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Abstract

Second-order ordinary differential equations lie at the heart of many physical phenomena and are crucial

to describing the nature and dynamics of our world. A class of these, with low-order polynomial coefficients,

permit polynomial solutions given by Rodrigues’ Formula. The solutions are summed as a power series to

give a generating function, and several results of complex analysis are applied to manipulate and close this

expression. In doing so, contour integral representations of the Hermite, Legendre and Laguerre polynomials

are also observed.

1 Introduction

The study of differential equations dates back to the 17th century, when the greats Newton and Liebniz in-

dependently published their respective theories of calculus, building upon the work of many other renowned

mathematicians of the era. The discovery of this branch of mathematics led to many physical advances, in-

cluding Newton’s Theory of Motion and exact calculations of geometric areas and volumes. Over the coming

centuries, mathematicians such as Cauchy, Riemann and Weierstrass developed and rigorised Calculus using a

formal treatment with limits. At this stage, many techniques were being introduced and problems solved. In

the mid 19th century, Charles-François Sturm and Joseph Liouville investigated a general class of second-order,

linear, homogenous ordinary differential equations (ODEs) and developed what is known as Sturm-Liouville

Theory. Interestingly, many of the examples in this class gave rise to polynomial solutions when particular

boundary conditions were asserted.

The formalisation of complex numbers came much after Newton and Liebniz, and the advent of complex

analysis was not until the early 19th century, when the French mathematician Augustin-Louis Cauchy described

complex integration. This theory too found its way into the realm of physics, aiding the understanding of

potential theory, fluid flow, general relativity and more recently string theory.

Complex analysis also allowed for new ways of solving and representing solutions to differential equations,

which will be explored in this paper. We begin by introducing Sturm-Liouville systems and discussing several

important distinctions and results in this class. We proceed by reviewing complex analysis and presenting some

important theorems in the field. In Section 5, we present Rodrigues’ Theorem for which a proof is included in

Appendix A. With these tools in hand, we explore contour integral representations of solutions to particular SL

systems. These representations are used to develop closed forms for the generating functions of the Hermite,

Legendre and Laguerre polynomials. We extend this technique to some general classes of second-order, linear,

homogenous ODEs.
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2 Statement of Authorship

In this report, Sections 3, 4 and 5 explore a number of theorems, formulas and methods surrounding Sturm-

Liouville systems and complex analysis. This theory has been developed, written about and published by many

mathematicians, and the author of this paper does not take credit for this. The method used in Section 6 to

find the generating functions for the Hermite and Legendre DEs has also been taken from existing literature.

The treatment of the Laguerre system and the two consequent generalisations has been conducted indepen-

dently by the author, in conjunction with his supervisor, Gregory Markowsky. While no publication on these

generalisations was found, it is acknowledged that these too possibly exist in literature.

3 Sturm-Liouville Systems

Sturm-Liouville (SL) systems consist of a Sturm-Liouville differential equation together with some boundary

conditions over a specified domain [1].

Definition 3.1 (Sturm-Liouville Differential Equation) A second-order, homogenous, linear ODE of the

form

D [p(x)y′(x)] + (λr(x)− q(x)) y(x) = 0, (3.1)

where p, q, r are real functions of x over an interval I = [a, b] (possibly infinite or semi-infinite), p, r > 0, except

possibly at their endpoints, and λ is a real parameter.

To ensure solutions exist, we generally assume that p ∈ C1 and q, r ∈ C0, except possibly in the singular case.

Given some boundary conditions, the solutions are called eigenfunctions, and the corresponding values of λ are

the eigenvalues. A regular SL equation has I finite, p, q, r bounded and p, r positive over I. There are three

classifications of SL systems - regular, periodic or singular.

Definition 3.2 (Regular SL System) A regular SL system consists of a regular SL equation and boundary

conditions of the form

αy(a) + βy′(a) = γy(b) + δy′(b) = 0,

where neither (α, β) nor (γ, δ) are (0, 0).

Definition 3.3 (Periodic SL System) A periodic SL system has p, q, r being periodic functions with b−a as

a period, and boundary conditions of the form

y(a) = y(b) y′(a) = y′(b).

Definition 3.4 (Singular SL System) An SL system is singular if

(i) I is semi-infinite or infinite, or

(ii) p or r vanish at an endpoint, or
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(iii) q is discontinuous.

Boundary conditions may include homogenous statements such as y being bounded.

There are many fascinating results concerning the eigenfunctions of SL systems. From standard DE theory,

for a regular SL equation we are guaranteed two linearly independent eigenfunctions for each eigenvalue λ.

Interestingly, eigenfunctions belonging to distinct eigenvalues are pairwise orthogonal, in the manner described

in Theorem 3.1.

Theorem 3.1 (Orthogonality of Eigenfunctions) Suppose u and v are eigenfunctions of a regular or pe-

riodic SL system with distinct eigenvalues. Then∫ b

a

r(x)u(x)v(x)dx = 0.

We say that u and v are orthogonal with respect to the weight function r (from 3.1) over I = [a, b].

In Section 6, we study the properties of the Hermite, Legendre and Laguerre DEs, which are all examples of

Sturm-Liouville systems.

4 Integration in the Complex Plane

There are a number of significant differences between integration over real and complex domains. In this section,

we review a number of important results developed by Cauchy in the early 19th century. These will be used in

Section 6 to develop the generating functions of several sets of polynomials. The results in this section can be

found in Snider’s Fundamentals of Complex Analysis [2].

Theorem 4.1 (Cauchy’s Integral Theorem) If f is an analytic function in a simply connected domain D,

and C is any closed loop in D, then ∮
C
f(z)dz = 0.

Complex analysis also offers a useful way to express derivatives of a function using the generalised Cauchy

Integral Formula.

Theorem 4.2 (Generalised Cauchy Integral Formula) If f is an analytic function in a simply connected

domain D, C is any closed loop in D, and x is a point inside C, then

f (n)(x) =
n!

2πi

∮
C

f(z)

(z − x)n+1
dz.

The case of n = 0 in the above is common and is know simply as the Cauchy Integral Formula. Finally, the

Residue Theorem provides a useful way to calculate the contour integral of a function around a singularity.
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Theorem 4.3 (Residue Theorem) Suppose f is analytic in a simply connected domain D except at z0, where

there is an isolated singularity. Then f permits a Laurent expansion about z0 of the form

f(z) =

∞∑
n=−∞

an(z − z0)
n.

The coefficient a−1 is called the residue of f at z0, denoted by res(f, z0). If C is any closed loop around z0 in

D, then ∮
C
f(z)dz = 2πi · res(f, z0)

5 Rodrigues’ Theorem

We now introduce a formula which provides polynomial solutions to a large class of second-order, linear, ho-

mogenous ODEs including the Hermite, Legendre, Laguerre and Chebyshev equations. We will denote by w(x)

the integrating factor of an ODE of the form

p(x)y′′(x) + q(x)y′(x) + λy(x) = 0. (5.1)

Multiplying by this integrating factor would enable us to write the DE in self-adjoint form, and hence identify

a Sturm-Liouville system. The integrating factor must satisfy

D [w(x)p(x)] = w(x)q(x) (5.2)

and can therefore be given by the formula

w(x) =
1

p(x)
exp

(∫
q(x)

p(x)
dx

)
. (5.3)

We now arrive at the fascinating result that is Rodrigues’ Theorem [3].

Theorem 5.1 (Rodrigues’ Theorem) If p is quadratic and q is linear, then (5.1) has polynomial solutions

of degree n for each n ∈ N ∪ {0}. The eigenvalues are λn = −n(n−1)
2 p′′(x)− nq′(x) and the eigenfunctions are

given by Rodrigues’ Formula:

yn(x) =
1

w(x)
Dn [w(x)p(x)n] . (5.4)

The proof of this formula is an arduous journey in algebra, and is included in Appendix A for the interested

reader. Our focus is on the interplay between Rodrigues’ Formula and complex analysis. In particular, we will

later transform the Dn condition using Theorem 4.2 to express the polynomial solutions as contour integrals.
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6 Applications to Generating Functions

6.1 Introduction

Rodrigues’ Formula provides a succinct way of expressing the polynomial solutions to SL systems of the form

(5.1). Letting Qn(x) be the polynomial solution of degree n, we can define the generating function in the context

of solutions to SL systems as follows.

Definition 6.1 (Generating Function) This is the infinite power series in t with the eigenfunctions as its

coefficients, given by

G(x, t) =

∞∑
n=0

Qn(x)t
n. (6.1)

We also define the exponential generating function as another means of succinctly capturing a sequence of

functions.

Definition 6.2 (Exponential Generating Function) This is the infinite power series in t with the scaled

eigenfunctions as its coefficients, given by

G(x, t) =

∞∑
n=0

Qn(x)
tn

n!
. (6.2)

While we predominantly seek the standard generating function, in the Hermite DE it will be more suitable

to find the exponential generating function. Instead of an infinite power series, the generating function can

often be written in closed form, which captures all the coefficients of every eigenfunction into a single, short

expression. With the aid of complex analysis, we will show how this can be done for the Hermite, Legendre and

Laguerre DEs. We conclude this section with two generalisations of the techniques we have used.

6.2 Hermite Differential Equation

We begin by treating the Hermite DE, which was studied in detail by Pafnuty Chebyshev in the mid 19th

century. Among the solutions to this DE are the Hermite Polynomials, which arise in many fields including

quantum mechanics, Brownian motion, signal processing and combinatorics [4].

Definition 6.3 (Hermite Differential Equation)

y′′(x)− 2xy′(x) + λy(x) = 0

The Hermite DE satisfies the conditions for Rodrigues’ Theorem, with p(x) = 1 and q(x) = −2x. Using (5.3),

the integrating factor is w(x) = e−x2

. Rodrigues’ Formula tells us that the polynomial solutions to Hermite’s

DE are given by

yn = ex
2

Dn
[
e−x2

]
,

with eigenvalues λn = 2n. Due to the homogeneity of SL systems, we may scale these polynomials arbitrarily

and they will remain a solution. The Hermite polynomials are scaled to have leading coefficient 2n, which
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requires the above polynomials to be multiplied by (−1)n. By Theorem 4.2, they can therefore be written in

contour integral form as

Hn(x) = (−1)nex
2 n!

2πi

∮
C

e−z2

(z − x)n+1
dz. (6.3)

For context, we list the first few Hermite polynomials.

H0(x) = 1 λ0 = 0

H1(x) = 2x λ1 = 2

H2(x) = 4x2 − 2 λ2 = 4

Substituting (6.3) into (6.2) gives the generating function as

G(x, t) =

∞∑
n=0

(−1)nex
2 n!

2πi

∮
C

e−z2

(z − x)n+1
dz

tn

n!
.

We will collect the terms with exponents n and sum the resulting geometric series. We will then apply the

generalised Cauchy Integral Formula to evaluate the contour integral.

G(x, t) =
ex

2

2πi

∮
C

∞∑
n=0

e−z2

(−t)n

(z − x)n+1
dz

=
ex

2

2πi

∮
C

e−z2

z − x

∞∑
n=0

(
−t

z − x

)n

dz

=
ex

2

2πi

∮
C

e−z2

z − x
· 1

1 + t
z−x

dw

=
ex

2

2πi

∮
C

e−z2

z − x+ t
dz

=
ex

2

2πi
· 2πie−(x−t)2 (By Thm. 4.2)

= e2xt−t2

Thus we have established a closed form of the exponential generating function for the Hermite polynomials. We

notice that in the expansion of e2xt−t2 · t−(n+1), the coefficient of t−1 is Hn(x)
n! . By Residue Theorem, this gives

us another way to express the Hermite polynomials.

Formula 6.1 (Contour integral representation of Hermite polynomials)

Hn(x) =
n!

2πi

∮
C

e2xt−t2

tn+1
dt

6.3 Legendre Differential Equation

We now turn our attention to another famous differential equation - the Legendre DE. This equation is encoun-

tered in many branches of physics, engineering and mathematics. It arises in the determination of wave functions

of electrons, nuclear reactor physics, neutron scattering calculations [5] and some trigonometric identities.
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Definition 6.4 (Legendre Differential Equation)

(1− x2)y′′(x)− 2xy′(x) + λy(x) = 0

The equation is self-adjoint as an integrating factor is not required; it is simply w(x) = 1. Hence, the Legendre

DE defines an SL system, and we are guaranteed an orthogonal set of solutions by Theorem 3.1. Furthermore,

this satisfies the conditions for Rodrigues’ Formula, with p(x) = 1 − x2 and q(x) = −2x. The solutions are

given by the formula as

yn = Dn
[
(1− x2)n

]
with eigenvalues λn = n(n + 1). The Legendre polynomials are scaled to satisfy P (1) = 1, so that the sum of

the coefficients is 1. The scaling factor is (−1)n

2nn! , so we have

Pn(x) =
(−1)n

2nn!
Dn

[
(1− x2)n

]
=

1

2nn!
Dn

[
(x2 − 1)n

]
This gives us our first contour integral representation of the Legendre polynomials. The formula was discovered

by and named after Ludwig Schläfli in 1881 [6].

Formula 6.2 (Schläfli integral representation of Legendre polynomials)

Pn(x) =
1

2n+1πi

∮
C

(z2 − 1)n

(z − x)n+1
dz.

The first few Legendre polynomials are

P0(x) = 1 λ0 = 0

P1(x) = x λ1 = 2

P2(x) =
1

2
(3x2 − 1) λ2 = 6

We now turn our attention to the generating function of the Legendre polynomials. We follow the method

presented by Evans in his lecture notes [7]. Substituting Formula 6.2 into (6.1) and following steps similar to

the Hermite case gives

G(x, t) =

∞∑
n=0

1

2n+1πi

∮
C

(z2 − 1)n

(z − x)n+1
dz · tn

=
1

2πi

∮
C

1

z − x

∞∑
n=0

(
t(z2 − 1)

2(z − x)

)n

dz

=
1

2πi

∮
C

1

z − x

1

1− t(z2−1)
2(z−x)

dz

=
−1

πi

∮
C

1

−2(z − x) + t(z2 − 1)
dz.

The denominator is a quadratic in z, with roots z± = 1
t (1±

√
1− 2xt+ t2). We desire convergence of G(x, t),

at the least when |t| is small. As t → 0, z+ → ∞ whereas z− → x. Hence, for t sufficiently small, the pole at z−
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will lie inside the contour C (recalling that C was any contour around x) and so by Cauchy Integral Formula,

G(x, t) =
−1

πi

∮
C

1

t(z − z−)(z − z+)
dz

=
−1

πi

∮
C

(
1

t(z−z+)

)
z − z−

dz

=
−1

πi

2πi

t(z− − z+)

=
−2

t(−2
t

√
1− 2xt+ t2)

=
1√

1− 2xt+ t2
.

Hence, we have established the generating function for the Legendre polynomials. By Residue Theorem, this

gives us another way to express the Legendre polynomials.

Formula 6.3 (Contour integral representation of Legendre polynomials)

Pn(x) =
1

2πi

∮
C

1

tn+1
√
1− 2xt+ t2

dt.

6.4 Laguerre Differential Equation

The final equation we explore in this section is the Laguerre DE, which has applications in quantum mechanics

and optics [8].

Definition 6.5 (Laguerre Differential Equation)

xy′′(x) + (1− x)y′(x) + λy(x) = 0

Again, this satisfies the conditions for Rodrigues’ Theorem, with p(x) = x and q(x) = 1 − x. The integrating

factor, calculated using Formula 5.3, is w(x) = e−x. The solutions are then given by Rodrigues’ Formula as

yn = exDn
[
e−xxn

]
with eigenvalues λn = n. The Laguerre polynomials are scaled so that the constant term is 1, giving

Ln(x) =
ex

n!
Dn

[
e−xxn

]
.

Using (4.2), this gives us our first contour integral representation of the Laguerre Polynomials as

Ln(x) =
ex

2πi

∮
C

e−zzn

(z − x)n+1
dz. (6.4)

The first few Laguerre polynomials are

L0(x) = 1 λ0 = 0

L1(x) = 1− x λ1 = 1

L2(x) =
1

2
(x2 − 4x+ 2) λ2 = 2
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Substituting (6.4) into (6.1) gives

G(x, t) =

∞∑
n=0

ex

2πi

∮
C

e−zzn

(z − x)n+1
dztn.

We deal with this expression in a similar way to the Hermite case.

G(x, t) =
ex

2πi

∮
C

e−z

z − x

∞∑
n=0

(
zt

z − x

)n

dz

=
ex

2πi

∮
C

e−z

z − x

1

1− zt
z−x

dz

=
ex

2πi

∮
C

e−z

z − x− zt
dz

=
ex

2πi(1− t)

∮
C

e−z

z − x
1−t

dz

=
ex

2πi(1− t)
· 2πie−

x
1−t (By Thm. 4.2)

=
e

−xt
1−t

1− t

Hence we have established the generating function for the Laguerre polynomials. By Residue Theorem, this

gives us another way to express the Laguerre polynomials.

Formula 6.4 (Contour integral representation of Laguerre polynomials)

Ln(x) =
1

2πi

∮
C

e
−xt
1−t

(1− t)tn+1
dt.

6.5 Generalisation for p linear

We now present a generalisation of the results for the Hermite and Laguerre DEs. Suppose An(x) is a solution

associated with eigenvalue λn of the second-order, linear, homogenous ODE with linear coefficients, taking the

form

(bx+ c)y′′ + (dx+ e)y′ + λy = 0. (6.5)

By (5.3), the integrating factor is then given by

w(x) =
1

bx+ c
exp

(∫
dx+ e

bx+ c
dx

)
.

We can evaluate the integral in the exponential for b ̸= 0 as∫
dx+ e

bx+ c
dx =

∫
d

b
+

e− cd
b

bx+ c
dx

=
d

b
x+

be− cd

b2
ln(bx+ c).

The integrating factor for b ̸= 0 can therefore be expressed as

w(x) = (bx+ c)
be−cd

b2
−1e

d
b x. (6.6)
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For b = 0, the integrating factor is

w0(x) =
1

c
e

(dx+e)2

2cd (6.7)

Applying Rodrigues’ Formula, and scaling by 1
n! , the polynomial solutions to this ODE are

An(x) =
1

n!w(x)
Dn [w(x)p(x)n]

=
1

2πiw(x)

∮
C

w(z)p(z)n

(z − x)n+1
dz. (By Thm. 4.2)

Plugging this into (6.1), we see that

G(x, t) =

∞∑
n=0

1

2πiw(x)

∮
C

w(z)p(z)n

(z − x)n+1
dz tn

=
1

2πiw(x)

∮
C

w(z)

z − x

∞∑
n=0

(
p(z)t

z − x

)n

dz.

Summing the geometric series gives

G(x, t) =
1

2πiw(x)

∮
C

w(z)

z − x

1

1− p(z)t
z−x

dz

=
1

2πiw(x)

∮
C

w(z)

z − x− (bz + c)t
dz

=
1

2πiw(x)(1− bt)

∮
C

w(z)

z − x+ct
1−bt

dz

=
1

2πiw(x)(1− bt)
2πiw

(
x+ ct

1− bt

)

=
w
(

x+ct
1−bt

)
w(x)(1− bt)

.

We hence arrive at a succinct expression for the generating function of the polynomial solutions to (6.5). By

substituting (6.6) into the above equation, we find the following formula for the generating function.

Formula 6.5 (Generating Function when p is linear) For b ̸= 0, the generating function is

G(x, t) =
e

dt(bx+c)
b(1−bt)

(1− bt)
be−cd

b2

For b = 0, this becomes

G(x, t) = et(dx+e)+ cdt2

2

Once again, applying Residue Theorem, we can express the solutions An(x) in the following way.

Formula 6.6 (Contour integral representation of polynomial solutions) For b ̸= 0, the polynomials

solutions to (6.5) can be written as

An(x) =
1

2πi

∮
C

e
dt(bx+c)
b(1−bt)

(1− bt)
be−cd

b2 tn+1
dt.
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6.6 Generalisation for p quadratic

We now explore a further generalisation, for when p has degree 2. Suppose An(x) is a solution associated with

eigenvalue λn of the ODE with form

(ax2 + bx+ c)y′′ + (dx+ e)y′ + λy = 0. (6.8)

By (5.3), the integrating factor is now given by

w(x) =
1

ax2 + bx+ c
exp

(∫
dx+ e

ax2 + bx+ c
dx

)
.

As in Section 6.5, by applying Rodrigues’ Theorem, scaling by 1
n! and applying generalised Cauchy Integral

Formula, we find that

An(x) =
1

2πiw(x)

∮
C

w(z)p(z)n

(z − x)n+1
dz.

We again plug this result into (6.1). We have skipped the first two steps as they are identical to Section 6.5.

G(x, t) =
1

2πiw(x)

∮
C

w(z)

z − x

1

1− p(z)t
z−x

dz

=
1

2πiw(x)

∮
C

w(z)

z − x− (az2 + bz + c)t
dz

=
1

−2πiatw(x)

∮
C

w(z)

z2 + bt−1
at z + x+ct

at

dz

Applying the quadratic formula, the roots of the denominator are

z± =
1

2at

(
1− bt±

√
(bt− 1)2 − 4at(x+ ct)

)
=

1

2at

(
1− bt±

√
1− 2bt+ b2t2 − 4atx− 4act2

)
≈ 1

2at

(
1− bt±

(
1 +

1

2

(
−2bt+ b2t2 − 4atx− 4act2

)))
=

1

2at

(
1− bt±

(
1− bt+

1

2
b2t2 − 2atx− 2act2

))
.

In the last step, we have applied the approximation
√
1 + k ≈ 1 + 1

2k which holds true for small k, seen by

expanding the square root as a Taylor Series. Simplifying, we find that as t → 0, we have

z+ =
1

2at

(
2− 2bt+

1

2
b2t2 − 2atx− 2act2

)
→ ∞

z− =
1

2at

(
1− bt− 1 + bt− 1

2
b2t2 + 2atx+ 2act2

)
=

− 1
2b

2t2 + 2atx+ 2act2

2at

= −b2t

4a
+ x+ ct → x.
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We recall that the contour C need only enclose x. Hence for t sufficiently small, C will enclose z−, so we may

apply the Cauchy Integral Formula to find that

G(x, t) =
−1

2πiatw(x)

∮
C

w(z)

(z − z−)(z − z+)
dz

=
−1

2πiatw(x)
· 2πi w(z−)

z− − z+

=
w(z−)

w(x)
√

(bt− 1)2 − 4at(x+ ct)

where z− = x− b2−4ac
4a t and w(x) were found earlier.

7 Conclusion

In this report, we looked at several famous ODEs which could be brought to Sturm-Liouville form with an

integrating factor. These form part of a large subset of second-order differential equations which permit poly-

nomial solutions given by Rodrigues’ Formula. Further, we have seen that there are polynomial solutions for

each non-negative degree, and these can be placed as coefficients in a power series to create a generating func-

tion. With the aid of several theorems of complex analysis, we have seen how the generating functions of the

Hermite, Legendre and Laguerre polynomials can be expressed in closed form. Finally, we have studied the

generalisations of these examples and presented the resultant formulas. These could be used to easily find the

polynomial solutions of ODEs that arise in physics and nature, or to verify the correctness of existing solutions.
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Appendix A

A proof of Rodrigues’ Theorem, provided by Harris [3]. We start by using (5.2) above to re-express the

following derivative.

pD[wpn] = pD[(wp) · pn−1]

= p
(
D[wp]pn−1 + wpD[pn−1]

)
= p

(
wq · pn−1 + wp · (n− 1)pn−2D[p]

)
.

∴ pD[wpn] = wpn (q + (n− 1)D[p]) .

We then differentiate the above equation n+ 1 times to obtain

n+1∑
i=0

(
n+ 1

i

)
Di[p]Dn+2−i[wpn] =

n+1∑
i=0

(
n+ 1

i

)
Di[wpn]Dn+1−i[q + (n− 1)D[p]].

Many of these derivatives vanish as p is quadratic and q + (n− 1)D[p] is linear. Omitting these and dividing

by w gives
p

w
Dn+2[wpn] +

(n+ 1)D[p]

w
Dn+1[wpn] +

n(n+ 1)D2[p]

2w
Dn[wpn] =

q + (n− 1)D[p]

w
Dn+1[wpn] +

(n+ 1)(D[q] + (n− 1)D2[p])

w
Dn[wpn].

We use (5.4) above to place yn wherever we can, and collect the terms to the left side.

p

w
Dn+2[wpn] +

2D[p]− q

w
Dn+1[wpn] +

(
n(n+ 1)D2[p]

2
− (n+ 1)D[q]− (n+ 1)(n− 1)D2[p]

)
yn = 0.

∴
p

w
Dn+2[wpn] +

2D[p]− q

w
Dn+1[wpn]−

(
n2 − n− 2

2
D2[p] + (n+ 1)D[q]

)
yn = 0. (7.1)

We will develop a useful identity to represent the terms of (7.1) as derivatives of yn. Firstly,

pD2

[
1

w
Dn[wpn]

]
= p

1

w
Dn+2[wpn] + 2pD

[
1

w

]
Dn+1[wpn] + pD2

[
1

w

]
Dn[wpn].

Hence we may re-express

p

w
Dn+2[wpn] = pD2[yn]− 2pD

[
1

w

]
Dn+1[wpn]− wpD2

[
1

w

]
yn. (7.2)

Notice that since D[wp] = wq (5.2), we have by product rule that

D[w]p+ wD[p] = wq ⇒ D[w] =
w(q −D[p])

p
.

Hence,

D

[
1

w

]
=

−1

w2
D[w] =

D[p]− q

pw
. (7.3)

and

D2

[
1

w

]
= D

[
D[p]− q

pw

]
=

(D2[p]−D[q])pw − (D[p]− q)D[pw]

p2w2

=
D2[p]−D[q]

pw
− (D[p]− q)q

p2w
.
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Substituting these into 7.2 gives

p

w
Dn+2[wpn] = py′′n − 2p

D[p]− q

pw
Dn+1[wpn]− wp

(
D2[p]−D[q]

pw
− (D[p]− q)q

p2w

)
yn

= py′′n − 2
D[p]− q

w
Dn+1[wpn]−

(
D2[p]−D[q]− (D[p]− q)q

p

)
yn.

Hence, (7.1) becomes

py′′n − 2
D[p]− q

w
Dn+1[wpn]−

(
D2[p]−D[q]− (D[p]− q)q

p

)
yn +

2D[p]− q

w
Dn+1[wpn]

−
(
n2 − n− 2

2
D2[p] + (n+ 1)D[q]

)
yn = 0.

⇒ py′′n +
q

w
Dn+1[wpn]−

(
n2 − n

2
D2[p] + nD[q]− (D[p]− q)q

p

)
yn = 0.

Note that the middle term can be rewritten as qy′n + q(q−D[p])
p yn since

qy′n +
q(q −D[p])

p
yn = qD

[
1

w
Dn[wpn]

]
+

q(q −D[p])

p

1

w
Dn[wpn]

= qD

[
1

w

]
Dn[wpn] +

q

w
Dn+1[wpn] +

q(q −D[p])

pw
Dn[wpn]

=
q

w
Dn+1[wpn].

The last step is due to (7.3). Our equation becomes

py′′n + qy′n +
q(q −D[p])

p
yn −

(
n2 − n

2
D2[p] + nD[q]− (D[p]− q)q

p

)
yn = 0

⇒py′′n + qy′n −
(
n2 − n

2
D2[p] + nD[q]

)
yn = 0

We see now that yn satisfies the differential equation (5.1) with eigenvalue λn = −
(

n2−n
2 D2[p] + nD[q]

)
,

which we note is a constant since p is at most quadratic and q is at most linear.
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