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2    Abstract 

First passage time is an incredibly useful metric in fields across biology, chemistry, physics, and  

economics. In particular, when looking at the first passage time of a particle crossing a 

boundary, the mean time it takes for this to occur is a scenario of interest. The mean exit 

time across several regular geometries can be found through standard solution of a partial 

differential equation. We were interested in finding computationally efficient numerical 

methods to solve this problem that could be applied to irregular shapes. The boundary 

integral method was researched, developed, and applied to example cases to see how well 

it extended to irregular shapes. The results were positive, and the boundary integral method 

provided an effective numerical solution to various shapes. This method was determined to 

be significant as it provided a robust approach to real life applications of this problem.  

 

3    Introduction 

First passage time is a broad mathematical concept that involves describing processes by their  

mean time to travel from an initial state to some final state [1]. Applications of this idea are 

important in various areas including biology [2], physics [3], and economics [4].  

When investigating diffusion of particles, a certain application of first passage time is a 

useful property to be able to determine – the mean time a particle takes to reach an 

absorbing boundary. The average lifetime of the particle will depend on where the particle 

starts and the shape of the geometry. 

Figure 1: Channel transport representations in biology [2] Figure 2: Sample of path processes with different hitting 
barriers in econometrics [4] 
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A stochastic random walk model is constructed in MATLAB to simulate particle diffusion. 

Certain customisable parameters are implemented to fit the model to real life applications. 

The simulation was run for an increasing number of trials to get a feel for the patterns we 

are investigating, and to see visually how the random walk worked.  

 

Analytical and numerical methods are then explored to solve the problem on different 

domains. Exact solutions for disc and elliptical domains are known as a solution to a partial 

differential equation [5], however numerical methods are then investigated to use for more 

irregular shapes, where an exact solution is harder to derive.  

 

The boundary integral method is found to provide accurate numerical solutions with limited 

use of computational power. It is compared to exact solutions on domain where those are 

known, and tested on more irregular domains such as larger polygons and periodically 

determined boundaries.  

 

Statement of Authorship 

Under the direction of my academic supervisors, I constructed the stochastic model in  

MATLAB, and then used already developed plotting tools to plot my solutions. I analysed 

the already developed exact solutions, and learned how to manipulate the developed 
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4    Background 

4.1    Parameters 

Diffusion of a particle within a 2D geometry is modelled as a random walk in MATLAB. Setting  

up this model introduces parameters that are decided on and can be altered depending on 

the application.  

 

The distance the particle moves at each step is a preset value (Δ), along with the time 

between each step (𝜏). The probability to actually move or stay still at each step (P) is 

another parameter to introduce to further customize the diffusivity model. These properties 

are required for the calculating the diffusivity (𝐷) which is a key value in the model.  

 
𝐷 =

𝑃Δ

4𝜏
 (1) 

The random aspect of the model is implemented through the aforementioned probability, 

as well as the direction that the particle chooses to move in at each step. The range of angles 

the particle can move in ([𝜃 , 𝜃 ]) is another parameter that is introduced. This parameter 

is useful as it allows motion to be directed if needed. A uniform distribution is assumed for 

these parameters, however can be altered if needed.  

 

For ease of definition, a standard model is defined with certain parameters that will be kept 

constant (unless specifically stated) for the duration of the project.  

Δ = 0.01, 𝜏 = 1, 𝑃 = 1, 𝜃 = 0, 𝜃 = 2𝜋 

4.2    Algorithm 

The algorithm for the random walk code is determined and implemented. For any given starting  

point,  

1. Generate a random number to determine if the particle will move this step. 

2. Generate a random angle within the defined range for the particle to move. 

3. Move in the chosen direction for the defined step length. 

4. Increment the step counter by the step time. 

5. Check if new position of the particle has crossed the boundary.  
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The random walk model is tested using the basic geometry of a disc. It can be parameterised 

as follows: 

𝑥 = 𝑅 cos 𝜃 , 𝑦 = 𝑅 sin 𝜃 , 𝜃 ∈ [0, 2𝜋] 

Using the origin as a starting point, five tests are run to produce Figure 3.  

 

4.3    Geometry Mesh and Starting Points 

The random walk code runs as desired and so it can be implemented to run across the whole  

shape. To determine a set of points across the shape that encompasses enough information, 

a mesh can be generated across the geometry. This is done using GMSH software which 

outputs the full set of nodes, the triangles that connect these nodes, and the boundary nodes 

that form the outside of the shape. This is incredibly useful information to have both for the 

random walk and for numerical methods that will be explored later on. This mesh also 

introduces another parameter which is the refinement of the mesh. The more refined the 

mesh is, the more random walk starting points there will be. This leads to a more accurate 

solution, but as a result, more computational power is required.   

 

 

 

 

 

Figure 1: Five random walk paths starting from the origin (geometry chosen to be circle of radius 1) 
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Once generating the mesh, the random walk is looped to run at each of these starting 

points. Another test is run, this time starting a five different points, as seen in Figure 5.  

Figure 3 and figure 5 exemplify the main consequence of the random walk model, which is 

that each instance of starting at the same point can lead to wildly different paths. To 

characterise the exit time from each starting point, multiple trials will be run for each point 

and the times will be averaged, providing the mean exit time. This introduces one more 

parameter which is how many trials will be run at each starting point. More trials will lead 

to a more accurate result, but will proportionally increase the runtime of the simulation. The 

algorithm in Section 2.2 is modified to first loop for each trial at the current starting node, 

and then loop through each node and start the simulations there.  

-0.5 0 0.5

-0.5

0

0.5

Figure 4: Full geometry mesh of the disc domain with refinement parameter set to 0.08 

Figure 5: Five random walk paths starting from five different starting nodes 
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5   Random Walk Results 

The random walk is run three times on the disc domain to see the effect of increasing the  

number of trials at each node.  

It is observed that as the model uses an increasing number of trials, the solution approaches 

a smooth pattern where in general, particles starting toward the centre of the domain have 

a longer mean exit time to those starting near the edge. It is also seen that while the 10 trials 

plot  shows times upwards of 15000 units, the maximum time after using more trials looks 

to be around 10000-11000. This reinforces the importance of taking as many trials as 

possible to obtain an accurate solution, as this allowed high and low outliers to be accounted 

for. It is noted that while the 500 trials plot shows a relatively accurate solution, it still is 

patchy and is not entirely reliable. Further means of solving need to be explored to obtain 

better solutions with more efficient use of computational power.  

 

6   Exact Solutions 

Exact solutions can be determined analytically by solving partial differential equation (2).  

 
∇ 𝑇 = −

1

𝐷
 (2) 

A boundary condition is placed on the solution by drawing some conclusions about the 

desired solution. If a particle starts on the boundary (𝑟 = 𝑅), its exit time will be 0, as it has 

already reached the boundary. In the centre of the disc (𝑟 = 0), The partial derivative in all 

directions of 𝑟 can also be assumed to be 0 to keep the solution symmetrical. Hence, 

𝑇(𝑟) = 0, 𝑟 ∈ 𝜕Ω 

𝜕𝑇

𝜕𝑟
= 0, 𝑟 = 0 

Figure 6: Standard model run on the disc domain for 10, 100, and 500 trials per starting node 
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Solving equation (2) and applying the boundary conditions yields the following exact 

solution: 

 
𝑇(𝑟) =

𝑅 − 𝑟

4𝐷
, 𝑟 ∈ [0, 𝑅] (3) 

It is important to note that the disc is a special case where the exact solution can be 

represented in radial coordinates. Other solutions will be expressed in regular Cartesian 

coordinates. This solution is observed visually using a surface plot to compare to the 

random walk plot.  

Visually, the exact solution follows the same pattern that the random walk solutions were 

tending towards as the number of trials at each node increased. Therefore, it is clear the 

exact solution is the preferred method to solve mean exit time problems. However, this 

method is only convenient for simple shapes. As shapes get more complex and irregular, this 

method becomes incredibly difficult. Hence, numerical methods are explored to tackle these 

problems computationally. 

 

7   Numerical Methods 

7.1   Different Meshes 

The main mesh encountered so far is the full geomtry mesh seen in Figure 4. While this was  

used for the random walk starting points, these nodes also lend themselves to use in 

numerical methods. One method that utilises this full mesh is the finite volume method.  

Figure 7: Exact solution for mean exit time on a disc of radius 1 
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However, when solving for an accurate approximation of the solution, more mesh nodes will 

be required, making this method extremely computationally demanding. The full mesh 

shown in Figure 4 has 1183 nodes, meaning MATLAB will need to solve a 1183x1883 matrix 

system. Rather than using a full mesh, another way to capture the shape of the geomtry is to 

just mesh the boundary.  

 

 

 

 

 

 

 

 

In comparison, only 79 nodes are needed to capture the boundary with the same accuracy as 

the full mesh. Developing a numerical method based on these nodes is desired to save 

computational power and develop an accurate solution.  

 

7.2   Boundary Integral Method 

The boundary integral method is a method based on complex variable algebra to develop an  

accurate approximation to the mean exit time solution. Firstly, the solution is split into a 

particular solution and a homogenous solution.  

 𝑇(𝑥, 𝑦) = 𝑇 (𝑥, 𝑦) + 𝜙(𝑥, 𝑦) (4) 

 

The particular solution is chosen, and so it is known. The homogenous solution must be a 

harmonic function satisfying Laplace’s equation: 

 ∇ 𝜙 = 0 (5) 

This is important as it leads to the next step. 𝜙 being harmonic implies that a complex 

function, f, can be defined such than f is analytic.  

 𝑓(𝑧) = 𝜙(𝑥, 𝑦) + 𝑖𝜓(𝑥, 𝑦) (6) 

Figure 8: Boundary nodes of the mesh isolated 
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Along the boundary, some information about 𝜙 can be determined. Applying the boundary 

condition, 𝑇 = 0, to equation (4) allows the following relatinship to be identified:  

 𝜙 = −𝑇  (7) 

From here, this information can be used to determine 𝜓 along the boundary. To do this, 

Cauchy’s integral formula will be applied. This formula is an elementary result from complex 

variable methods.  

 𝑓(𝑧)

𝑧 − 𝑧
𝑑𝑧

 

= 𝑎𝑖𝑓(𝑧 ), 𝑎 =
𝜋     𝑧 ∈ 𝜕Ω
2𝜋    𝑧 ∈ Ω

 (8) 

 

When applied on the boundary, an equation can be formed in which 𝜓 is the only unknown 

and can hence be solved for. 

 
𝑓(𝑧 ) =

1

𝜋𝑖

𝑓(𝑧)

𝑧 − 𝑧
 𝑑𝑧

 

 (9) 

This integral is essentially a contour integral around the boundary of the shape, and so this 

introduces a condition on this method – the boundary has to be paramterisable. 

Furthermore, the paramaterisation of the boundary must be anticlockwise around the 

domain for equation 9 to be valid. When subsituting in the known parameters into this 

equation, a large and difficult to solve integral is formed. Rather than trying to solve this 

manually, or use a package to solve it symbolically, numerical quadrature can be used.  

 

In this case, the trapezoid rule provides enough accuracy with less computational power 

than higher order methods.  Using the trapezoid rule will provide a linear system which can 

be solved simply in MATLAB. This system will be much smaller than if a full gemotry mesh 

were used, highlighting the benefit of this method. Once solved, all the information about 𝑓 

is known on the boundary.  

 

From here, Cauchy’s integral formula can be reapplied to evaluate 𝜙 at points on the interior. 

Then, the solution can be recounstructed, as shown in equation 4.  
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7.3   Numerical Method Results 

To test the boundary integral method, it is tested on the circle and compared to the exact  

solution. The circle parameterisation was shown earlier, and these can easily be 

differentiated. Hence, the circle is a valid shape to use the method on.  

Visually, the plots look identical. There will be some small error due to the approxmation 

stage of the process – this can be quantified using a discrepancy measurement equation 

posed in [5].  

 
𝑒(𝑥, 𝑦) = 100

|𝑇 (𝑥, 𝑦) − 𝑇 (𝑥, 𝑦)|

max( , )∈ |𝑇 (𝑥, 𝑦)|
 (10) 

An error plot can be created by calculating the error at each node using this equation.  

Figure 9: Exact solution compared to the solution generated by the boundary integral method 

Figure 10: Plot of the error between the exact solution and the boundary integral approximation 
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For the majority of the shape, the error is near 0, however the area at the boundary shows 

a spike in the error to just under 0.00135. This is not a relatively small error, and is 

negligible for most purposes, however is important to note. 

 

8   Other Applications 

8.1    Ellipse 

An ellipse with semi-major axis, a, and semi-minor axis, b, can be parameterised as follows: 

𝑥 = 𝑎 cos 𝜃 , 𝑦 = 𝑏 sin 𝜃 , 𝜃 ∈ [0, 2𝜋] 

These are easily differentiable, and so are valid to use the boundary integral method on. A 

random walk with 500 trials at each node was also run for the elliptical domain for 

comparison. Furthermore, an exact solution is actually known for the elliptical domain.  

 
𝑇(𝑥, 𝑦) =

𝑎 𝑏

2𝐷(𝑎 + 𝑏 )
1 −

𝑥

𝑎
−

𝑦

𝑏
 (11) 

These three plots are shown in Figure 11 for comparison. 

 

Figure 11: Random walk plot (using 500 trials at each node), exact solution plot, and boundary integral solution plot, on ellipse of semi-major axis 
length 2 and semi-minor axis length 1 
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It is observered that, similar to the disc domain, the stochastic model seems to be 

approaching a pattern as the number of trials at each node increases. This smooth pattern 

is shown fully formed by the exact solution, as expected. The solution formed by the 

boundary integral method solution again looks identical to the exact solution. The error at 

each node can again be measured using equation 10 and plotted.  

Similarly to the error on the disc domain, the error appears to be near 0 across the majority 

of the domain. Around the boundary, the error spikes close to 0.0013, however this is small 

and neglible when considering the actual size of the values at these nodes.  

 

8.1    Pentagon 

Next, a pentagon domain is investigated. Pentagons, along with along any regular polygon, can  

be parameterised relatively easily as they are solely comprised of straight lines. If the 

coordinates of each vertex are known, then line segments can be paramterised between 

each can be determined. Linear functions are also easily differentiated, making them 

suitable for the boundary integral method. Exact solutions can be developed for polygons, 

however, they become increasingly complex, and so this was not found in this study. A 

random walk was run, and the boundary integral method was applied.  

Figure 12: Plot of the error between the exact solution and the boundary integral approximation on 
the elliptical domain 



 

14 

 

Once again, it is observed here that the boundary integral method provides an accurate 

solution that the random walk appeared to be approaching. While there is no numerical 

error to calculate here, a visual analysis shows the boundary integral method works on the 

pentagon domain. 

 

8.3    Irregular Shape 

Finally, a more perturbed, irregular shape was tested. Its parameterisation was made by a sum  

of different cosine and sine functions, both of which are straightforward to differentiate. 

Both the random walk and boundary integral method were run for this domain also.  

The boundary integral method seems to work as intended here, again providing a smooth 

solution to the problem that the random walk seemed to be tending toward. Small errors 

can be noticed here around the ‘sharper’ points of the boundary, suggesting these are the 

points where the approximation differs the most. This could be investigated further by using 

a more refined mesh and running the simulation and approximation again.  

Figure 14: Random walk plot (with 500 trials from each node), and the boundary integral 
approximation on the irregular domain 

Figure 13: Random walk plot (with 500 trials from each node), and the boundary integral approximation on the 
pentagon domain 
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9   Conclusion and Recommendations 

This project investigated techniques to modelling and solving mean exit time problems for  

diffusion on different domains. Stochastic modelling with appropriate parameters allowed 

for realistic modelling of the diffusion process. Exact solutions could be formed on regualr 

domains through analytical techniques to solving partial differential equations. For 

irregular domains, the boundary integral method provided an efficient and accurate 

numerical method.  

 

From here, the project can be furthered and extended down various avenues. Firstly, the 

application of the boundary integral method in this project showed some errors and places 

for improvement. This can be further investigated by using more refined meshes, and 

testing more different domains. Different boundary conditions could be applied to explore 

their effect. For example, half of the disc domain could be made to be a reflective boundary 

rather than an absorbing boundary. Furthermore, the model could begin to be applied to 

real life appplcations like those mentioned in the introduction. The tools have been 

developed, so parameter measurement could be completed and deployed onto the model.  
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