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Abstract

The Kepler-Heisenberg Problem is an extension of the well studied Kepler Problem to

the non-Riemannian Heisenberg geometry. Dods and Shanbrom have previously shown

that the H = 0 subsystem is completely integrable and exhibits self-similar orbits. The

existence of self-similar orbits is novel for Hamiltonian systems. On the H = 0 subsystem,

we are able to parametrise the orbits in terms of two integrals of motion, the angular

momentum and dilational momentum. We have classified the orbits in terms of two

invariant quantities, the rotation number R and the dilation number D. The rotation and

dilation numbers are found to codify the self-similar properties of the H = 0 orbits. They

correspond proportionally to rotation by R and dilation by eD, respectively. We have

verified that periodic orbits exist when W = 0 and are parametrised by rational rotation

number r ∈ (−1, 1) \ {0}.
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1 Introduction

The Kepler problem is a well studied Hamiltonian system. The solution orbits describe the

motion of bodies about a fixed central sun. The bodies have an intrinsic kinetic energy and

exhibit a potential energy generated by the gravitational potential of the sun. For negative

energy solutions, the curves form closed orbits, and exhibit three important properties known as

Kepler’s laws: 1) the trajectories are ellipsoidal, 2) conservation of orbital angular momentum,

and 3) that scaling the orbital size and period of a solution by a dilational factor is also a valid

solution [1]. The ambient geometry of the Kepler problem is Euclidean space, which gives rise

to Kepler’s laws as the metric is isotropic and allows for dilations.

Analogous variants of the classical Kepler problem can be formulated in non-Euclidean

geometries. The first of which was Lobachevsky, who in 1835 posed the Kepler problem in

three dimensional hyperbolic space (see Diacu [2] for more examples). Typically one constructs

the kinetic energy from the Riemannian metric of the geometry. For the potential, the standard

approach is to consider the fundamental solution to Laplace’s equation defined on the geometry.

In the context of Euclidean geometry, the fundamental solution to Laplace’s equation in 3-

dimensional space corresponds to the 1/r dependence of the potential in the classical Kepler

problem.

An interesting question to pose is, what geometries offer analogous forms of Kepler’s three

laws? As noted by Montgomery and Shanbrom [1], the only Riemannian geometry with these

properties is Euclidean space [3]. For example, in hyperbolic geometry, Kepler’s third law fails

as this space does not permit dilations. Consequently, to pose the Kepler problem in non-

euclidean geometry such that analogous forms of Kepler’s laws hold, it is necessary to leave the

realm of Riemannian geometries and consider Sub-Riemannian geometries. One of the simplest

sub-Riemannian geometry that admit dilations is the Heisenberg geometry [4]. This geometry is

defined such that the vector fields X, Y satisfy the Heisenberg Lie Algebra [X,Z] = [Y, Z] = 0,

where Z := [X, Y ] [4]. The choice of such commutator relations is motivated by quantum

mechanics. When X = x̂, Y = p̂, and Z = iℏ, the relations become the Heisenberg canonical

commutation relations.

The Kepler problem was posed on the Heinsenberg group by Montgomery and Shanbrom

[1]. Solving for the solution curves is known as the Kepler-Heisenberg Problem. A surprising

property of the Kepler-Heisenberg problem is the existence of self-similar (fractal-like) orbits,

which were relatively recently identified by Dods and Shanbrom [5]. They also noted that these

solutions can be classified into three distinct types, future collision, past collision, and quasi-

periodic or periodic. Currently, little is known about the analytic and geometric properties of

the self-similar solutions. In this report we aim to classify the orbits of the zero-Hamiltonian

subsystem by computing invariant quantities known as rotation numbers.

1



2 System

The Hamiltonian of the Kepler-Heisenberg Problem is given by [6],

H = 1
2

(
(px − 1

2
ypz)

2 + (py +
1
2
xpz)

2
)
− 1

8π
√
(x2 + y2)2 + 16z2

(1)

Where x, y, z are the coordinates and px, py, pz are the conjugate momenta.

2.1 Change of Coordinates

The form of the Hamiltonian can be simplified by changing to new coordinates (s, θ, u). Ex-

plicitly, we use the canonical transformation derived by [5],

s =
1

4
log
(
(x2 + y2)2 + 16z2

)
θ = arg(x, y)

u = arg(x2 + y2, 4z)

with conjugate momenta,

ps = xpx + ypy + 2zpz

pθ = xpy − ypx

pu =
1

4
pz(x

2 + y2)− 2z
xpx + ypy
x2 + y2

Heuristically the point transformation corresponds to a form of spherical coordinates within

the context of the Heisenberg geometry. Here es is the radial component, θ the classical az-

imuthal angle, and u loosely the angle between the x-y plane and the z axis. We call ps the

dilational momentum, and pθ the angular momentum.

As the coordinate transformation is canonical, the form of Hamilton’s equations is preserved

in the new coordinate system. That is for coordinate q and momentum p, the time derivatives

are, dq
dt

= ∂H
∂p

and dp
dt

= −∂H
∂q
. As the coordinate transform is time independent, it follows that

the new Hamiltonian is simply the old Hamiltonian with new coordinates substituted.

In the new (s, θ, u, ps, pθ, pu) phase space, the Hamiltonian is H = e−2s(T + U), [6], where,

T = 1
2
secu (ps cosu+ pθ sinu)

2 + 1
2
cosu (pθ + 2pu)

2 and U = − 1

8π

Notice that the Hamiltonian is independent of time and angle θ. Likewise, the Hamiltonian

is ‘independent’ of coordinate s, up to multiplicative factor e−2s. Applying Hamilton’s equations

thus gives the following proposition.

Proposition 1. In the Kepler-Heisenberg system, the Hamiltonian H = E and angular momen-

tum pθ = J are two integrals of motion. The dilational angular momentum satisfies dps
dt

= 2H.

Thus, on the H = 0 subsystem, ps = W is also an integral of motion.
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Consequently, on the H = 0 submanifold, the system is completely integrable. That is

the number of degrees of freedom (three) is equal to the number of independent constants of

motion. In the general case H ̸= 0 it is not clear whether the system is integrable. As such,

we initially analyse the general system, but then focus our discussion to the zero Hamiltonian

subsystem.

However, to an extent we are able to ‘scale’ away the non-integral nature of dilational

momentum ps by introducing a parameterised time τ defined by the relation dτ
dt

= e−2s. In

τ -time the equations of motion are thus, dq
dτ

= e2s ∂H
∂p

and dp
dτ

= −e2s ∂H
∂q
. For all coordinates

except ps, we can bring e2s inside the partial derivative and form the new ‘pseudo-Hamiltonian’,

G := e2sH. The q’s and p’s satisfy Hamilton’s equations in τ -time respect to Hamiltonian G,

except ps which satisfies dps
dτ

= 2G. To simplify notation we let q̇ and ṗ be the τ -time derivatives.

Proposition 2. In τ -time, H and pθ remain integrals of motion. The important equations of

motion are,

ṡ = ps cosu+ J sinu

θ̇ = ps sinu+ J secu+ 2pu cosu

u̇ = 2 cosu(J + 2pu)

ṗs = 2e2sH = 2G

Rewriting the Hamiltonian, we find the following general relationship between u and pu.

Proposition 3. The relationship between angle u and conjugate momentum pu is,

2(e2sE − U) cosu = (ps cosu+ J sinu)2 + cos2 u (J + 2pu)
2 (2)

2.2 Integrable Subsystem and Rotation Numbers

For completely integrable systems, with n-degrees of freedom and autonomous of time, it is

well known by the Liouville-Arnold theorem, that compact connected energy level sets lie on

invariant n-tori (T n). However, for the Kepler-Heisenberg problem, the dilational action is

non-compact. Although, we can appeal to the Liouville–Arnold–Nekhoroshev Theorem (see

[7]), which gives analogous results. In particular,

Theorem 1. The Kepler-Heisenberg H = 0 subsystem solution curves lie on invariant T 2 ×R
manifolds. Moreover, there exists a canonical transformation to action-angle coordinates (Ii, ϕi)

such that the Hamiltonian can be written independently of coordinates ϕi. The action variables

are chosen to be I, J,W , where I is the u-pu action variable. That is H = H(I, J,W ).

Locally on the H = 0 submanifold, the (Ii, ϕi) action-angle coordinates satisfy Hamilton’s

equations with respect to Hamiltonian H = H(I, J,W ). The equations of motion are, İi =

− ∂H
∂ϕi

= 0 and ϕ̇i =
∂H
∂Ii . Thus, the actions Ii are constants, and so must be the frequencies

ωi := ϕ̇i.

3



Taking the ratio of two frequencies gives an invariant quantity known as the rotation number,

Rj
i = ωi/ωj. Qualitatively, this corresponds to the change in one angle-coordinate with respect

to another. In general, the ϕi coordinates lie on a 1-torus, that is they ‘warp around’ the

interval [0, 2π). In ϕi-ϕj phase space, the orbits follow linear lines that return to initial state

after finite or infinite time, and thus the rotation number dictates whether the orbit is periodic

or quasi-periodic. If the rotation number is rational, the coordinates returns to initial state

in finite time and the system is periodic. Otherwise, if it is irrational, the orbit is dense in

[0, 2π)× [0, 2π), and is known as quasi-periodic.

As the solution curves of the H = 0 subsystem are non-compact, one of the coordinates

must lie on the real-line (not a torus), and so is not a true angle. In this case, it is still possible

to define an analogous form of a ‘rotation number’, however when these rotation numbers are

non-zero, the motion will be neither periodic or quasi-periodic. Hence, the system only exhibits

periodic motion when the corresponding non-compact rotation number is zero.

3 Results

3.1 Action Integral

The action I is constructable by ‘integrating out’ the time dependence of pu and u. We

construct the action integral as the path integral along the u-pu orbit,

I =
1

2π

∮
pu du

The action I corresponds to the area enclosed by the u-pu orbit. From equation (2) this is

bounded for all J ̸= 0, as otherwise pu → ±∞ as u→ ±π
2
, which corresponds to collision with

the z-axis.

3.1.1 ξ Coordinate Transform

We seek to parametrise pu and u such that we reduce the trigonometric expressions in equation

(2) to polynomial terms. We introduce the bijective coordinate transform, ψ : [−π
2
, π

2
] →

[−1, 1], given by ξ := ψ(u) = tan u
2
.

Proposition 4. General equations of motion in terms of ξ are,

ṡ =
1

1 + ξ2
(
ps(1− ξ2) + 2Jξ

)
θ̇ =

1

1− ξ4
(
2psξ(1− ξ2) + J(1 + ξ2)2 + 2pu(1− ξ2)2

)
u̇ =:

2

1 + ξ2
ξ̇

Likewise, we retain Ḣ = 0, ṗθ = 0, and ṗs = 2H.
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Notice, by considering the u̇ equation, one finds, 1
2
J+pu = ξ̇

2(1−ξ2)
. Hence, rewriting equation

(2) in terms of ξ and ξ̇,

ξ̇2 = 2(e2sE − U)(1− ξ4)−
(
ps(1− ξ2) + 2Jξ

)2
(3)

The sign of ξ̇2 is critical for understanding the motion of the system. Solution curves are

permitted only if u̇, and hence ξ̇, is real. Notice ξ̇2 can be expressed as a single variable

quartic polynomial. Strictly speaking we consider E = 0, and hence ps = W is constant. Let

K := e2sE − U ≡ 1
8π
, for E = 0. We introduce, P (ξ) := ξ̇2.

P (ξ) := (2K − p2s)− 4psJξ + (2p2s − 4J2)ξ2 + 4psJξ
3 − (2K + p2s)ξ

4 (4)

Thus, in terms of ξ, pu obeys the relation,(
pu +

1
2
J
)2

=
P (ξ)

4(1− ξ2)2
(5)

By introducing the polynomial P (ξ) we only need to consider the roots abstractly. The

quartic degree allows us to readily classify the roots via the discriminant, and by the funda-

mental theorem of algebra, that there exists four not necessarily distinct roots. We employ this

abstraction to compute the action integral.

Proposition 5. Let a, b be roots of the quartic polynomial P (ξ) such that P (ξ) ≥ 0 for all

ξ ∈ (b, a). Then, the u-pu action integral is given by,

I =
1

π

∫ a

b

√
P (ξ)

1− ξ4
dξ (6)

Proof. We construct the action integral I by, I = 1
2π

∮
pu du. From equation 5, it’s clear that(

pu +
1
2
J
)2

= Q(u) = P (tanu/2)
4(1−tan2 u/2)2

. That is, offset by some constant −J
2
, p2u can be written as

a single variable function of u, Q(u). The solution curves in u, pu space are symmetric about

pu = −1
2
J .

We consider the path integral over the top and bottom curves, and parametrised in terms of

u we have, p±u = −1
2
J ±

√
Q(u). Clearly for pu to be real, we require Q(u) to be non-negative.

We notate the endpoints as α, β, where Q(α) = Q(β) = 0. Expanding the action integral,∮
pu du =

∫ α

β

p+u du+

∫ β

α

p−u du

=

∫ α

β

−1
2
J +

√
Q(u) du−

∫ α

β

−1
2
J −

√
Q(u) du

= 2

∫ α

β

√
Q(u) du

The integral is changed to be expressed in terms of the polynomial ξ. We substitute ξ =

tan u
2
, and use du

dξ
= 2

1+ξ2
. By construction,

√
Q(u) =

√
P (ξ)

2(1−ξ2)
. Root a of P (ξ) corresponds to

5



root β of Q(u), and likewise b for β. Performing the substitution thus gives,
∫ α

β

√
Q(u) du =∫ a

b

√
P (ξ)

1−ξ4
du
dξ
dξ. Thus, 1

2π

∮
pu du = 1

π

∫ a

b

√
P (ξ)

1−ξ4
dξ as required.

3.2 Period and Rotation Numbers

The existence of action-angle coordinates in the zero Hamiltonian sub-system allows us to

greatly simplify the analysis of the system. Recall, by the Liouville-Arnold theorem, there

exists canonical transformation to action-angle coordinates, with action integrals as I, J,W .

Moreover, the Hamiltonian can be implicitly written as, H = H(I, J,W ). By construction we

have explicitly I = I(H, J,W ).

Abstractly, let the conjugate coordinates to actions I, J,W be ϕI , ϕJ , ϕW respectively. Re-

call for action-angle coordinates, the actions Ii and frequencies ωi = ϕ̇i =
∂H
∂Ii are constants. We

introduce two rotation numbers of intrest. The rotation number R := ωJ/ωI and the dilation

number D := ωW/ωI . The remaining rotation number is simply the ratio of the other rotation

numbers, ωJ/ωW = R/D, however this does not provide any additional information.

Likewise, by computing the frequencies, it is possible to find the period of each angle coor-

dinate. We consider the conjugate angle ϕI to action I. The angular frequency is ωI = ∂H
∂I ,

and thus period T = 2π ∂I
∂H

∣∣
H=0

. For the τ -time period, we replace the Hamiltonian H with

pseudo-Hamiltonian G = e2sH. Note, G = K + U , where U is a constant, hence ∂
∂G

= ∂
∂K .

Rather than explicitly computing the partials of the Hamiltonian in action-angle coordi-

nates, we utilise the implicit nature of the Hamiltonian and appeal to the implicit function

theorem.

Lemma 1. The rotation and dilation numbers are given by the following partial derivatives,

R = −∂I
∂J

and D = − ∂I
∂W

Proof. Recall the Implicit function theorem. Let f : Rn+1 → R be a smooth function, and

consider the level set f(x, y) = 0, where x ∈ Rn and y ∈ R. Suppose a ∈ Rn and b ∈ R satisfy

f(a, b) = 0. Then, if ∂f
∂y
(a, b) ̸= 0, then there locally exists g : Rn → R such that f(x, g(x)) = 0

is satisfied. Moreover, ∂g
∂xi

= −
(

∂f
∂y

)−1
∂f
∂xi

.

For the Hamiltonian subsystem, we claim the Hamiltonian H : R2 × R → R is locally

smooth away from the zero discriminant curve. Note that by construction I = I(J,W ) is

an implicit function satisfying H(J,W, I(J,W )) = 0. Applying the partial derivative result,
∂I
∂Ii = −

(
∂H
∂I

)−1 ∂H
∂Ii . Rearranging terms, we thus have, Ri =

ωi

ωI
= ∂H/∂Ii

∂H/∂I = − ∂I
∂Ii as required.

Proposition 6. Let b < a be roots of the quartic polynomial P (ξ) such that P (ξ) ≥ 0 for

all ξ ∈ (b, a). Then the τ -time period, rotation number, and dilation number are given by the

following integrals.
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Period τ -time,

T = 2

∫ a

b

1√
P (ξ)

dξ (7)

Rotation Number,

R =
1

π

∫ a

b

2ξ

1− ξ4
(
W (1− ξ2) + 2Jξ

) dξ√
P (ξ)

(8)

Dilation Number,

D =
1

π

∫ a

b

1

1 + ξ2
(
W (1− ξ2) + 2Jξ

) dξ√
P (ξ)

(9)

Proof. Recall we have action integral, I = 1
π

∫ a

b

√
P (ξ)

1−ξ4
dξ. As discussed earlier, the period in

τ -time is given by ∂I
∂G

= ∂I
∂K . The rotation and dilation numbers are given by −∂I

∂J
and − ∂I

∂W

respectively.

Compute ∂I
∂X

, where X = K, J,W .

∂I
∂X

=
1

π

∫ a

b

1

2
√
P (ξ)

∂P

∂X

dξ

1− ξ4
=

1

2π

∫ a

b

1√
P (ξ)

∂P

∂X

dξ

1− ξ4

Taking the partial derivatives of the P (ξ) polynomial, ∂P
∂K = 2(1 − ξ4), ∂P

∂J
= −4ξ

(
W (1 −

ξ2) + 2Jξ
)
, and ∂P

∂W
= −2(1− ξ2)

(
W (1− ξ2) + 2Jξ

)
. Simplifying gives the result as required.

3.3 Integral Evaluation

The integrals we wish to solve are known in the Mathematical literature as elliptic integrals.

In general, no simple closed form solution exists in terms of elementary functions such as

polynomial or logarithmic expressions. We consult a standard table of integrals [8]. Separating

our integrals by partial fraction decomposition allows us to readily read off the solutions to the

integral equations in terms of elliptic functions.

Lemma 2. Let

Ip :=

∫ a

b

1

ξ − p

dξ√
P (ξ)

Then the rotation and dilation numbers can be expressed as,

R =
1

π
(JI−1 − JI1 + (W + iJ)Ii + (W − iJ)I−i) (10)

and

D =
1

π

(
−1

2
WT + (J − iW )Ii + (J + iW )I−i

)
(11)

7



Proof. We separate the rotation number and dilation number integrals into W and J compo-

nents. We find,

R =
W

π

∫ a

b

2ξ

1 + ξ2
dξ√
P (ξ)

+
J

π

∫ a

b

4ξ2

1− ξ4
dξ√
P (ξ)

D =
W

π

∫ a

b

1− ξ2

1 + ξ2
dξ√
P (ξ)

+
J

π

∫ a

b

2ξ

1 + ξ2
dξ√
P (ξ)

Applying partial fraction decomposition, we find,

2ξ

1 + ξ2
=

1

ξ + i
+

1

ξ − i

4ξ2

1− ξ4
=

1

ξ + 1
− 1

ξ − 1
+

i

ξ − i
− i

ξ + i

1− ξ2

1 + ξ2
=

i

ξ + i
− i

ξ − i
− 1

Note W
π

∫ a

b
dξ√
P (ξ)

= W
2π
T . Expanding the above integrals and applying the definition of Ip

we find the corresponding results above.

3.3.1 Discriminant

The domain over which the integral is computed is determined entirely by the region which

the polynomial P (ξ) is non-negative. To this end, it is necessarily to classify the roots of the

polynomial depending on parameters J and W .

The polynomial discriminant provides a thorough method of classifying the roots of an

arbitrary polynomial. In general, the discriminant is zero whenever two roots coincide. In the

case of the quartic polynomial, the discriminant is positive when the roots are distinct and all

real or all non-real, and negative otherwise. For real coefficient polynomials, as all complex

roots appear in complex conjugate pairs, when the discriminant is negative we have two distinct

real roots and a non-real complex conjugate pair of roots.

The explicit expression for the discriminant is,

−4096
(
4J8K2 + 8J4K4 + 4K6 + 12J6K2W 2 − 20J2K4W 2 + 12J4K2W 4 −K4W 4 + 4J2K2W 6

)
(12)

3.3.2 Period Integrals

Proposition 7. Consider J,W where the polynomial P (ξ) has positive discriminant. The roots

are real distinct. Let them be d < c < b < a.

Then the τ -time period integrals evaluate to,

T = 2

∫ c

d

dξ√
P (ξ)

= 2

∫ a

b

dξ√
P (ξ)

=
2g√

2K +W 2
K(k2) (13)

8



(a) Discriminant function plotted over J,W ≥
0. In the yellow and blue regions, the dis-

criminant is positive and negative, respec-

tively. The zero discriminant curve occurs at

the boundary of the positive and negative re-

gions. The coloured dots correspond to choice

of (J,W ) parameters used to form the orbits

in figure 1b.

(b) Orbits in u-pu phase space. Blue, green,

and red curve occur in negative, zero, and pos-

itive discriminant region respectively. The or-

bits satisfy equation (2).

Figure 1: Discriminant of polynomial P (ξ) and example orbits in u-pu phase space.

Where K is the complete elliptic integral of the first kind, and g = 2/
√

(a− c)(b− d) and

k2 = (a−b)(c−d)
(a−c)(b−d)

.

Proof. We consult the elliptic integral handbook, [8], and refer to it’s pages and integral identity

numbering scheme. We assume J,W are chosen such that the polynomial P (ξ) is in the positive

discriminant region.

Consider the integral
∫

dξ√
P (ξ)

. Abstractly we can expression the polynomial as P (ξ) =

−(2K +W 2)(ξ − a)(ξ − b)(ξ − c)(ξ − d), where d < c < b < a. Thus, we have T = 2√
2K+W 2 Ĩ,

where, Ĩ =
∫

dξ√
−(ξ−a)(ξ−b)(ξ−c)(ξ−d)

.

Consider the left lobe. From page 103, integral identity 252.00, we find, Ĩ = gF (φ, k2),

where g = 2/
√

(a− c)(b− d), k2 = (a−b)(c−d)
(a−c)(b−d)

, and φ = π
2
. F is an elliptic integral of the first

kind. However, as φ = π
2
the elliptic integral is complete and can write F (φ, k2) = K(k2).

Thus, Ĩ = gK(k2).

Consider the right lobe, from page 120, integral identity 256.00, we find the same results as

for the left lobe. Hence the periods are equal.

9



Proposition 8. Consider J,W where the polynomial P (ξ) has negative discriminant. Let b < a

be the corresponding real roots and c, d = c̄ the non-real complex conjugate root.

Then the period integral evaluates to,

T =

∫ a

b

dξ√
P (ξ)

=
4g√

2K +W 2
K(k2) (14)

Where K is the complete elliptic integrals of the first kind, and A2 = (a − ℜ(c))2 + ℑ(c)2,
B2 = (b−ℜ(c))2 + ℑ(c)2, g = 1/

√
AB, and k2 = (a−b)2−(A−B)2

4AB
.

Proof. Assume J,W chosen such that the polynomial P (ξ) is in the negative discriminant

region. Let the roots be notated by b < a, c, d = c̄ respectively. As in the negative discriminant

region, we compute T = 2√
2K+W 2 Ĩ, where Ĩ = dξ

(a−ξ)(ξ−b)(ξ−c)(ξ−d)
.

From page 133, integral identity 259.00, Ĩ = gF (φ, k2), where φ = π, A2 = (a − ℜ(c))2 +
ℑ(c)2, B2 = (b − ℜ(c))2 + ℑ(c)2, g = 1/

√
AB, and k2 = (a−b)2−(A−B)2

4AB
. However, we have the

known identity, F (π, k2) = 2K(k2). Thus, Ĩ = 2gK(k2).

3.3.3 Rotation Number Integrals

As discussed earlier, to evaluate the integrals analytically, we first evaluate the integral Ip for

p = 1,−1, i,−i, and use this to construct the appropriate rotation number integrals. See the

appendix for the thorough working detail of deriving the analytic expressions for the integrals

by looking up the appropriate integral identities in the elliptic integral handbook, [8].

Proposition 9. Consider J,W where the polynomial P (ξ) has positive discriminant. The roots

are real distinct. Let them be d < c < b < a.

Then the integral,

Ip =

∫ c

d

1

ξ − p

dξ√
P (ξ)

Is given by Ip =
1√

2K−W 2 Ĩp, where,

Ĩp = − g

p− a
K(k2) − g(a− d)

(a− p)(p− d)
Π(β2, k2) (15)

K and Π are complete elliptic integrals of the first and third kind respectively. g = 2/
√
(a− c)(b− d),

k2 = (a−b)(c−d)
(a−c)(b−d)

, and β2 = (d−c)(p−a)
(a−c)(p−d)

.

Proposition 10. Consider J,W where the polynomial P (ξ) has positive discriminant. The

roots are real distinct. Let them be d < c < b < a.

Then the integral,

Ip =

∫ a

b

1

ξ − p

dξ√
P (ξ)

10



(a) Contour plot of Rotation Number R for

the ‘left lobe’.

(b) Contour plot of Rotation Number R for

the ‘right lobe’.

Figure 2: Contour plots of left and right lobes of Rotation Number functions. Rotation number

values for left and right lobe are equal modulo one. The contours are in 0.05 step increments.

Is given by Ip =
1√

2K−W 2 Ĩp, where,

Ĩp = − g

p− c
K(k2) +

g(b− c)

(b− p)(p− c)
Π(β2, k2) (16)

K and Π are complete elliptic integrals of the first and third kind respectively.

g = 2/
√

(a− c)(b− d), k2 = (a−b)(c−d)
(a−c)(b−d)

, and β2 = (a−b)(p−c)
(a−c)(p−b)

.

Proposition 11. Consider J,W where the polynomial P (ξ) has negative discriminant. Let the

corresponding real roots be b < a and non-real complex conjugate roots be c, d = c̄.

Then the integral,

Ip =

∫ a

b

1

ξ − p

dξ√
P (ξ)

Is given by Ip =
1√

2K−W 2 Ĩp, where,

Ĩp =
2g(A−B)

A(b− p)−B(a− p)
K(k2) − g(A+B)(a− b)

(a− p)(b− p)

(
A(b− p) +B(a− p)

A(b− p)−B(a− p)

)
Π(α2, k2) (17)

K and Π are complete elliptic integrals of the first and third kind respectively.

A2 = (a− ℜ(c))2 + ℑ(c)2, B2 = (b− ℜ(c))2 + ℑ(c)2, g = 1/
√
AB, k2 = (a−b)2−(A−B)2

4AB
, and

α2 =

(
A(b−p)−B(a−p)

)2
4AB(a−p)(b−p)

.

3.3.4 Properties of Rotation and Dilation Number Functions

Evaluating the analytic expressions for the period and integrals Ip, we are able to compute the

rotation and dilation numbers for all J,W ∈ R, where the discriminant of P (ξ) is non-zero.

11



Figure 3: Contour plot of Dilation Number function. Left and right lobes numerically have

equal values, hence only the left lobe is shown. The contours are in 0.033 step increments.

The rotation number forW,J ≥ 0 is shown in figure 2. Within the positive discriminant region,

the rotation numbers for the left and right lobes are equivalent modulo one. Qualitatively, the

left lobe corresponds to motion with contractible orbits in θ-θ̇ phase space, while the right lobe

lies on T 1 is not contractible.

The special case of the rotation number for when W = 0 is shown in figure 4. By inspection

we surmise that R → 1 as J → 0 and R → 0 as J → ∞, however we have not formally proved

this. We claim this function is monotonically decreasing, and hence forms a bijection between

[0,∞] and [0, 1]. Figure 3 shows the dilation number for W,J ≥ 0. In fact, numerically the

dilation numbers for the left and right lobes appear to be equal. However, we have not formally

proved this.

From the analytical expression, we find the following symmetries of the rotation and dilation

numbers. For R, R(−J, 0) = −R(J, 0), Rleft(−J,W ) = −Rright(J,W ), and R(−J,−W ) =

−R(J,W ). Likewise, for D, D(−J,W ) = D(J,W ) and D(J,−W ) = D(J,W ). Together with

the analytical expression, we conclude that D < 0 for W < 0, D = 0 for W = 0, and D > 0 for

W > 0. This corroborates with the results of [5].

4 Orbit Classification

4.1 Rotation Numbers and Self-Similarity

In the Kepler-Heisenberg H = 0 subsystem, the rotation and dilation numbers R and D
correspond to the amount the system rotates and dilates respectively.

12



Figure 4: Rotation number function R(J) for H = 0 and W = 0 subsystem. Plot is shown

for positive angular momentum J , however R(J) has odd symmetry, R(−J) = −R(J). By

inspection we notice that as J → 0, R → 1, and as J → ∞, R → 0.

Lemma 3. The rotation and dilation numbers have the following physical correspondence,

R =
∆θ

2π
and D =

∆s

2π

where ∆θ and ∆s are the change in coordinate θ and s after the system completes an orbit

in u-pu phase space.

We leave the details to the appendix. We take the ratios of the τ -time derivatives of θ and

s with u, and integrate over u.

Proposition 12. The inverse point transformation (s, θ, u) 7→ (x, y, z) is given by,

x = es
√
cosu cos θ, y = es

√
cosu sin θ, and z = 1

4
e2s sinu

After each complete orbit in u-pu phase space, we have the rotation and dilation mapping,[
x

y

]
7→ e2πD

[
cos 2πR − sin 2πR
sin 2πR cos 2πR

] [
x

y

]
and z 7→ e4πDz

Proof. The inverse transformation readily follows from inverting the (x, y, z) 7→ (s, θ, u) coor-

dinates. After a complete orbit, u 7→ u, θ 7→ θ +∆θ = θ + 2πR, and s 7→ s +∆s = s + 2πD.

Evaluating x, y, z at these updated s, θ, u gives the results as required.

Corollary 1. Consider a curve γ(τ) = (x, y, z, px, py, pz) in phase space satisfying the Hamil-

tonian H(γ) = 0, with rotation and dilation numbers R and D. Suppose γu(τ) = (u, pu) is γ

projected into u-pu phase space, and let T be the τ -time period. That is, the smallest T such

that γu(τ + T ) = γu(τ). Notate x(τ) := [x(τ), y(τ)]T

Then, the coordinates satisfy x(τ + T ) = e2πDR2πRx(τ) and z(τ + T ) = e4πDz(τ). Where

Rθ is the rotation matrix by angle θ.

13



(a) Rotation number j/k = 2/3.

Corresponding J ≈ 0.11308, W = 0.

(b) Rotation number j/k = 4/5.

Corresponding J ≈ 0.0709672, W = 0.

Figure 5: Periodic orbits of the system projected into the x, y plane. Each orbit has rational

rotation number R = j : k. Solutions lie on the H = 0 subsystem, and initial conditions are

W = 0, J = R−1(j/k), and s = θ = u = 0. pu is chosen such that H = 0 is satisfied.

In other words, whenever the R and D rotation and dilation numbers exist, and the u-pu
phase space orbits are periodic, the orbits are self similar. The self-similarity is illustrated in

figure 6a. By equation (2) and Hamilton’s equations, WhenH = 0 one can show u̇ = u̇(u, J,W ).

As such, the u τ -time period exists (and hence pu τ -time period), and the H = 0 subsystem

exhibits self-similarity.

4.2 Periodic Orbits

If we consider the action-angle coordinate system, the actions Ii are constants, and motion

depends entirely on linearly evolving ‘angle’-coordinates ϕi. The orbits of the system are

completely characterised by rotation and dilation numbers. When W = 0, the dilation number

is zero, D = 0, and the orbits are non-dilating. The orbits are thus characterised by the rotation

number R(J). This allows us to classify the periodic orbits of the H = 0 subsystem, for J ̸= 0.

Theorem 2. Consider the H = 0 subsystem of the Kepler-Heisenberg Problem. For every real

number r ∈ (−1, 1)\{0}, there exists a unique orbit with rotation number r and dilation number

D = 0. These orbits occur when W = ps = 0, and are periodic for rational r.

Proof. We employ the result that D = 0 ⇐⇒ W = 0. From our conjecture of the rotation

number function for W = 0, R form a bijection between (0,∞) and (0, 1). The odd symmetry

of R(J,W = 0) thus gives a bijection between R \ {0} and (−1, 1) \ {0}.

Example plots of orbits for H = W = 0 are shown in figure 5. For rational rotation number

R = j : k, j corresponds to the number of times the solution curve ‘rotates’ around the z-axis

14



(a) Blue coloured curve shows motion within

one ‘u-pu complete cycle’. The red, yellow,

purple, and green curves are dilated and ro-

tated according to proposition 12. The rota-

tion number is R = 1/5 and dilation number

is D = 0.0625. J ≈ 0.287 and W = 0.1.

(b) Rotation number R = 1/19, and dilation

number D = 0.029. Initial conditions, J =

0.502789,W = 0.28.

Figure 6: Example Future unbounded orbits (W > 0). Rotation numbers are chosen as R =

1 : k, and appropriate J parameter is chosen by inverting the R(J,W ) for a particular W .

Ration rotation numbers R = j : k are also possible, however, the dilating properties of the

orbits means the symmetry becomes obfuscated.

every k periods of coordinate u in u-pu phase space. The orbit classification agrees with the

numeric classification of H = 0 orbits discovered by Dods and Shanbrom [6].

4.3 General case

When W ̸= 0 it’s known that the orbits are either contracting (W,D < 0) or expanding

(W,D > 0). Example unbounded orbits are shown in figure 6. The self-similar nature of

the orbits is exemplified in figure 6a. The space of rotation and dilation numbers over J,W

parameter space is not yet rigorously understood. However, the contour plot in figure 7 gives

a qualitative understanding. The contour lines in general are not orthogonal to one another,

and there exists tangential contour lines that restricts (R,D) to some subset of R2. This is

especially obvious near the zero discriminant curve. We would like to formally understand the

range of R and D, and determine whether the values are infinite or limit to a finite value along

the zero-discriminant ridge.
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Figure 7: Contour plot of Rotation and Dilation number functions for left-lobe. Contours are

separated by incremental values of 0.025. Each contour line corresponds to constant rotation

or dilation number values.

5 Summary

Conclusion We have computed analytical expressions for the rotation and dilation numbers

for the Hamiltonian subsystem H = 0. Our analysis holds for the positive and negative dis-

criminant region of the polynomial P (ξ). The rotation and dilation number invariant quantities

allow us to completely classify the orbits of the H = 0 subsystem.

The rotation number R corresponds to rotation of the orbits about the z-axis. The dilation

number D corresponds to dilational expansion (positive D) or contraction (negative D) of the

orbits; future unbounded or future collision respectively. The sign of D is given by the sign

of dilational momentum parameter W . As such, periodic orbits occur only when W = 0.

The rotation and dilation number invariant quantities give rise to the self-similar nature of

the H = 0 orbits. They describe how Hamiltonian solution curve segments map to the global

solution curve under periodic τ -time translation, via rotation and dilation.

From observation of figure 4 we conjecture that R(J) reaches every rotation number r ∈
(0, 1] uniquely for J ∈ [0,∞). Even symmetry of R(J) implies similar results for rotation

numbers r ∈ (−1, 0]. However we have not yet been able to formally prove this. We have

verified that for the H = 0 subsystem, closed periodic orbits exist when W = 0. For periodic

orbits the rotation number R(J) is rational.
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Future Work On the W = 0 line, the rotation number R is ill-defined. In finite time, the

system reaches the z-axis (u→ ±π
2
), which is known to be singular in the Heisenberg geometry

[5]. Moreover, below the zero discriminant curve in (J,W ) parameter space, as W → 0 from

the positive side, the rotation number function appears to limit to 1, while it appears to limit

−1 as W → 0 from the negative side. We would like to prove these limits formally.

Similarly, we would like to extend our analysis of the rotation and dilation number integrals

to the zero-discriminant curves. As this would require a double root in polynomial P (ξ), the

integrals are no longer be elliptic and would be solvable in terms of elementary functions. The

contour lines directed into the zero discriminant curve in figure 2 appears to imply the rotation

number may be finite along the lower zero discriminant curve. However, from 3, we expect

the dilation number to diverge along this curve. Similarly, we would like to parameterise the

zero discriminant curves, which can be done by assuming the double root function form of the

polynomial P (ξ) and comparing coefficients.

We would also like to show that the dilation number for left and right lobes are equal.

Qualitatively, this appears to be true. Likewise, we would like to find an analytical argument

to show the rotation numbers of the left and right lobe differ by 1.

We would also like to attempt to analyse the H ̸= 0 case. In this setting, the system is at

least partially integrable, with H, J constant, however, it is not clear whether there exists a

third integral of motion.
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[4] R. Montgomery, M. Shapiro, and A. Stolin, “A nonintegrable sub-riemannian geodesic flow

on a carnot group,” Journal of dynamical and control systems, vol. 3, no. 4, pp. 519–530,

1997.

[5] V. Dods and C. Shanbrom, “Self-similarity in the kepler–heisenberg problem,” Journal of

nonlinear science, vol. 31, no. 3, 2021.

[6] V. Dods and C. Shanbrom, “Numerical methods and closed orbits in the kepler-heisenberg

problem,” Experimental mathematics, vol. 28, no. 4, pp. 420–427, 2019.

17



[7] E. Fiorani, G. Giachetta, and G. Sardanashvily, “The liouville–arnold–nekhoroshev theorem

for non-compact invariant manifolds,” Journal of physics. A, Mathematical and general,

vol. 36, no. 7, pp. L101–L107, 2003.

[8] P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists,

vol. 67 of Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive

Studies in Mathematics. Berlin, Heidelberg: Springer Berlin / Heidelberg, second edition,

revised. ed., 1971.

A Proof of Lemma 3

Suppose the system has some initial condition (s0, θ0, u0, ps,0, pθ,0, pu,0) at t = 0. Let T ̸= 0

be the first time where u and pu return to their initial values. We compute the corresponding

change in θ and s.

For θ, ∆θ = θT − θ0 =
∫ T

0
dθ
dτ
dτ . We perform change of variables to integrate in terms of u

and find, ∆θ =
∮

dθ
dτ

dτ
du
du. Likewise for s, ∆s =

∮
ds
dτ

dτ
du
du.

Computing the ratio of τ -time derivatives, we find, θ̇/u̇ = 2Wξ(1−ξ2)+J(1+ξ2)2+2pu(1−ξ2)

2ξ̇(1−ξ2)
and

ṡ/u̇ = W (1−ξ2)+2Jξ

2ξ̇
. Recall, 2pu = ξ̇

1−ξ2
− J . The first expression simplifies,

θ̇/u̇ = 1
2ξ̇(1−ξ2)

(
2Wξ(1− ξ2) + J(1 + ξ2)2 − J(1− ξ2)2 + ξ̇(1− ξ2)

)
. Notice, (1 + ξ2)2 − (1 −

ξ2)2 = 4ξ2. Thus expanding, θ̇/u̇ = Wξ

ξ̇
+ 2Jξ2

ξ̇(1−ξ2)
+ 1

2
.

Writing out the ∆θ integral, ∆θ =
∮ Wξ(1−ξ2)+2Jξ2

ξ̇(1−ξ2)
du+ 1

2

∮
du. The second term is identically

zero.

Similar to the I action integral, we integrate over the positive and negative symmetric

halves of the θ̇/u̇ and ṡ/u̇ integrands, from u = α to u = β. Thus, compute ∆θ = 2
∫ β

α
θ̇/u̇ du

and ∆s = 2
∫ β

α
ṡ/u̇ du. We now perform change of variables to integrate over ξ. Let a = tan α

2

and b = tan β
2
. Recall, du

dξ
= 2

1+ξ2
, and the definition of polynomial P (ξ) := ξ2. Thus, ∆θ =

2
∫ b

a
Wξ(1−ξ2)+2Jξ2

(1−ξ4)
√

P (ξ)
dξ. Thus,

∆θ = 2

∫ a

b

2ξ

1− ξ4
(
W (1− ξ2) + 2Jξ

) dξ√
P (ξ)

Likewise, for δs, the integral becomes,

∆s = 2

∫ a

b

1

1− ξ4
(
W (1− ξ2) + 2Jξ)

) dξ√
P (ξ)

hence, ∆θ = 2πR and ∆s = 2πD as required.
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B Elliptic Integral Evaluation

Consider the integral,

Ip =

∫
1

ξ − p

dξ√
P (ξ)

Where P (ξ) = −(ξ − a)(ξ − b)(ξ − c)(ξ − d) is a quartic polynomial with real coefficients, and

a, b, c, d ∈ C are all distinct roots.

We consider two cases of the polynomial, real discriminant (d < c < b < d), and negative

discriminant (b < a real and c, d non-real complex conjugate). Necessarily P (ξ) ≥ 0 for ξ ∈
[d, c]∪ [b, a] for positive discriminant case, and P (ξ) ≥ 0 for ξ ∈ [b, a] for negative discriminant

case.

We consult a standard handbook of elliptic integrals, [8], to evaluate the integral for the cases

of negative and position polynomial discriminant. ‘Pages’ refer to page from the handbook,

and ‘integral identity’ corresponds to the numbering scheme of the result consulted.

B.1 Positive Discriminant

In the positive discriminant case we consider two pairs of integration bounds. The ‘left lobe’

d, c, and the ‘right lobe’ b, a.

B.1.1 Left Lobe

From Page 107, integral identity 252.39, we find the integral Ip =
∫ c

d
1

p−ξ
dξ√
P (ξ)

can be written

as,

Ip =
g

p− d

∫ u′

0

1− α2sn2u

1− β2sn2u
du

where, g = 2/
√

(a− c)(b− d), α2 = d−c
a−c

, and β2 = α2 p−a
p−d

. The elliptic modulus is k2 =
(a−b)(c−d)
(a−c)(b−d)

. Moreover, choice of integration bounds gives the elliptic angle to be φ = π
2
.

Likewise on page 205, integral identity 340.04, the integral simplifies,∫ u′

0

1− α2sn2u

1− β2sn2u
du =

1

β2

(
(β2 − α2)Π(φ, β2, k2) + α2F (φ, k2)

)
Where F and Π are elliptic integrals of the first and third kind respectively. However as φ = π

2
,

the elliptic integrals are complete.

One can show that the coefficient of the elliptic integral of the third kind simplifies to,

β2 − α2

β2
=
a− d

a− p

Likewise for the coefficient of the elliptic integral of the first kind,

α2

β2
=
p− d

p− a
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Notice, 1
p−d

p−d
p−a

= 1
p−a

.

Thus, we find,

Ip =
g

p− a
K(k2) +

g(a− d)

(a− p)(p− d)
Π(β2, k2) (18)

B.1.2 Right Lobe

From Page 124, integral identity 256.39, , we find the integral Ip =
∫ a

b
1

ξ−p
dξ√
P (ξ)

can be written

as,

Ip =
g

b− p

∫ u′

0

1− α2sn2u

1− β2sn2u
du

where, g = 2/
√

(a− c)(b− d), α2 = a−b
a−c

, and β2 = α2 p−c
p−b

. The elliptic modulus is k2 =
(a−b)(c−d)
(a−c)(b−d)

. The elliptic angle is φ = π
2
.

Likewise on page 205, integral identity 340.04, the integral simplifies,∫ u′

0

1− α2sn2u

1− β2sn2u
du =

1

β2

(
(β2 − α2)Π(φ, β2, k2) + α2F (φ, k2)

)
Where F and Π are elliptic integrals of the first and third kind respectively, and are complete

as φ = π
2
.

One can show that the coefficient of the elliptic integral of the third kind simplifies to,

β2 − α2

β2
=
b− c

p− c

Likewise for the coefficient of the elliptic integral of the first kind,

α2

β2
=
p− b

p− c

Thus, we find,

Ip = − g

p− c
K(k2) +

g(b− c)

(b− p)(p− c)
Π(β2, k2) (19)

B.2 Negative Discriminant

In the negative discriminant case we take integration bounds b < a. Notate the complex

conjugate roots of P (ξ) by c and c̄. Consider the integral Ip =
∫ a

b
1

ξ−p
dξ√
P (ξ)

. From page 133,

integral identity 259.04, we find the integral can be written as,

Ip =
g(A+B)

A(b− p)−B(a− p)

(
β

∫ u′

0

du+ (α− β)

∫ u′

0

du

1 + αcnu

)

where, A2 = (a − ℜ(c))2 + ℑ(c)2, B2 = (b − ℜ(c))2 + ℑ(c)2, g = 1/
√
AB, α = A(b−p)−B(a−p)

A(b−p)+B(a−p)
,

and β = A−B
A+B

.
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From page 205, integral identity 341.02, it holds that
∫ u′

0
du = F (φ, k2), where F is an

elliptic integral of the first kind, φ = π (choice of integration bounds), and k2 = (a−b)2−(A−B)2

4AB
.

Likewise, integral identity 341.03 gives,∫ u′

0

du

1 + αcnu
=

1

1− α2

(
Π(φ, α2

α2−1
, k2)− αf

)
where Π is an elliptic integral of the third kind, and f is given by (page 215, identity 361.54),

f =



√
1−α2

k2+(1−k2)α2 arctan

(√
k2+(1−k2)α2

1−α2 sdu

)
, α2

α2−1
< k2

sdu, α2

α2−1
= k2

1
2

√
α2−1

k2+(1−k2)
ln

(√
k2+(1−k2)α2 dnu+

√
α2−1 snu√

k2+(1−k2)α2 dnu−
√
α2−1 snu

)
, α2

α2−1
> k2

The elliptic functions sdu, dnu, and snu, are obey the relations, dnu =
√
1− k2 sin2 φ,

snu = sinφ, and sdu = snu
dnu

, where k and φ are implicitly defined by the elliptic integrals.

One can show, for the particular values of k and α, k2+(1−k2)α2

α2−1
is non-zero and finite.

Moreover as φ = π, snu = 0, and thus sdu = 0. Thus we find f ≡ 0. Hence,
∫ u′

0
du

1+αcnu
=

1
1−α2Π(φ,

α2

α2−1
, k2).

Simplifying the prefactor of the elliptic integral of the third kind, we first find, α − β =
2AB(b−a)

(A+B)(A(b−p)+B(a−p)
and 1

1−α2 = (A(b−p)+B(a−p))2

4AB(b−p)(a−p)
. Thus

α− β

1− α2
= −(a− b)(A(b− p) +B(a− p))

2(b− p)(a− p)(A+B)

The elliptic integral argument α2

1−α2 simplifies to,

α2

1− α2
=

(
A(b− p)−B(a− p)

)2
4AB(a− p)(b− p)

Finally, we note that F (π, k2) = 2K(k2) and Π(π, α2, k2) = 2Π(α2, k2) where K and Π are

complete elliptic integrals of the first and third kind respectively.

Thus, find,

Ip =
2g(A−B)

A(b− p)−B(a− p)
K(k2) − g(A+B)(a− b)

(a− p)(b− p)

(
A(b− p) +B(a− p)

A(b− p)−B(a− p)

)
Π( α2

1−α2 , k
2)

(20)

C W = 0 Rotation Numbers

We will compute the rotation and dilation numbers for when W = 0.
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The polynomial P (ξ) simplifies to quadratic in ξ2,

P (ξ) = 2K − 4J2ξ2 − 2Kξ4

Solving for the roots, we can rewrite P (ξ) as P (ξ) = 2K(a2 − ξ2)(ξ2 + b2), with roots, ±a,±ib,
where,

a2 = −J2/K +
√
1 + J4/K2

b2 = +J2/K +
√

1 + J4/K2

To ensure P (ξ) ≥ 0, we thus have ξ ∈ [−a, a]. The integration bounds are now −a, a.

C.1 Dilation Number

Notice when W = 0, the dilation number integral simplifies to,

D =
2J

π

∫ a

−a

ξ

1 + ξ2
dξ√
P (ξ)

However, as P (ξ) is quadratic in ξ2, 1/
√
P (ξ) is even. Thus, as ξ

1+ξ2
is odd, the dilation number

integrand is odd. Consequently, D ≡ 0.

C.2 Rotation Number

Proposition 13. The W = 0 rotation number, is given by the analytical expression,

R(J) =

√
K

πJ

(
1 + J4/K2

)−1
4

(
K(k2)− (1− b2)Π(α2, k2)− (1 + b2)Π(β2, k2)

)
(21)

Where, K and Π are complete elliptic integrals of the first and third kind respectively. The

constants are, b2 = J2/K +
√

1 + J4/K, k2 = 1
2
− 1

2
J2/K√
1+J4/K4

, α2 = 1
2

(
1 + J2/K+1√

1+J4/K2

)
, and

β2 = 1
2

(
1 + J2/K−1√

1+J4/K2

)
. Moreover, the function is continuous on J ∈ R \ {0}.

Proof. When W = 0, the rotation number is given by, R = J
π

∫ a

−a
4ξ2

1−ξ4
dξ√
P (ξ)

. Note that P (ξ) is

an even function when W = 0. Hence, we have, R = 4J
π
√
2K Ĩ, where

Ĩ =

∫ a

0

2ξ2

1− ξ4
dξ√

(a2 − ξ2)(b2 + ξ2)

By partial fraction decomposition, we find 2ξ2

1−ξ2
= 1

1−ξ2
+ 1

−1−ξ2
. Thus, Ĩ = I1 + I−1, where,

Ip =
∫ a

0
dξ

(p−ξ2)
√

(a2−ξ2)(b2+ξ2)
. The integral can be solved by comparison to known tabulated

elliptical integral identities. It can be shown (see appendix subsection),∫ a

0

dξ

(p− ξ2)
√

(a2 − ξ2)(b2 + ξ2)
=

g

b2 + p

(
pK(k2) + b2Π(α2, k2)

)
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where K and Π are complete elliptic integrals of the first and third kind respectively, and

g = 1√
a2+b2

, k = ag, and α2 = p+b2

p
k2.

Using the expressions for a2 and b2, it follows that, g2 = 1
2
(1 + J4/K2)

−1/2
and k2 =

1
2
− 1

2
J2/K√
1+J4/K2

. There are two cases of α. For p = +1, we have α2
+ = (1 + b2)k2, and for

p = −1, α2
− = (1− b2)k2. Thus, α2

+ = 1
2

(
1 + J2/K+1√

1+J4/K2

)
, and α2

− = 1
2

(
1 + J2/K−1√

1+J4/K2

)
.

Thus, evaluating the integrals,

Ĩ =
g

b2 + 1

(
K(k2) + b2Π(α2

+, k
2)
)
+

g

b2 − 1

(
K(k2)− b2Π(α2

−, k
2)
)

Simplifying this expression it can be shown,

Ĩ = gb2

b4−1

(
K(k2)− (1− b2)Π(α2

+, k
2)− (1 + b2)Π(α2

−, k
2)
)
. Moreover, from the expression of b2,

we find, b2

b4−1
= K

2J2 .

Thus,

R =

√
K

πJ

(
1 + J4/K2

)−1
4

(
K(k2)− (1− b2)Π(α2

+, k
2)− (1 + b2)Π(α2

−, k
2)

)
Finally, continuity of the prefactors and the elliptic functions, gives that the rotation number

function is continuous, as required.

C.2.1 Elliptic Integral Evaluation

Consider the Elliptic Integral,

Ip =

∫ a

0

dξ

(p− ξ2)
√

(a2 − ξ2)(b2 + ξ2)

Where, p ̸= 0. From page 51, integral identity 214.13, and page 203, integral indentity 339.01,

[8], we find that this reduces to,

I =
g

pα2

(
k2F (φ, k2) + (α2 − k2)Π(φ, α2, k2)

)
Where F and Π are elliptic integrals of the first and third kind respectively, g = 1√

a2+b2
,

k2 = a2

a2+b2
, and α2 = (p+b2)a2

p(a2+b2)
. φ = π

2
, and so the elliptic integrals are complete.

Computing the ratio of k2 and α2, we find, k2

α2 = p
p+b2

, and likewise α2−k2

α2 = b2

p+b2
.

Thus, we have the integral identity,∫ a

0

dξ

(p− ξ2)
√

(a2 − ξ2)(b2 + ξ2)
=

g

p+ b2
(
pK(k2) + b2Π(α2, k2)

)
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