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1 Abstract

This report outlines 2 techniques which can be used in a de-noising algorithm for black and white images;
Gaussian blurring and edge detection. Explanation of the Discrete Fourier Transform’s role in these techniques

are described in detail.

2 Introduction

The main focus of this report is to show how specific properties of the Discrete Fourier Transform can be applied
to Image Processing. Once the DFT of an image is calculated, it will be possible to decompose the image as the
sum of many other images. These images consist of sinusoids, and they have corresponding frequencies. Then,
judgement can be made as to which of these images should be removed, or which of them requires more weight.
To do this, the translation of the spatial domain, (the entries of the matrix corresponding to the image), to the
frequency domain is important to understand concretely - so judgement can be made on the right and wrong
frequencies in the noisy image. In-order to achieve this understanding, careful construction of the Discrete

Fourier Transform, (DFT), is shown.

The main application of the detailed look to the DFT is the technique of Gaussian Blurring. In this re-
port, Gaussian Blurring refers to multiplying the DFT by a 2-dimensional Gaussian. This will affect the details
of the image, (blurring it), as frequencies around 0 will be enhanced. Details of what this looks like will be

described before the Gaussian is mentioned.

Another technique is Edge Detection. Edges can be detected by seeing where the derivative of the image
is at it’s largest. The purpose of detecting them is not the focus of the report. Rather it is presented as a

section because it is a nice application of the treatment of the DFT.

3 Statement of Authorship

This report contains information which has been adapted from [Cou]. I spent time trying to understand, explain
and adapt the information to my project. I then used this to explain the results in blurring and edge detection
in images. The code, (shown in the appendix), was written with assistance from my supervisor, Sanjeeva

Balasuriya.
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4 Methods

4.1 Black and White Images

A series of assumptions will need to be stated and used throughout the project.

First we assume that an image, I, is a restriction of an integrable function, f defined on R? - where f(x,y) — 0

as r — £o00 or y — oo

We consider the finite domain D = X x Y where X,Y € R and |X| = |Y] the image is then a matrix.
Then D is a grid and f|p = I where I(3,j) = f(D(3,J)).
4.2 Fourier Transform

Information in this section was adapted from [Cou]

Image Processing using the Fourier Transform requires translating a noisy image to the frequency domain.
The goal of this section is to associate the analytic definition of a Discrete Fourier Transform in 2 dimensions

MATLAB’s definition. The code in the appendix also uses ideas mentioned in this section.

First, a definition will need to be stated. The two dimensional Fourier Transform is, [Alp]:

Flkom) = / / F (s y)e 0T mD) gy

Where k,m € R.

The Inverse Fourier Transform is defined as [Alp]

flx,y) = / / f(k,m)e2™Re+mY) dledm,

2mi(kxz+my)

So by the inverse Fourier Transform you can see that f (k, m) determines the contribution that e has

on f.

Now these ideas must be incorporated to images. A discrete analogue of f (k,m) is needed for computation.
To do this, z and y need to be sampled. An image is defined on a sampled version of f, F', which has domain

X XY where

X ={jhi|j €0,..,N -1}

Y = {lhy|l €0,.... M — 1}
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For some hi,hy € RT and N,M € N

An image has a positive domain, (entries in a matrix), and are equispaced with h; and hg equal to 1. In
other words the domain is X x Y where X, Y range from 1 to N, M with gridpacing 1. So this choice of sampling

applies to images.

The choice of sampling implies that e~ 27 (k1ihitmilhe) — g=2mi(k2jhitmalha) for all j, 1 if ky = ky + h_11 and
mg = mq + h—12 Hence k € [0, h%] and m € [0, h—12] Then we discretise k,m to form the Discrete Fourier
Transform, F , of F with domain K x M where
n—1
Nhy

m—1

K={ lnel,..,N}

In order to align the definition of the Discrete Fourier Transform, (DFT), with MATLAB’s definition, [MATD], we
define F': K x M — R as

‘7=N M . k—1 . m—1
Fllym) = S0 5 F (= 1) b, (1= 1) hy) e 27 (R G0t (- Dha)
j=1 1=1
j=N M
=3 S F (G~ Db, (- 1) hy) e 2RO (D)
j=11=1

forkel,...,N and m € 1,...M. Equivalently, for this definition F can be treated as an N x M matrix. Hence,
F' is now equal to £££2(A) in MATLAB, where A(i,j) = f((i — 1), (j — 1)hg)

Now let F' be a matrix where F(j,1) = F((j — 1)h1,(j — 2)ha). Then, the definition of the Inverse Discrete

Fourier Transform is, [MATc]

o~
Il
=2

F(5,1) = F(k, m)e%i(%i(j—l)hﬁ ml(-1)hs)

T~
I
Z =
3
ﬁ

M=

E‘H E‘H

= =
g
M=

Bl )i G045 0-0)

=~
Il
=
3
Il
—

Now F' is equal to ifft2(£ft2(A)) in MATLAB
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Usually, it is only necessary to look at the real part of F, (for example if F' is an image). Hence, after

some algebraic manipulation, (trig identities),

F(,1) =

=
=
ES
‘W
3
@)
2
VR
[N}
<
oyl
3 2‘ |
~
<
|
=
_l’_
3
i‘ |
—
|
=
N———
N———

Also, the periods are defined as vectors (¢, d) such that

cos <2m' (k_ Lot m7_1y>> = cos <2m' (k;/,l (z+c)+ mT_l (y+6)>>

N
Analagous for sin (2m' (%x + m—_ly))

Hence for each k.m (¢, d) = (%, %) So for larger k and m there is smaller periods. In-other words,

F(k,m) for large k and m contributes to sinusoids with small periods.

4.3 Gaussian

This section extends the definition of the DFT to calculate the DFT of a Gaussian.

4.3.1 ££ft2 of functions with domains symmetric about x and y axes

We consider a function on a domain symmetric about the x,y-axes. To do this, some modifications must be
made to the original discrete Fourier transform definition. Assuming the number of points are even, then the

domain must be X x Y where;

X = {jh|je —-N/2+1,..,N/2}

Y = {lhofl € =M/2+1,..., M/2}

Then we have that

j=N M

B(kym) =303 f(,ne 205 G- 5450 (1-4))
j=11=1
j=N M

F(k, m) _ Z f(ﬂ, 1)6—27”'(1%;1]'4- mﬂzll)eﬂ'i(k71+m71)
j=1 1=1

k-1 mfl)

Flk,m) = £££2(A) (k,m) x e (57 +"5

m—1

Then makes a matrix mk2 where mk2(k,m) = emi R+ ) - then;

A~

F = ££t2(A) . *mk2
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Also, the domain of F is from 0 to 1 /h. But we want a symmetric domain about the x,y-axes to get the blurring
of the zero frequencies. Note that F'(k—1/h,m) = F(k,m), likewise for m. Thus, the frequencies [1/2h,1/h] are
equivalent to [—1/2h,0]. So by putting the [1/2h,1/h] frequencies before the [0,1/2h] frequencies the domain
becomes [—1/2h,1/2h]. This can be done by fftshift (fft2(A) .*mk2)

4.3.2 Convolution

We define convolution by [D03]

fegla,y) = / / @, y)g( — 2,y — w)dzdw

The discrete analogue is, [MATa]

m n

Ax B(z,w) :ZZA(i7j)B(z—i+1,w—j+l)

Another important identity is [DO3]

Where this idea relates to
(A% B)(i,j) ~ (A x B)(i, ) (1)

Equation 1 is only approximate as A and B are discrete approximations of functions in 2D. So equality is not

true, but the approximation should get better as n,m — oo

4.3.3 £ft2 and conv2 of a Gaussian

Define the Gaussian G(z,y) as -

.’,C2 2
G(e,y) = exp (—; - %)

a and b correspond to the ’spread’ of G(z,y) about the origin in both the x and y directions respectively.

It is also true that
G(k,m) = Vabr? exp (—ar®k® — br*m?)
It is worth noting that the spread of G(k,m) is now (w,¢) = (2, 522).

Now the goal is to see if fftshift(££t2(I)).*fftshift(££t2(G).*mk2)=fftshift(fft2(conv2(I,G)))
where [ is the image and G is a matrix of Gaussian values. mk2 is needed as G is defined on a symmetric

domain about the origin.

This is equivalent to seeing if fftshift(fft2(G) .*mk2) = G(k,m) where z,y € X,Y, which are sampled

domains.
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The accuracy should depend on how large X and Y are - which depends on the choice of a and b.

Figure 1 shows that the error decreases for smaller dz, for a constant domain. The domain was —80 to 80

on each side, with a, b terms equal to 2.

- Constant Domain and Constant (a,b) with varying dx

0.4
0351
03r

0.25 + & o\,&m

error between DFT and AFT

027

0‘ 1 5 1 1 1 ]
0.2 0.25 0.3 0.35 0.4 045 0.5 0.55

dx

Figure 1: dx vs error of discrete approximation of FT of Gaussian vs DFT of Gaussian

Figure 2 will look at keeping the number of points constant, (500 x 500 Gaussian), with changing dx which

will change the domain.
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— Changing Domain with constant number of points

017}

0.09 |

0.08 r

max error between DFT and AFT

0‘04 1 1 1 1 1 1 1 1 1 1
02 022 024 026 028 03 032 034 036 038 04

dx

Figure 2: dx vs error but now the domain is changing

This means that once the (a,b) terms have been chosen, care must be taken to first find a domain which
is large and encompasses the Gaussian - and then the dz should be small. This is clear from Figure 2 as the
larger dx, (corresponding to larger error), results in a smaller domain - thus less encompassing of the Gaussian.

Also Figure 1 shows for constant domain, smaller dx gives less error.

When deciding on the a and b terms in the Gaussian, it is important to first look at what basis functions
corresponding to different frequencies look like. By the previous sections,
k=

1G.) = 37 prmmmw2ikklh+m_%h — Blkymysin (2mi (F=Ljn, + Ly,
" _MNk:Imzl 7 U M ’ m\ Ty I M 2

Where I is the image and I=A+iB.

This can be simplified in matrix form by saying that

k=N M

A 1 1 . 1 1
1mz_:1A(k,m)cos<2ﬂ'i<kN .*X+mM .*Y))—B(k,m)sin(Zm’ (kT.*X—l—mM *Y))

Where X = {1,2,..,N} and Y = {1,2,..., M}, as I is an image. To visualise what is going on, we see what
A(k,m)cos (2mi (AR« X + 2= 5 Y)) — B(k, m)sin (2mi (52 * X + ™= % Y)) looks like for specific k and

1
I=——
MN

k

m terms. To compare with the frequency domain, (where frequencies are measured as the constant times the

27 term), we look at sinusoids with f1 = (k —1)/N, f2 = (m —1)/M, (see Figure 3).
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200
400
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Figure 3: Real basis functions of the DFT

It is clear from Figure 3 that in order to blur an image it would be best to focus on frequencies less than
around f1, f2 around 0.025 to 0.05. As the frequency domain of an image is from —0.5 to 0.5, then the width of
the DFT of the Gausian should be around a tenth or a twentieth of the width of it’s frequency domain, (which
depends on the choice of hy and hy values). This means the DFT of the Gaussian, (which is the same size as

the image FFT), will then amplify the frequencies around 0.025 and 0.05.

4.4 Edge Detection

Edges in an image can be detected by larger local changes in the image. In other words; where the partial
derivatives are larger. This is done by using the sobel operator, which calculates the magnitude of the gradient

at each point in the image, [017]. The edges should have a larger gradient and should thus appear whiter.

Finding the partial derivative of the image can be complicated numerically. However, finding the Fourier

transform of the derivative and then inverting is more achievable.

NAMS|




VACATIONRESEARCH
SCHOLARSHIPS 2021-22

7
=
<

fulk, m) = / / fu(, y)e ™ 2mike+my) go dy

Fullom) = [ <2ib [ fag)e 0t dudy

—0o0

= —2mik f(k, m)

This is because calculating the inner integral, ffooo ful(z, y)e_%i(kw"’my)dx, is the same as calculating

/ T F (@)e N dr = —2mikf(k)

, [Alp].
So inverting —2ik f(k,m) gives f,(k,m). Analogously, —2mimf(k,m) gives fy(k,m).
In MATLAB this is equivalent to ifft2(-27ik.*fft2(A)) gives a partial derivative of entries in A.

For image processing purposes, edge detection should be done on a blurred image to remove the noisy pix-

els being detected.

10
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5 Results

5.1 Gaussian Blurring

First consider the Figures 4 and 5. They are black and white images with noise added to them,

100 100

200 200
300 300

400 400

100 200 300 400 100 200 300 400

Figure 4: Picture of moon on it’s own vs picture with noise added to each pixel
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200 200 [
400 400
600 600
200 400 600 800 1000 200 400 600 800 1000

Figure 5: Picture of mountain on it’s own vs picture with noise added to each pixel

Figures 6 and 7, show what happens when Figures 4 and 5 are Gaussian blurred. The panel shows a variety

of choices for (w,¢), (the width of the DFT of the Gaussian).

(w,c)=(kmax/3,kmax/3) (w,c)=(kmax/12,kmax/12)

200 400 200 400
(w,c)=(kmax/24,kmax/24) (w,c)=(kmax/48,kmax/48)

200 400
(w,c)=(kmax/130,kmax/130)

200 400

Figure 6: Noisy moon with Gaussian blurring - via DFT with various (w,c) values
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(w,c)=(kmax/3,kmax/3) (w,c)=(kmax/12,kmax/12)

200

400

600 0
200 400 600 800 1000 200 400 600 800 1000

(w,c)=(kmax/24,kmax/24) (w,c)=(kmax/48,kmax/48)

200

400

600 0
200 400 600 800 1000 200 400 600 800 1000

(w,c)=(kmax/90,kmax/90) (w,c)=(kmax/130,kmax/130)
200 - 200
400 400

600 600
200 400 600 800 1000 200 400 600 800 1000

Figure 7: Noisy mountain with Gaussian blurring - via DFT with various (w,c) values

Figures 6 and 7 show that the image getes blurrier and less defined as (w, ¢) gets smaller.

5.2 Edge Detection

Figures 8 and 9 show edge detection being applied to Figures 6 and 7.

13
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(w,c)=(kmax/3,kmax/3)
-~ Bine

4 Y
%

200 400 200 400
(w,c)=(kmax/24,kmax/24) (w,c)=(kmax/48,kmax/48)

/..\

200 400 200 400
(w,c)=(kmax/130,kmax/130)

200 400

Figure 8: Noisy moon with Gaussian blurr from Figure 6 - with edge detection

(w,c)=(kmax/3,kmax/3) (w,c)=(kmax/12,kmax/12)

200

400

600 0
200 400 600 800 1000 200 400 600 800 1000

(w,c)=(kmax/24,kmax/24) (w,c)=(kmax/48 kmax/48)

200

400

600 0
200 400 600 800 1000 200 400 600 800 1000

(w,c)=(kmax/90,kmax/90) (w,c)=(kmax/130,kmax/130)

200

400

600

0
200 400 600 800 1000 200 400 600 800 1000

Figure 9: Noisy mountain with Gaussian blurr from Figure 7 - with edge detection

Both Figures 8 and 9 show that there are white pixels approximately where the edges are in Figures 6 and

7. The accuracy gets better as (w, c) gets smaller.

14
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6 Discussion and Conclusion

The definition of a Discrete Fourier Transform has proven to be useful in image processing. The images with
noise have been blurred using ideas that were generated from the Methods section. The results were fairly
consistent - namely that focusing on smaller frequencies create blurrier images. The edge detection was also
working well compared to the theory. The derivatives of the image corresponded with edges, and the DFT was

used to find the derivatives.

The Results section shows that the choice of (w,c), (spread of DFT of Gaussian), affects the blurring of a
noisy image. Choosing (w,c) = (kmaz/a,kmaz/a) where a ranges from roughly 10 to 100, gives a balance
between blurring and detail, and thus seems to give the best results. Choosing smaller values of (w, ¢) seems to

give too much blurring, where-as larger values are not effective in removing noise.

The edge detection images also show some of it’s own kind of noise. The grey horizontal and vertical streaks
are distracting, and is an unanticipated effect of the code. Also, the accuracy of the edge detection increases
as the blurring decreases, which is no surprise as edges are less defined when images are blurred. Nevertheless,
detecting the edges could come to use by extending the algorithm to try and see where the edges in the blurred

images are and making them more pronounced.

Also, comparing Gaussian blurring via convolution and the DFT method was difficult - because the discrete

approximation of the Gaussian yields error for the convolution.

15
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Appendix This code generated the blurring and edge detection images.

close all

A2=(double (imread (’mountains.png’)));

%Image could be RGB so could have 3 components for each entry

[n,m,z]=size(A2);

%If n or m is odd then let n = n-1 or m=m-1%

%Convert A2 to grayscale imagel

BA2=A2(1:n,1:m);

%Add the random noise to the image

A2=BA2+255%rand(n,m) ;

%Calculate the DFT of the image
FA2=(f£t2(A2));

=== - --frequency domain-- - - - - -—%

%Spatial domain of the Gaussian
dx=0.25;

dy=0.25;
X1=-(n-1)*dx/2:dx: (n-1) *dx/2;
X2=-(m-1)*dx/2:dy: (m-1) *dx/2;
[X,Y]=meshgrid(X2,X1);

n=length(X1);
m=length(X2);

%frequency domain of Gaussian
kmax=1/(2*dx) ;

k=linspace (-kmax,kmax,n) ;
k2=linspace(-kmax,kmax,m) ;
[K1,K2]=meshgrid(k2,k);

16
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h=—- e - -Gaussian-—--------- - - - - =%

%The mk2 matrix to make the DFT in matlab compatible with negative/positive domain
mk2=ones (n,m) ;
for i=1:n
for j=1:m
mk2 (1, j)=exp(pi*(1j)*((i-1)+(j-1)));
end

end

%Calculating various Gaussians with varying a,b termsy
a=3/ (kmax*pi~2) ;b=3/ (kmax*pi~2);

£3=0(x,y) exp(-(x."2)./a-(y."2)./b);

V2=£3(X,Y);

Z2=(fftshift (££t2(V2) . *mk2))*dx*dy;

FV2=(sqrt (pi*a)*sqrt (pi*b))*exp(-pi~2xK1. 2*a-pi~2xK2. 2xb) ;
a=12/ (kmax*pi~2) ;b=12/ (kmax*pi~2) ;

£3=0(x,y) exp(-(x.72)./a-(y."2)./b);

[X,Y]=meshgrid (X2,X1);

V22=£3(X,Y);

Z22=(fftshift (££t2(V22) .*mk2) ) *dx*dy;

FV22=(sqrt (pi*a)*sqrt (pi*b))*exp(-pi~2*K1. 2*a-pi~2+K2. 2*b);
a=24/ (kmax*pi~2) ;b=24/ (kmax*pi~2) ;

£3=0(x,y) exp(-(x.72)./a-(y."2)./b);

[X,Y]=meshgrid(X2,X1);

V23=£3(X,Y);

Z23=(fftshift (£££2(V23) .*mk2) ) *dx*dy;

FV23=(sqrt(pi*a)*sqrt (pi*b))*exp(-pi~2*K1. 2*a-pi~2*K2. 2*b);

17
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a=48/ (kmax*pi~2) ;b=48/ (kmax*pi~2) ;
£3=0(x,y) exp(-(x.72)./a-(y."2)./b);
[X,Y]=meshgrid(X2,X1);

V24=£3(X,Y);

Z24=(fftshift (££t2(V24) .*mk2) ) *dx*dy;

FV24=(sqrt(pi*a)*sqrt (pi*b))*exp(-pi~2*K1. 2*a-pi~2*K2. 2*b);

a=90/ (kmax*pi~2) ;b=90/ (kmax*pi~2) ;
£3=0(x,y) exp(-(x.72)./a-(y."2)./b);
[X,Y]=meshgrid(X2,X1);

V25=£3(X,Y);

Z225=(fftshift (££t2(V25) .*mk2) ) *dx*dy;

FV25=(sqrt (pi*a)*sqrt (pi*b))*exp(-pi~2*K1. 2%a-pi~2+K2. 2xb);

a=130/ (kmax*pi~2) ;b=130/ (kmax*pi~2) ;
£3=0(x,y) exp(-(x."2)./a-(y."2)./b);
[X,Y]=meshgrid (X2,X1);

V26=£f3(X,Y);

Z26=(fftshift (££t2(V26) .*mk2) ) *dx*dy;

FV26=(sqrt(pi*a)*sqrt (pi*b))*exp(-pi~2*K1. 2*%a-pi~2*K2. 2*b);

figure(80)
surf (X,Y,V2);

figure(8)

surf (K2,K1,FV2)

title(’Fourier transform, (using equation),’)
figure(9)

surf (K2,K1,real(Z2))

title(’Fourier transform, (using MATLAB)’)

18
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%calculating the errors between the DFT using MATLAB and the analytical DFT
%The error gets larger as the standard deviation, (a,b), gets larger for a

Yiconstant domain

error21=max (max (abs (FV2-real(Z2))));

error22=max (max (abs (FV22-real(Z22))));
error23=max (max (abs (FV23-real (Z23))));
error24=max (max (abs (FV24-real(Z24))));
error25=max (max (abs (FV25-real(Z25))));
error26=max (max (abs (FV26-real(Z26))));

error = [error2l;error22;error23;error24;error25;error26]

%——— - - - —blurring—— - - - - - —-—%
%Performing the Gaussian Blurring},
CF1=(Z2) .*(fftshift (FA2));
CF2=(Z22) .x(fftshift (FA2));
CF3=(Z23) .x(fftshift (FA2));
CF4=(Z24) .*(fftshift (FA2));
CF5=(Z25) .x(fftshift (FA2));
CF6=(Z26) .*(fftshift (FA2));
CIF=abs (ifft2(ifftshift(CF1)));
CIF2=abs (ifft2(ifftshift(CF2)));
CIF3=abs(ifft2(ifftshift(CF3)));
CIF4=abs (ifft2(ifftshift(CF4)));
CIF5=abs (ifft2(ifftshift (CF5)));

CIF6=abs (ifft2(ifftshift(CF6)));

%plotting the various Gaussian blurred images - via DFTY,

19
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figure(5)

subplot(3,2,1),

image ((CIF),’CDataMapping’, ’scaled’),title(’ (w,c)=(kmax/3,kmax/3)’);
axis image

colormap gray

subplot(3,2,2),

image (CIF2, ’CDataMapping’, ’scaled’) ,title(’ (w,c)=(kmax/12,kmax/12)°);
axis image

colormap gray

subplot(3,2,3),

image ((CIF3),’CDataMapping’,’scaled’) ,title(’ (w,c)=(kmax/24,kmax/24)’);
axis image

colormap gray

subplot(3,2,4),

image (CIF4,’CDataMapping’,’scaled’) ,title(’ (w,c)=(kmax/48,kmax/48)’) ;
axis image

colormap gray

subplot(3,2,5),

image ((CIF5),’CDataMapping’, ’scaled’) ,title(’ (w,c)=(kmax/90,kmax/90)’);
axis image

colormap gray

subplot(3,2,6),

image (CIF6, ’CDataMapping’, ’scaled’) ,title(’ (w,c)=(kmax/130,kmax/130)’);
axis image

colormap gray

Y R S edges——————————————-- - - - =%

%Performing edge detection for each of the Gaussian blurred images from

YbeforeY,

vi=linspace(-1/(2%dx),1/(2*dx),n);
v2=linspace(-1/(2*dy),1/(2*dy) ,m) ;
[VV1,VV2]=meshgrid(v2,vl);
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CF2x=((-2%pi*(1i)) "1*(VV1) . 1) .*x(fftshift (CF1)./(dx*dy));
CF2y=((-2%pi*(1i))~1%(VV2). 1) .*(fftshift (CF1)./(dx*dy));
ICFx=(ifft2(CF2x));

ICFy=(ifft2(CF2y));

ICF=sqrt(abs(ICFx) . 2+abs(ICFy)."2);
ICF=rescale(ICF,0,255);

vi=linspace(-1/(2xdx),1/(2%dx) ,n);
v2=linspace(-1/(2+dy),1/(2*dy) ,m) ;
[VV1,VV2]=meshgrid(v2,v1);
CF2x=((-2%pi*(11))~1*(VV1) .~ 1) .*(£ftshift (CF2)./(dx*dy));
CF2y=((-2%pi*(1i)) 1% (VV2). 1) .*(fftshift (CF2) ./ (dx*dy));
ICFx=(ifft2(CF2x));

ICFy=(ifft2(CF2y));

ICF2=sqrt (abs(ICFx) . 2+abs(ICFy)."2);
ICF2=rescale(ICF2,0,255);

vi=linspace(-1/(2%dx),1/(2*dx) ,n);
v2=linspace(-1/(2+dy),1/(2*dy) ,m) ;
[VV1,VV2]=meshgrid(v2,vl);
CF2x=((-2%pi*(11i)) " 1*(VV1) . 1) .*x(£ftshift (CF3)./(dx*dy));
CF2y=((-2%pi*(11))~1x(VV2)."1) .*(£ftshift (CF3)./(dx*dy));
ICFx=(ifft2(CF2x));

ICFy=(ifft2(CF2y));

ICF3=sqrt (abs(ICFx) . 2+abs(ICFy)."2);
ICF3=rescale(ICF3,0,255);

vi=linspace(-1/(2%dx),1/(2*dx),n);
v2=linspace(-1/(2+dy),1/(2*dy) ,m) ;
[VV1,VV2]=meshgrid(v2,vl);
CF2x=((-2%pi*(11))~1*(VV1)."1) .*(fftshift (CF4)./(dx*dy));
CF2y=((-2%pi*(1i)) "1 (VV2)."1) .*x(fftshift (CF4) ./ (dx*dy));
ICFx=(ifft2(CF2x));

ICFy=(ifft2(CF2y));

ICF4=sqrt (abs (ICFx) . 2+abs(ICFy)."2);
ICF4=rescale(ICF4,0,255);
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vi=linspace(-1/(2%dx),1/(2%dx) ,n);
v2=linspace(-1/(2+dy),1/(2*dy) ,m) ;
[VV1,VV2]=meshgrid(v2,v1);
CF2x=((-2%pi*(11)) "1*(VV1) .~ 1) .*(££tshift (CF5) ./ (dx*dy));
CF2y=((-2%pi*(1i))~1%(VV2)."1) .*(fftshift (CF5) ./ (dx*dy));
ICFx=(ifft2(CF2x));

ICFy=(ifft2(CF2y));

ICF5=sqrt (abs (ICFx) . “2+abs (ICFy) ."2);
ICF5=rescale(ICF5,0,255);

vi=linspace(-1/(2%dx),1/(2%dx) ,n);
v2=linspace(-1/(2+dy),1/(2*dy) ,m) ;
[VV1,VV2]=meshgrid(v2,vl);

CF2x=((-2*pi*(11i)) " 1*(VV1) . 1) .*x(£ftshift (CF6) ./ (dx*dy)) ;
CF2y=((-2%pi*(1i)) "1 (VV2)."1) .*x(fftshift (CF6) ./ (dx*dy));
ICFx=(ifft2(CF2x));

ICFy=(ifft2(CF2y));

ICF6=sqrt (abs(ICFx) . 2+abs(ICFy)."2);
ICF6=rescale(ICF6,0,255);

figure(11)

subplot(3,2,1)

image (ICF, ’CDataMapping’,’scaled’),axis image,colormap gray, title(’ (w,c)=(kmax/3,kmax/3)’);
subplot(3,2,2)

image (ICF2, ’CDataMapping’, ’scaled’) ,axis image,colormap gray, title(’ (w,c)=(kmax/12,kmax/12)’);
subplot(3,2,3)

image (ICF3, ’CDataMapping’,’scaled’) ,axis image,colormap gray, title(’ (w,c)=(kmax/24,kmax/24)’);
subplot(3,2,4)

image (ICF4, ’CDataMapping’, ’scaled’) ,axis image,colormap gray, title(’ (w,c)=(kmax/48,kmax/48)’);
subplot(3,2,5)

image (ICF5, ’CDataMapping’, ’scaled’) ,axis image,colormap gray, title(’ (w,c)=(kmax/90,kmax/90)’);
subplot(3,2,6)

image (ICF6, ’CDataMapping’, ’scaled’) ,axis image,colormap gray, title(’ (w,c)=(kmax/130,kmax/130)’);

%Plotting the original image and the blurred image,
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figure(2221211)
subplot(1,2,2), image(A2,’CDataMapping’,’scaled’),axis image,colormap gray
subplot(1,2,1), image(BA2,’CDataMapping’,’scaled’),axis image,colormap gray

This code was used to calculate the dx vs error images. This code is for the constant domain

function [dx,merr,K1,K2,dfX,afX]=sami_gaussian2d_sderror(a)

for i=1:length(a)
dx(i)=160/(a(i)-1);
X=-80:dx(i):80;
Y=X;
v=length(X);
[X,Y]=meshgrid(X,Y);
k=linspace(-1/(2*dx(1)),1/(2%dx(i)),v);
[K1,K2]=meshgrid(k,k) ;
b=2;
eX=exp(-X."2./b-Y."2./b);
mm=ones (v,v) ;
for o=1:v
for t=1:v
mm (o, t)=exp(pi*(1j)*(o-1))*exp(pi*(1j)*(t-1));
end
end
dfX=real (fftshift (£fft2(eX) .*mm))*dx (i) *dx(i);
afX=b*pi*exp(~b*pi~2xK1. 2-b*pi~2xK2.72);
merr (i)=max (max (abs (dfX-afX)));

end

Now for the changing domain
function [dx,merr,K1,K2,dd,aal=sami_gaussian2d_sdvserror(a)
for i=1:length(a)
dx(i)=a(i);

X=-a(i)*(500-1)/2:a(i) :a(i)*(500-1)/2;
Y=X;

23

NAMS|




VACATIONRESEARCH
SCHOLARSHIPS 2021-22

7
=
<

v=length(X);
[X,Y]=meshgrid(X,Y);
k=linspace(-1/(2%dx(i)),1/(2*dx (1)) ,v);
[K1,K2]=meshgrid(k,k);
b=0.05;
eX=exp(-X."2./b-Y."2./b);
mk2=ones (v,v) ;
for o=1:v
for t=1:v
mk2 (o, t)=exp(pi*(1j)*((o-1)+(t-1)));
end
end
dfX=real (fftshift (fft2(eX) .*mk2))*dx(i)*dx(i);
dd=dfX;
afX=b*pi*exp(~b*pi~2xK1. 2-b*pi~2xK2.72);
aa=afX;
merr (i) =max (max (abs (dfX-afX)));

end

This code produced the image relating to the basis functions of the image,

X=linspace(1,n,665);
Y=1linspace(1,m,1600);

[X,Y]=meshgrid(Y,X);

A=20; B=300;

f1=A*cos(2*pi*(0.999) *X+((0.999) *Y) ) -B*sin (2xpi* (0.999) *X+(0.999) *Y) ;

f£2=Axcos (2*pi*(0.05)*X+(0.05*Y) ) -B*sin(2*pi* (0.05)*X+(0.05)*Y) ;

£3=A*cos(2xpi* (0.3)*X+(0.075%Y) ) -B*sin(2*pi* (0.075) *X+(0.075) *Y) ;

f4=Axcos (2*pi*(0.4)*X+(0.1%Y))-B*sin (2*pi* (0.1)*X+(0.1)*Y);

title(’A(r,v)=20,B(r,v)=300")
subplot(2,2,1)
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image(f1, ’CDataMapping’,’scaled’), colormap gray, axis image, title(’£1=0.025,£2=0.025")
subplot(2,2,2)

image (f2, ’CDataMapping’,’scaled’), colormap gray, axis image, title(’f1=0.05,f2=0.05’)
subplot(2,2,3)

image(£3, ’CDataMapping’,’scaled’), colormap gray, axis image, title(’£1=0.075,£2=0.075")
subplot(2,2,4)

image (f4,’CDataMapping’,’scaled’), colormap gray, axis image, title(’f1=0.1,f2=0.17)

This is the derivation of the real part of the DFT,

=~
Il
=2

F(5,0) = ﬁ > iw: B (k, m)e2™ iR =Dk +Ft (1=Dha)

k=1 m=1

- kij:v i(x‘i(k‘ m) +iB(k m))(cos(QF(E( 1)+ m_—l(l 1) +isin@r (P2 - 1) + m_—l(l _1)

MN k=1 m=1 ’ 7 N M J M

k=N M

= ﬁ k; mszlfl(lc,m) cos%(%(j - 1)+ mT_l(z — 1)) + iA(k, m) sin(2m(——(j — 1) + m_—l(l —1))
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So the real part is

k=N M E—1

N

. (j—1)+m7_1(l—1)) — B(k,m)sin(2r (%(j—lﬂ—mv_l(l—l))

MN

k=1 m=1

A(k,m) cos(2m (
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