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1 Abstract

Dense correspondence is a fundamental problem in computer science. It is a pre-requisite to many applications

such as computer vision, facial recognition, and computer graphics. A correspondence between two surfaces is a

mapping from one to the other, and has two distinct types. Sparse correspondence maps only selected features

of each surface, while dense correspondence aims to match the entire surface. Common deformation mappings

for morphable models include rigid, non-rigid, affine and diffeomorphic, which can complicate the process of

finding a correspondence. To our knowledge, dense correspondence has not been applied to expression analysis.

We show that dense correspondence can be used to extract an expression from two facial surfaces, one neutral

and one expressive, using the BU3DFE dataset [6]. We also gained an understanding of the NICP algorithm

[1], its applications, and possibilities for further research.

2 Introduction

For two 2D images, a correspondence gives a mapping between similar features in the first image, to the same

features in the second. For example, consider the case of matching two images of a house in Figure 1. We

know that point A is the same roof, point B the same door, and point C the same path. However, while

they look different due to the time of year the picture is taken, the occlusion of the trees, and light levels,

a correct correspondence can determine that they are still the same features of the house, and therefore the

images represent the same house. The question becomes how are we able to determine this mapping; that is,

how can we automatically map similar features from one image to the other, and conclude that it is the same

house?

Figure 1: Example of the same house, in different seasons. While it is the same house, in the second image

it is less visible due to tree coverage. A correspondence algorithm needs to be robust against this. (Steve

Dunwell/Getty Images).

There are two types of correspondence: sparse and dense. The example above describes sparse correspon-

dence. This is a mapping of only several feature points in the image. In an example of facial recognition, those
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key features would include the nose, lips and eyes.

Conversely, dense correspondence finds a mapping between all the points in one image onto another. A

correct correspondence should be a one-to-one mapping for noiseless and complete surfaces. Certain instances

may require cropping, transformation or regularisation. This can occur, for example, in situations where the

two images have a different shape.

This correspondence problem also extends to 3D surfaces. In three dimensions, the correspondence is a

mapping of key points that exist on both surfaces. Correspondence is only considered for images and surfaces

sharing similar key features, otherwise the algorithms are ineffective. For example, two faces or two cars would

be appropriate, but not a face and a car.

In this project, the 3D surfaces used were facial scans, with one a neutral pose and the other an expressive

pose. The overall goal was to determine if an expression could be extracted after performing dense correspon-

dence between the two non-rigid surfaces. An initial rigid correspondence was made. Then, the Non-rigid

Iterative Closest Point algorithm [1] performs dense correspondence between the two surfaces. The difference

between the transformed neutral face, and the original neutral face, formed the expression.

3 Statement of Authorship

With the guidance of my supervisor, I ran the scripts provided by the NICP paper using MATLAB and then

applied the algorithm to the BU3DFE [6] dataset to extract the expression. The MATLAB code was written

by Charlie Nash. This report was written by myself with guidance from Syed Zulqarnain Gilani and Erchuan

Zhang.
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4 Dense Correspondence

4.1 Goals

The goals of this project were to gain an understanding of the current frameworks that establish dense corre-

spondence between surfaces, specifically the NICP algorithm [1]. We also aimed to understand how establishing

a correspondence between two similar faces, one neutral and one expressive, represents an expression. Data

cleaning of the BU3DFE dataset and application of the chosen algorithm to this dataset was also pursued.

AMSI funded this research.

4.2 Current Work

Correspondence presents a fundamental problem in computer science, particularly in the subfield of computer

vision. Determining a correct mapping between two related surfaces, such as two faces, is not a straightforward

procedure. For example, scans of faces may have different orientations, can have underlying differences due

to either gender or ethnicity [2], or the source faces can have undergone cosmetic change [3]. Computational

issues can also arise when the surfaces have different numbers of vertices, making matching difficult, as well,

the surfaces can suffer from occlusion, contain artefacts or have missing data.

This project deals with dense correspondence. Sparse correspondence is used to initialise the algorithm,

determining a mapping between a subset of vertices known as the landmark points. Then, the algorithm

attempts to match the remaining points on our template surface to the target in an optimal and robust way.

The optimal dense correspondence result is a bijection between the two surfaces; a one-to-one mapping. In

reality, given the difficulties outlined above, this is often not possible; in those cases, template vertices that

do not have any corresponding vertex in the target are ignored. This correspondence will return a matrix X

that will transform our template surface into the target surface. Since we are dealing with human faces for

this dataset, and by definition an expression is a transformation from a neutral face to an expressive one, the

resulting mapping constitutes the expression itself. That is, a mapping f : X → Y can represent X as a neutral

face, Y as an expressive face, and the mapping f as the expression itself.

The algorithm explored in this project is titled Nonrigid Iterative Closest Point, given in the paper Optimal

Step Nonrigid ICP Algorithms for Surface Registration, by Amberg, Romdhani and Vetter (2007) [1]. It

incrementally moves the template surface towards the target surface using an optimal affine transformation for

each vertex. It also uses a series of stiffness levels to regularise the transformation, which ensures that vertices

undergo movement of a similar amount to their neighbours.

It is worth noting that we are treating these surfaces as non-rigid, and performing non-rigid deformation.

Rigid deformation is defined as a transformation where the distance between vertices remains the same. This

would usually restrict the operations to translation, rotation and reflection. By definition, non-rigid transforma-

tion does allow a change in the distance between the points, and allows the establishment of a correspondence

between two similar surfaces that have minor changes between them. In our example, this would be a neutral
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face and an expressive face.

5 Algorithm

Let S(νn, ϵ), T (µm, δ) be the template and target surfaces, respectively, where νn, µm denote vertices and ϵ, δ

denote edges. In what follows, we may use S and T without specifying vertices and edges for simplicity. ST

will denote the transformed template surface.

The algorithm determines locally optimal affine transformations that deform the surface S towards the

surface T . Our surfaces are structured as triangulated meshes.

For each vertex vn in the template, a k-nearest neighbours search determines the closest point un in the

target template T . After, given that each vn has a destination, the optimal deformation matrix X is determined,

taking into account the current stiffness level. Initially, the stiffness is high, meaning a less flexible template,

and less of a deformation. The optimal deformation is then applied to the vertices, resulting in ST = ν(X).

The stiffness is then lowered, the k-nearest neighbours search repeats, until the algorithm terminates when the

given cost function has been minimised enough (in our case, 10−4).

5.1 Cost Function

The cost function to be minimised contains three parts: the distance between S and T , Ed; the difference

between transformations of neighbouring vertices Es; and the distance between the initial landmark terms El;

giving

E(X) = Ed(X) + αEs(X) + βEl(X) (1)

where α and β give the weights for the stiffness and landmark terms, respectively. The weight α influences the

flexibility, while β is used to deprioritise landmark terms towards the end of the algorithm. Expanding on this

function and rewriting into a canonical form allows for differentiation, and therefore minimisation.

5.1.1 Distance Term

The distance term Ed is defined as

Ed(X) =
∑
vi∈S

wi∥Xivi − ui∥2 (2)

where w are the associated weights and X the unknowns. The distance term assumes fixed correspondences,

and that both surfaces are in the same coordinate system vi = [x, y, z, 1]T . The target surface vertices are given

by ui, and the transformed template surface vertices Xivi. We sum the weighted distance between the paired

vertices in the template and target. This can be rewritten as

Ed(X) = ∥(W ⊗ I3)(Xdv
T − uT )∥2 (3)
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where W = diag(wi, ..., wn), I3 is the 3x3 identity matrix, ⊗ denotes the Kronecker product, and with Xd

denoting a diagonal matrix of unknowns. The weights vector w is set to 1 when a corresponding vertex is found,

and 0 otherwise. These weights can also be manually adjusted.

This form is not easy to differentiate. Therefore, Amberg et. al. [1] use a sparse matrixD= diag(vT1 , v
T
2 , ..., v

T
n ),

and arrange the target points such that U = [u1, ..., un]
T , giving the canonical form

Ed(X) = ∥W(DX−U)∥2F (4)

where ∥ · ∥F represents the Frobenius norm.

5.1.2 Stiffness Term

Es(X) =
∑
i,j∈ϵ

∥(Xi −XjG)∥2F (5)

A series of descending stiffness values α are used, which penalise differences of transformations between neigh-

bouring vertices. That is, two adjacent vertices should not move much relative to one another, keeping the

local deformations small while retaining the global, larger deformations. As the stiffness level is lowered, local

deformations are increased. In our project, the stiffness values were [50, 20, 5, 2, 0.8, 0.5, 0.35, 0.2].

The stiffness term can be represented as a node-arc incidence matrix [4]. Let M be a matrix with rows for

each edge ϵ and columns for each vertex ν. If an edge connects the vertices (i, j), then the nonzero entries in

the row for that edge are Mϵi = −1 and Mϵj = 1. In Equation (5), G = diag(1, 1, 1, γ), though in our case

γ = 1 regardless. Using this, we can rewrite (5) into a canonical form as

Es(X) = ∥(M ⊗G)X∥2F (6)

where ⊗ again denotes the Kronecker product and ∥ · ∥F represents the Frobenius norm.

5.1.3 Landmark Term

El =
∑

(vi,l)∈L

∥Xivi − l∥2 (7)

The landmark term uses the initial landmark points, and finds the distance between their transformed forms,

and the landmark vertices in the target T . This component of the cost function mirrors the distance function,

only restricted to the given landmark terms L.

We can use Equation (4) to bring this into a canonical form as well. Let DL denote only the rows containing

the landmark vertices from D, and UL the same for the target vertices. Then,

El(X) = ∥DLX−UL∥2F (8)
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5.2 Quadratic Form

Combining Equations (4), (6) and (8) gives the quadratic function

E(X) =

∥∥∥∥∥∥∥∥∥


αM⊗G

WD

βDL

X−


0

WU

UL


∥∥∥∥∥∥∥∥∥
2

F

=: ∥AX−B∥2F ,

(9)

where A =


αM⊗G

WD

βDL

, B =


0

WU

UL

.
This can be minimised exactly by setting its derivative to zero. After solving the system of equations, the

minimum is given by

X = (ATA)−1ATB (10)

This gives the optimal deformation which minimises the cost function, for our current level of stiffness. After

applying this transformation to our template surface with

ST = SX (11)

the stiffness is lowered, and we repeat the algorithm, starting with acquiring a new set of correspondences using

k-nearest neighbour. If

∥ST − S∥ < 10−4 (12)

the algorithm terminates, with ST representing the transformed template vertices that approximates T .

5.3 Expression Extraction

Since ST ≈ T , we can simply take the difference ST − S and get the expression itself. In this context the

expression is the operations to apply to our template surface, in order for it to closely approximate the target

surface.
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5.3.1 Example: Front View

Template Surface S Target Surface T

Transformed Template ST Expression (visual, rotated)

Our template surface S and target surface T are shown above. After the dense correspondence algorithm

finishes, the result is the transformed template ST . This closely approximates (visually) the target surface,

which would be a perfect correspondence. The extracted expression visually is not useful, but presented as an

example.

8



5.3.2 Example: Side View

Template Surface S Target Surface T

Transformed Template ST Expression (visual)
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6 Conclusion

The NICP algorithm provided an ability to build a dense correspondence between two non-rigid surfaces. When

these surfaces are human faces, the correspondence becomes the expression.

Further research into the NICP algorithm would aim to find a correspondence between multiple faces and

attempt to extract the expression from each of them. This would give the ability to add and remove expressions

on any face in the corresponded set.

An issue that appeared in this research is artefacts in the surfaces, which complicate the correspondence

process. A more robust approach that handled noisy data well would help the algorithm handle real-world data.

As well, if the neutral template surface still contained some expression (for example, a small smile or expressive

eyes) then the correspondence process can suffer from incorrect registration. Further work should attempt to

handle these cases.
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