe any four dimensional simply connected Lie group

with left-invariant metric by a bracket µ = µa,b,c ∈ O.
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Of course, there will be no guarantee that a solution to the bracket flow (7), to be introduced later on, will

remain in O. However, we will show in §3.3 that we can gauge our flow so that the solution does remain within

O.

3 The Homogeneous Bach Flow

3.1 Bach Flow

Let M4 be a four dimensional Riemannian manifold. A one parameter family of metrics, (g(t))t∈I , is said

to evolve by Bach Flow if

(4)
∂

∂t
g = Bac(g) +

∆s

12
g, ∀t ∈ I g(0) = g0,

where Bac(g) is the Bach tensor given in local coordinates by

Bac(g)ij = ∇k∇lWkijl +
1

2
RklWikjl,

and W is the Weyl tensor, Rkl = gkaglbRab = gkaglb(Rc)ab are the components of the Ricci tensor with both

indices raised and s = trg Rc is the scalar curvature.

The Bach tensor arises in the study of manifolds which are conformally Einstein (Section 6 in the survey

article [9]). In particular, Theorem 6.6 in [9] says Bac(g) ≡ 0 is a necessary condition for (M4, g) to be

conformal to an Einstein manifold (the converse holds if g is conformal to a metric with harmonic Weyl tensor,

see Corollary 6.8 in [9]). The Bach tensor is trace and divergence free (proof of this can be found in [6]).

On a compact manifold the Bach tensor is −4 times the gradient of the Riemannian functional

g 7−→
∫
M

|W |2g dv(g)

(4.76 in [3]), note that the definition given here is only agrees with their definition up to a factor of −4). As

a result of this, if (M4, g(t)) is a compact solution to (4), the L2 norm of the Weyl tensor decreases along the

flow:

(5)
d

dt
‖W (g(t))‖L2(M,g) = −4‖B‖2L2(M,g) ≤ 0

Short time existence for the flow (4) was shown by Bahuaud and Helliwell in [1]. Moreover, Bahuaud and

Helliwell showed uniqueness for (4) on compact manifolds [2].

The Bach flow has been studied on Homogeneous manifolds whose universal cover has a product structure

(that is, (M̃, g) = (N1 × N2, g1 ⊕ g2) where (Ni, gi) are Lie groups of lower dimension) by Helliwell in [7].

Helliwell uses Milnor frames to diagonalise the Ricci and Bach tensor and then studies the resulting ODE’s.

3.2 The Bach Flow on a Nilpotent Lie group

Suppose now that (M4, g) = (R4, gµ) is a Nilpotent Lie group with left-inavriant metric and that we have

a (Rn, ·µ)-invariant solution {g(t)}t∈(a,b) to the Bach flow with g(0) = gµ (a solution {g(t)}t∈(a,b) is (Rn, ·µ)-

invariant if it is for all t ∈ (a, b)). Since g, Bac(g) and s are determined by their values at 0 ∈ Rn,∆s = 0 and
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Bac(g(t)) is determined by Bac(g(t))(0) for all t ∈ (a, b). By evaluating at the identity, we find that Bac(g(t))(0)

satisfies the ODE

(6)
d

dt
〈·, ·〉t = Bac(〈·, ·〉t) 〈·, ·〉0 = g(0).

Here, we have written Bac(〈·, ·〉t) = Bac(g(t))(0). Conversely, given a solution (·, ·)t to the ODE (6) we obtain

a (Rn, ·µ)-invariant solution {g(t)} to the Bach flow by defining g(t) = gµ,(·,·) for all t. By the usual existence

and uniqueness of ODE’s, we are guaranteed a unique G-invariant solution [13]. The need for this reasoning is

that uniqueness of the Bach flow is an open problem on general manifold.

Let us fix once and for all initial metric g0 = gµ0
which is invariant under a Nilpotent Lie group (R4, ·µ0

).

Note that we have we have tacitly assumed that the initial inner product on T0Rn is the standard inner product,

but this is not an issue since up to isometry this is always the case (this follows from Proposition 2.1 in §2.2).

By the above discussion, there is a unique curve of left-invariant metrics of inner products (〈·, ·〉t on Rn

satisfying (6) which corresponds to the unique (R4, ·µ0
)-invariant solution of the Bach flow beginning at gµ0

. It

follows that for each t there is a h(t) ∈ GL4(R) such that

〈·, ·〉t = 〈h(t)·, h(t)·〉 .

One can show that the one parameter family of matrices {h(t)} can be chosen to be a smooth curve (see

section 4.1 in [13] or Proposition 3.1 below). The corresponding curve of brackets is given by µ(t) = h(t) · µ0.

The bracket flow, introduced by Lauret to study Ricci flow on homogeneous manifolds in [12], is motivated

by considering what equation the curve µ(t) ∈ GL4(R) · µ0 satisfies. For more examples of the bracket flow

technique see [11, 4, 17].

Definition 3.1. Let (R4, gµ0
) as above. The bracket Bach flow is the ODE

(7)
d

dt
µ =

1

2
π(Bµ)µ, µ(0) = µ0

where Bµ is defined by Bac(gµ(t))(0) = g(0)(Bµ·, ·) is the Bach tensor determined by µ and π is the representation

defined by

π(A)µ := Aµ− µ(A·, ·)− µ(·, A·), ∀A ∈ gln.

Remark. A few remarks are in order.

1. The representation π is the derivative of the GLn(R) on Λ2(Rn)∗ ⊗ Rn action defined in §2.2. That is,

π(A)µ =
d

ds

∣∣∣∣
s

esA · µ, ∀A ∈ gln.

2. The solution µ(t) of (7) remains in the orbit GL4(R) · µ0. This is because

1

2
π(Bµ)µ =

d

ds

∣∣∣∣
s

es
1
2Bµ · µ ∈ Tµ(GL4(R) · µ) ⊂ N4.

(see Lemma 3.2 in [12]).
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Beginning at our inital metric gµ0
we now have two families of Riemannian manifolds

(R4, g(t)) (R4, gµ(t))

where g(t) is the unique (Rn, ·µ0
)-invariant solution of the Bach flow and µ(t) is the solution of the bracket flow

(7). The next proposition shows that these are equivalent in a precise way.

Proposition 3.1 ([11], Theorem 5.1). Let (R4, g(t)), (R4, gµ(t)) be solutions of the homonegeous Bach flow

and the bracket flow respectively. Then, there exists a family of isomorphisms ϕ(t) : (R4, ·µ0)→ (R4, ·µ(t)) such

that

g(t) = ϕ(t)∗gµ(t) ∀t ∈ I.

Moreover, dϕ(t) = h(t) where h(t) is the solution of any of the following ODEs

1. h′ = 1
2hB(〈·, ·〉t), h(0) = I

2. h′ = 1
2Bµ(t)h, h(0) = I

Moreover, this satisfies

1. 〈·, ·〉t = 〈h·, h·〉

2. µ(t) = h · µ0.

For a proof of Proposition 3.1, one should consult Theorem 5.1 in [11] (note that the proof in [11] is for the

Ricci flow however only symmetry of the Ricci tensor is used). In particular, Proposition 3.1 shows that the

solutions of (4) and (7) have the same maximal interval of existence and the same curvature (see the Remark

after Theorem 3.3 in [12]).

Recall from §2.2 that if λ ∈ O(n) · µ then the metrics gµ and gλ were isometric. This was due to the fact

that if h ∈ GL4(R) gives rise to the inner product (·, ·) = 〈·, ·〉0 and k ∈ O(n) then hk ∈ GL4(R) gives rise to

the same inner product. It will be useful to exploit this O(n) equivariance when studying the bracket flow (7).

Böhm and Lafuente describe this as a refinement of Uhlenbeck’s trick of moving frames (see Sections 2 and 3

in [4]).

Proposition 3.2 ([4], Proposition 3.1). Let R : GL4(R) ·µ0 → so(4) be a smooth map and let µ(t), µ̄(t) denote

respectively solutions to the bracket flow (7) and to the modified bracket flow

(8)
dµ̄

dt
=

1

2
π(Bµ −Rµ)µ̄, µ̄(0) = µ0.

Then, there is a smooth curve {k(t)} ⊂ O(g, 〈·, ·〉 such that µ̄ = k · µ.

In particular, the solutions µ, µ̄ to the bracket flow (7) and the gauged bracket flow (8) have the same

maximal interval of existence and the same curvature.
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3.3 Behaviour of The Flow on Simply Connected Nilpotent Lie group

Proposition 3.3. The Bach tensor of µ = µa,b,c ∈ O is given by the following matrix

(9) Bµ =


b1 0 0 0

0 b2 b5 0

0 b5 b3 b6

0 0 b6 b4

 ,

where

b1 =
1

8

(
4a4 + 8a2b2 − a2c2 + 4b4 + 8b2c2 + 4c4

)
,

b2 =
1

24

(
12a4 + 24a2b2 − a2c2 + 12b4 + 8b2c2 − 4c4

)
,

b3 =
−1

24

(
20a4 − a2c2 + 24a2b2 + 4b4 − 8b2c2 − 12c4

)
,

b4 =
1

24

(
−4a4 + 3a2c2 − 8a2b2 − 20

(
b2 + c2

)2)
,

b5 =
2

3
bc
(
a2 + b2 + c2

)
,

b6 = −2

3
ab
(
a2 + b2 + c2

)
,

Since the Bach tensor of a simply connected nilmanifold is determined by the actions of 〈·, ·〉 and∇ on T0Rn '

Rn, Proposition 3.3 follows from a computation. This was carried out using Mathematica (see Appendix).

Remark. From the equations in Proposition 3.3 we can see the following:

1. We can see explicitly the rescaling formula for the Bach tensor Bc·µ = c4Bµ.

2. The expressions for b5 and b6 show that Bµ is diagonal if and only if b = 0.

3. It is interesting to note that

b1 =
∣∣Wµ

∣∣2 ≥ 0.

It is not clear to us why this is the case.

We have noted in §2.3 that the solution µ(t) to the bracket flow (7) beginning at µ0 ∈ O may not remain in

O. However, we have also seen in §2.3 that for any µ ∈ N4, the orbit O(4) · µ intersects O. That is to say, for

each t we can find a k(t) ∈ O(4) such that k(t) · µ(t) ∈ O. Since µ and k · µ determine isometric Riemannian

manifolds for k ∈ O(4), we may use O(4) to gauge our flow, readjusting at each point in time to ensure that

the solution remains in O. We formalise this in Proposition 3.4 below by appealing to Proposition 8 in §3.2.

Proposition 3.4. Let µ0 = (a0, b0, c0) ∈ O and let Bµ(t) be the Bach tensor along the solution µ(t) of (7).

Then, the solution µ̄(t) of the gauged bracket flow (8) remains in O where the gauging, Rµ, is given by

Rµ =


0 0 0 0

0 0 b5 0

0 −b5 0 b6

0 0 −b6 0

 .
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Proof. To show that the symmetries are preserved, it suffices to show that µ̇kij = 0 whenever i < j and

(i, j, k) /∈ {(1, 2, 3), (1, 2, 4), (1, 3, 4)} since then µkij will solve the system u̇ = 0, u(0) = 0 and hence be u ≡ 0 by

uniqueness. Here a dot denotes a derivative with respect to time (i.e ˙ := d/dt).

The effect of gauging is that Bµ −Rµ = Lµ is lower triangular for all t. With respect to the basis, {ei}, (8)

is

(10) µ̇kij =
d

dt
〈µ(ei, ej), ek〉 = 〈Lµµ(ei, ej)− µ(Lµei, ej)− µ(ei, Lµej), ek〉

=

4∑
l=1

(
µlijL

k
l − Lliµklj − Lljµkil

)
=

∑
i<j≤l≤k

(
µlijL

k
l − Lliµklj − Lljµkil

)
.

(Note that we are only summing over l). The last equality follows since Bkl = 0 for l > k since it is lower

triangular and µkil = −µkli = 0 for l > k by our choice of structure constants. For k = 1, 2 the right hand side is

zero since each term will have a factor of µ1
ij or µ2

ij , all of which are equal to 0. If k = 3, then the only triples

(i, j, k) we need to check are (i, 3, 3) for i = 1, 2. But

µ̇3
i3 =

∑
i<3≤l≤3

(
µlijL

k
l − Lliµklj − Lljµkil

)
= µ3

i3L
3
3 − L3

iµ
3
33 − L3

3µ
3
i3 = 0.

If k = 4 then we must check (2, j, 4) for j = 3, 4. This is

µ̇4
2j =

∑
2<j≤l≤4

(
µlijL

k
l − Lliµklj − Lljµkil

)
= µl2jL

4
l − Ll2µ4

lj − Lljµ4
2l = 0

since µk2j = 0 for j > 2 and µjl4 = 0 for j, l > 2.

Therefore, the bracket flow (7) is equivalent to the following ODE for µ = (a, b, c) ∈ O:
a′ = −a

48 (44a4 + 72a2b2 − 5a2c2 + 28b4 + 24b2c4 − 4c4)

b′ = −b
48 (60a4 + 104a2b2 + 57a2c2 + 44b4 + 104b2c2 + 60c4)

c′ = −c
48 (−4a4 + 24a2b2 − 5a2c2 + 28b4 + 72b2c2 + 44c4)

(11)

With these in hand we are in a position to study the long time behaviour of the flow.

Lemma 3.1. The following evolutions hold along the gauged bracket flow:

d

dt
log

a

c
= (c2 − a2)‖µ‖2,(12)

d

dt

b2

a2
≤ −2

3

b2

a2
‖µ‖4,(13)

d

dt
‖µ‖2 ≤ −1

12
‖µ‖6.(14)

Proof. 1. Since a, c > 0, a/c > 0 so we can that its logarithm. Taking derivatives gives

d

dt
log

a

c
=

d

dt
log a− d

dt
log c =

a′

a
− c′

c
= (c2 − a2)‖µ‖2.
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2. Taking the derivative gives
d

dt

b2

a2
= 2

b

a

ab′ − a′b
b2

= 2
b2

a2

(
b′

b
− a′

a

)
.

The claim then follows since(
a′

a
− b′

b

)
=
−1

24

(
8‖µ‖4 + 3c2(5a2 + b2 + c2)

)
≤ −1

3
‖µ‖4.

3. Similarly to 2,

48
d

dt
‖µ‖2 = −44‖µ‖6 + 3a2c2(47a2 + 53b2 + 47c2).

Now, we observe that by the multinomial theorem

‖µ‖6 = (a2 + b2 + c2)3 ≥ a6 + c6 + 3a4c2 + 3a2c4 + 6a2b2c2.

Hence,

−40‖µ‖6 + 3a2c2(47a2 + 53b2 + 47c2) ≤ −40a6 + 21a4c2 + 21a2c4 − 40c6

= (a2 + c2)(−40a4 + 61a2c2 − 40c4)

≤ (a2 + c2)(−40a4 + 80a2c2 − 40c4) = −40(a2 + c2)(a2 − c2)2 ≤ 0.

Therefore,
d

dt
‖µ‖2 ≤ −1

48
· 4‖µ‖6 =

−1

12
‖µ‖6.

Corollary 3.1. The Bach flow on a four dimensional simply connected Nilpotent Lie group is immortal, that

is, the maximal interval of existence contains (0,∞).

Proof. Since ‖µ‖2 decreases along the flow, it remains within the closed ball of radius ‖µ0‖ which is a compact

set.

4 Self Similar Solutions to the Bach Flow

4.1 Solitons of The Bach Flow

In this section we study solitons of the Bach flow. A Bach soliton is metric which cannot be ‘improved’ by

deforming the metric in the direction of the Bach tensor (see the Introduct of [14]). Formally, a Bach soliton is

a Riemannian manifold (M4, g) such that

(15) Bac(g) = λg + LXg

for a constant λ ∈ R, and a complete vector field, X ∈ X(M) (LX is the Lie derivative in the direction X). The

soliton is called expanding, steady or shrinking if λ < 0, λ = 0 or λ > 0 respectively. If the vector field arises

as the gradient of a potential function u ∈ C∞(M), then (15) becomes

(16) Bac(g) = λg + 2 Hessu.
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In this case, we say the soliton is a gradient soliton. Homogeneous gradient Bach solitons were studied by

Griffin in [6]. Griffin applies Theorem 3.6 from [16] to reduce the study to Riemannian products of manifolds

of dimension less than 4.

Proposition 4.1 ([16], [6]). Let (M4, g) be a homogeneous Riemannian manifold. If there is a non-constant

function u ∈ C∞(M) such that

Bac(g) = λg + 2 Hessu, λ ∈ R

then M splits isometrically as a product (M, g) = (M ′ ×Rk, g′ ⊕ g) where g is the Euclidean metric and k > 0.

We deduce from Proposition 4.1 that any non-product solitons we find cannot be gradient.

Bach solitons are self similar solutions in the following sense. If (M4, g0) is a Bach soliton, then there is

function λ : (a, b)→ R with λ(0) = 1 and a family of diffeomorphisms ϕ(t) ∈ Diff(M) with ϕ0 = IdM such that

(17) g(t) := λ(t)ϕ(t)∗g0

is a solution to the Bach flow with g(0) = g0 (see for instance Theorem 4.10 in [13]). Since ϕ(t) : M → M is

trivially an isometry between (M,ϕ(t)∗g0) and (M, g0), the family of metrics in (17) are isometric to the initial

metric g0 up to the scale factor λ(t).

4.2 Bach Solitons on Nilpotent Lie groups

If (M4, g) = (Rn, gµ) is a simply connected Nilpotent Lie group, then an analogous condition to the metric

evolving self similarly is that the solution µ(t) to the bracket flow evolves only by scaling (see the discussion

before Theorem 6 in [13]). If we consider a solution of this form, µ(t) = λ(t) · µ0 then taking a derivative we

find

π(Bµ) =
d

dt
µ(t) =

d

dt
λ(t) · µ0 = π(λ′(t)I)

(Recall that our scaling is given by λ · µ = (λI) · µ for c ∈ R∗.) Therefore, we find

0 = π(Bµ − λI),

for some λ ∈ R. Since π(A) = 0 if and only if A ∈ Der(µ), this is equivalent to

(18) Bµ = λI +D, λ ∈ R, D ∈ Der(µ).

A simply connected Nilpotent Lie group (Rn, gµ) whose Bach endomorphism satisfies (18) is called an

algebraic Bach solitons. Algebraic solitons were introduced by Lauret to study Ricci Nilsolitons (Ricci solitons

on Nilpotent Lie groups) in [10]. An important observation made by Lauret is that an algebraic soliton is indeed

a soliton in the sense of (15). To see this we observe that for simply connected Lie groups an automorphism

is determined by its differential at the identity. If D ∈ Der(µ), then expD ∈ Aut(µ) where exp is the usual

matrix exponential. Therefore, for each t ∈ R we integrate exp tD ∈ Aut(µ) to a Lie group automorphism.This

one parameter family of automorphisms {ϕt} generates a vector field X which will satisfy (15). This discussion

is summarised below.
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Proposition 4.2 (Theorem 6, [13]). For a simply connected Nilpotent Lie group (Rn, gµ0
) the following are

equivalent:

1. The solution to the bracket flow (7) beginning at µ0 is given by

µ(t) = λ(t) · µ0, for some λ(t) > 0, λ(0) = 1.

2. The operator Bµ associated to the Bach tensor satisfies (18).

Moreover, whenever either of these conditions hold, the Riemannian manifold (Rn, gµ0
) is a Bach soliton.

Note that in general, not all solitons are algebraic solitons. Since we have an explicit description of what a

derivation D ∈ Der(µ) looks like for a bracket µ ∈ O, the notion of an algebraic soliton reduces our search for

a soliton to simply solving a system of equations in terms of a, b, c, and the components of D (note that since

Bµ is trace free, λ = − trD/4). In fact, we can reduce the difficulty of this system further.

Lemma 4.1. If µ = (a, b, c) ∈ O is an algebraic soliton, then Bµ is diagonal.

Proof. Since D = Bµ− cI, D ∈ Der(µ) must be symmetric as the difference of two symmetric matrices. But by

Lemma 2.1, D is lower triangular. Hence, D must be diagonal and so Bµ = cI +D must also be diagonal.

Since Bµ is diagonal if and only if b = 0, this allows us to set b = 0 when searching for algebraic solitons.

By Lemma 2.1, a diagonal derivation has eigenvalues α, β, α+β, 2α+β for some α, β ∈ R. Therefore, existence

and uniqueness of algebraic solitons reduces to existence and uniqueness of solutions to a set of polynomials in

a, b, α, β.

Theorem 1. The bracket µ ∈ O ⊂ N4 given by

µ(e1, e2) = e3 µ(e1, e3) = e4

is a Bach soliton. Moreover, this soliton is a non-gradient expanding soliton and is the unique Bach soliton up

to isometry and scaling within the orbit GL4(R) · µ ⊂ N4.

Proof. By Proposition 4.2, for µ to be a soliton it suffices to show that (18) holds. By setting a = c = 1 and

b = 0 in Proposition 3.3 it is not difficult to check that (18) is satisfied for α = −7/12 and β = −7/6. This

gives λ = −21/16 < 0 so the soliton is expanding. The soliton is not of gradient type due to Proposition 4.1.

To see uniqueness we assume that (18) holds for a, b, c, α, β ∈ R with (a, b, c) ∈ O and a 6= c, b = 0. We then

show that this leads to a contradiction.

5 Normalised Bach Flow and Convergence

5.1 Normalised Bach Flow

Let r : [0, T ) → R be a smooth function, where T ∈ (0,∞] is the maximal existence time for (4). The
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r−normalised Bach flow is the equation

(19)
∂

∂t
g(t) = Bac(g(t)) + r(t)g(t), g(0) = g0.

Remark. The trace free property of the Bach tensor implies that if (M, gr(t)) is a compact solution of (19)

then
d

dt

∫
M

|W |2 dv(g) = −4(Bac(g(t)) + r(t)g(t),Bac(g(t))) = −4‖Bac(g(t))‖2.

In the varying brackets perspective (19) becomes the following.

Definition 5.1. An r-normalised bracket Bach flow for a normalisation function r : R→ R is a curve {µr(t)} ⊂

N4 such that

(20)
d

dt
µr =

1

2
π(Bµr − rI)µr, µ(0) = µ0.

Remark. There is an equivalence between (19) and (20) which is analogous to the case of un-normalised flows

given in Proposition 3.1 ([11], Section 7).

The usefulness of (19) and (20) is that the addition of the r term allows us to keep a keep a geometric

quantity fixed along the flow. Moreover, the next proposition shows that solutions of the normalised flows only

differ from the solutions of the original flows by a scaling and parametrisation of time.

Proposition 5.1. Let µ(t) and µr(t) be solutions of the bracket flow (7) and the r−normalised bracket flow

(20) respectively. Then, there are functions τ : [0,∞)→ [0,∞), λ : [0,∞)→ R such that

(21) µr(t) = λ(t)µ(τ(t)) ∀t ∈ [0,∞).

The fucntions τ and λ are the solutions of the ODE’s

(22) τ ′ = λ4, τ(0) = 0 λ′ =
1

2
rλ, λ(0) = 1.

Proof. Let µ(t) be a solution to (7) and define

µr(t) = λ(t)µ(τ(t))

where τ, λ are the solutions of (22). Clearly µr(0) = µ0. Differentiating gives

d

dt
µr(t) =

d

dt
(λ(t)µ(τ(t))) = λ′µ(τ(t)) + λτ ′

d

dt

∣∣∣∣
τ(t)

µ =
1

2
rλµ(τ(t)) +

1

2
λ5π(Bµ)µ

=
1

2
rµr +

1

2
π(Bµr )µ

r =
1

2
π(Bµr − rI)µr

where we have used that the Bach tensor scales by Bλ·µ = λ4Bµ.

Corollary 5.1. Let u : Λ2(R4)∗ ⊗ R4 → R be scale invariant (i.e. u(cµ) = u(µ) for any c ∈ R∗) and smooth

away from 0. Then u increases (resp. decreases) along a solution of the bracket flow of and only if it u increases

(resp. decreases) along a solution of the normalised bracket flow.
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Proof. Let µ, µr be solutions to the bracket flow and r-normalised bracket flow respectively, u(t) = u(µ(t)), ur(t) =

u(µr(t)) the restriction of u to these solutions. Then, µr(t) = c(t)µ(τ(t)), so that

ur(t) = u(µ(t)) = u(c(t)µ(τ(t))) = u(τ(t)).

Differentiating both sides gives
d

dt
ur = τ ′

d

dt
u.

Since τ ′ = c4 > 0, the claim follows.

5.2 Scalar Curvature Normalisation

One useful normalisation function is

r =
−〈π(Bµ)µ, µ〉
‖µ‖2

.

With this normalisation, we have

d

dt
‖µ‖2 = 2

〈
1

2
π(Bµ − rI)µ, µ

〉
= 〈π(Bµ)µ, µ〉 − 〈π(Bµ)µ, µ〉 ‖µ‖2

‖µ‖2
= 0.

Therefore, the norm of µ remains constant (and consequently so does the scalar curvature since sµ = −‖µ‖2/4

on Nilpotent Lie groups, c.f. 7.39 in [3]).

Since the quantities a/c and b2/a2 are scale invariant, we can use Lemma 3.1 and Corollary 5.1 to determine

the behaviour of the normalised flow.

Theorem 2. Let µ0 ∈ O with ‖µ0‖ = 1. Then, the normalised Bracket flow

d

dt
µ =

1

2
π(Bµ − αµI)µ, µ(0) = µ0

where αµ = −〈π(Bµ)µ, µ〉 converges to an expanding soliton µ∞ as t→∞.

Proof. Let µ0 = (a0, b0, c0) ∈ O with a20 + b20 + c20 = 1. The claim amounts to showing that a, c →
√

2/2 and

b→ 0 as t→∞.

We first show that b → 0. By Lemma 3.1 and Corollary 5.1, the quantity b2/a2 is monotone decreasing.

Since b2/a2 ≥ 0 it must converge to some limit as t → ∞. But then, d/dt(b2/a2) must converge to zero as

t→∞ which implies b2/a2 → 0 as t→ 0 since τ ′ = c4 is bounded away from 0 for large t.

Next, we have that
d

dt
log

a

c
= τ ′(c4 − a4)‖µ(τ(t))‖ = λ3(c4 − a4).

Observe that if a(t0) = c(t0) for some t0 ≥ 0, then a ≡ c for all t > t0 by uniqueness of ODE solutions.

Assume a(t) > c(t) for all t (resp. a(t) < c(t)). In this case, log a
c is bounded and monotone and hence must be

convergent. But then d/dt log a
c → 0 as t→∞ so c4 − a4 → 0. Since a2 + c2 → 1 as t→∞, it must hold that

lim
t→∞

a = lim
t→∞

c =

√
2

2
.
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6 Conclusion

Our results for the Bach flow presented here should be compared with the corresponding results for the Ricci

flow on simply connected nilmanifolds [11]. Similar to the Ricci flow case, the Bach flow on simply connected

nimanifolds always exists for all positive time and the normalised flow converges to an expanding soliton.

In order to study the Bach flow in greater generality, one would need to have an approach which dealt

with the complexitity of the Bach tensor. Since the Bach tensor is the gradient of a functional on a compact

manifold, and the norm of the Weyl tensor is constant on homogeneous manifolds, it would be interesting to

understand the relationship between Bµ and

µ 7→ |Wµ|2.
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Appendix: Mathematica Code

The following Mathematica code computes the Bach tensor of a simply connected, four-dimensional Lie

group.

g := DiagonalMatrix [{1 , 1 , 1 , 1 } ] ; ( ∗The Metric ∗)

invg := Inve r s e [ g ] ; ( ∗ Inve r s e Metric ∗)

c :=

ReplacePart [ ConstantArray [ 0 , {4 , 4 , 4} ] , (∗ Structure Constants o f the Lie Algebra ∗)

{{1 , 2 , 3} −> a , {1 , 2 , 4} −> b , {1 , 3 , 4} −> \gamma } ] ; (∗\gamma i s ’ c ’ in the r epor t ∗)

c = c − Transpose [ c ] ;

G[ i , j , m ] := G[ i , j , m] = (1/2) ( c [ [ i , j , m] ]

− Sum[ g [ [ l , i ] ] ∗ c [ [ j , k , l ] ] ∗ invg [ [m, k ] ] , {k , 1 , 4} , { l , 1 , 4} ]

+ Sum[ g [ [ l , j ] ] ∗ c [ [ k , i , l ] ] ∗ invg [ [m, k ] ] , {k , 1 , 4} , { l , 1 , 4 } ] ) ;

(∗ Def ines the Ch r i s t o f f e l Symols ∗)

Rm[ i , j , k , l ] := Rm[ i , j , k , l ] =

Sum[ g [ [ l , p ] ] (Sum[G[ j , k , q ]∗G[ i , q , p ] − G[ i , k , q ]∗G[ j , q , p ]

− c [ [ i , j , q ] ] ∗G[ q , k , p ] , {q , 1 , 4 } ] ) , {p , 1 , 4 } ] ;

(∗ ( 0 , 4 ) Curvature ∗)
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R[ i , j , k ] := (Sum[G[ j , k , q ]∗G[ i , q , p ] − G[ i , k , q ]∗G[ j , q , p ]

− c [ [ i , j , q ] ] ∗G[ q , k , p ] , {q , 1 , 4 } ] ) ;

(∗ ( 1 , 3 ) Curvature ∗)

Ric [ i , j ] := Ric [ i , j ] = Sum[R[ p , i , j ] , {p , 1 , 4 } ] ;

(∗ Ricc i Curvature ∗)

S := Sum[ invg [ [ i , j ] ] ∗ Ric [ i , j ] , { i , 1 , 4} , { j , 1 , 4 } ] ;

(∗ Sca la r Curvature ∗)

P[ i , j ] := (1/2) ( Ric [ i , j ] − (S/6)∗ g [ [ i , j ] ] ) ;

(∗ Schouten Tensor ∗)

Pog [ i , j , l ,m ] := Pog [ i , j , l ,m] =

(P[ i , m]∗ g [ [ j , l ] ] + P[ j , l ]∗ g [ [ i ,m] ] − P[ i , l ]∗ g [ [ j ,m] ] − P[ j ,m]∗ g [ [ i , l ] ] ) ;

(∗Kulkarni−Nomizu Product o f P and g ∗)

W[ i , j , k , l ] := W[ i , j , k , l ] = Rm[ i , j , k , l ] − Pog [ i , j , k , l ] ;

(∗Weyl Curvature ∗)

DP[ i , j , k ] := DP[ i , j , k ] =Sum[−G[ k , i , p ]∗P[ p , j ] − G[ k , j , p ]∗P[ i , p ] , {p , 1 , 4 } ] ;

DRic [ i , j , k ] := DRic [ i , j , k ] = Sum[−G[ k , i , p ]∗ Ric [ p , ] − G[ k , j , p ]∗ Ric [ i , p ] , {p , 1 , 4 } ] ;

CovP [ k , l ] := CovP [ k , l ] = Sum[ invg [ [ p , k ] ] ∗ invg [ [ q , l ] ] ∗P[ p , q ] , {p , 1 , 4} , {q , 1 , 4 } ] ;

(∗ Schouten Tensor with an index r a s i e d ∗)

Cotton [ i , j , k ] := Cotton [ i , j , k ] = (DP[ i , j , k ] − DP[ i , k , j ] ) ;

DC[ i , j , k , l ] :=DC[ i , j , k , l ] = Sum[−G[ l , i , p ]∗ Cotton [ p , j , k ]

− G[ l , j , p ]∗ Cotton [ i , p , k ] − G[ l , k , p ]∗ Cotton [ i , j , p ] , {p , 1 , 4 } ] ;

(∗ Covariant d e r i v a t i v e o f the Cotton Tensor ∗)

b [ i , j ] := b [ i , j ] = Sum[ invg [ [ l , q ] ] ∗DC[ i , j , l , q ] , { l , 1 , 4} , {q , 1 , 4} ] +

Sum[CovP [ k , l ]∗W[ k , i , j , l ] , {k , 1 , 4} , { l , 1 , 4} ]

(∗Bach Tensor ∗)
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