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Abstract

Associated to groups of transformations of a complex vector space generated by reflections are two algebras

called the rational Cherednik algebra and the Hecke algebra. In this project, we studied the connection

between the representation theories of these two structures through the Knizhnik-Zamolodchikov functor. The

differential equations which determine the Hecke algebra modules outputted by the functor are expressed

explicitly in several examples, and in the simplest case of a cyclic group, the solution is computed to specify

the Hecke algebra representation explicitly.
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1 Introduction

Associated to any complex reflection group are two algebras called the rational Cherednik algebra and Hecke

algebra, each specified by some complex parameters. In the 2003 paper titled “On the category O of the

rational Cherednik algebra” [GGOR03], the authors Victor Ginzburg, Nicholas Guay, Eric Opdam and Raphaël

Rouquier establised a connection between the representation theories of these two algebras through the so called

Knizhnik-Zamolodchikov functor.

Roughly speaking, any representation of a complex reflection group induces a representations of its rational

Cherednik algebra, and can also be deformed to specify representations of its Hecke algebra. The remaining

link between the rational Cherednik algebra and Hecke algebra is the Knizhnik-Zamolodchikov functor.

{C[W ]-modules} {RCA-modules} {Hecke-modules}
Induction KZ

Deform

In this project, we intend on studying the deformation that produces representations of the Hecke algebra,

and briefly describe how the parameters of the rational Cherednik algebra defines such a deformation to give

us the functor.
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2 Hecke Algebras

Here, we will follow the definition of the Hecke algebra given by X. Ma and P. Etingof in [EM10].

Associated to any complex reflection group W on a complex vector space V with refelction hyperplanes A,

we define

V reg = V −
⋃

H∈A
H

It can be shown that V reg is path connected. Given x, y ∈ V reg, say that x ∼ y if there is w ∈ W such that

y = wx. Clearly, this is an equivalence relation, so defines a quotient map

q : V reg −→ V reg/W

which induces a topology on the quotient space V reg/W of equivalence classes. The braid group BW based at

a0 ∈ V reg/W is

BW = π1 (V
reg/W, a0)

There is a continuous small loop around q(H) ⊆ V reg/W for each hyperplane H ∈ A. More precisely, the

pointwise stabiliser of H is a cyclic subgroup of W of some order mH . So let s ∈ W be the reflection element

reflecting across H whose non-unit eigenvalue is ζ = e2πi/mH . Let v⊥s ∈ V be a non-zero eigenvector of s, with

assocaited eigenvalue ζ ̸= 1. Let vs ∈ H, vs ̸= 0. Then we have a path γH : [0, 1] −→ V reg defined by

γH(t) = vs + εζtv⊥s

For some small enough ε > 0, this will be a path inside V reg. Composing with the quotient map gives the desired

loop γH around the image of H in V reg/W . It can be checked that picking a different vs, v
⊥
s and different ε > 0

(provided ε is sufficiently small) will give homotopic loops in V reg/W . Moreover, the loop obtained in this way

at a different reflection hyperplane conjugate to the one we just worked with will also give a homotopic loop in

V reg/W .

From elementary algebraic topology, it is known that two loops in V reg/W based at a0 are conjugate in

BW if and only if they are homotopic as loops in V reg/W without fixed basepoints. So this loop γH defines a

conjugacy class of the braid group BW . Let TH be a representative of this conjugacy class.

Now for each hyperplane H ∈ A, choose complex parameters {qj,H}mH−1
j=1 such that whenever H ′ = wH,
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also qj,H = qj,H′ . If H ′ = wH then it is easily checked that the pointwise stabilisers of each hyperplane have

the same order so that this restriction makes sense.

The Hecke algebra Hq(W ) is the quotient

Hq(W ) = C [BW ]

/〈
(TH − 1)

mH−1∏
j=1

(
TH − e2jπi/mH qj,H

)
, for all H ∈ A

〉

From now, write q∗j,H = e2jπi/mH qj,H . Recall that the TH was chosen as a representative of the conjugacy class

defined by a small loop around the image of H in the orbit space V reg/W . The definition above is independent

of this choice because if T ′
H = γTHγ−1, then the relation for TH holds if and only if it holds for T ′

H since

(T ′
H − 1)

mH′−1∏
j=1

(
T ′
H − q∗j,H′

)
=
(
γTHγ−1 − 1γγ−1

) (
γTHγ−1 − q∗1,Hγγ−1

)
· · ·
(
γTHγ−1 − q∗mH−1,Hγγ−1

)
=
[
γ (T1 − 1) γ−1

] [
γ
(
TH − q∗1,H

)
γ−1

]
· · ·
[
γ
(
TH − q∗mH−1,H

)
γ−1

]
= γ

(TH − 1)

mH−1∏
j=1

(
TH − q∗j,H

) γ−1

2.1 Cyclic Group Case W = G(1, 1, r)

Here, V reg = C− {0}. Given an equivalence class p ∈ V reg, it is easily seen that the orbit of p is

[p] =
{
e2kπi/rp | 0 ≤ k < r

}
Using the convention that the principal argument of a complex number is in [0, 2π), there is always precisely

one point p0 in the orbit [p] whose argument is in [0, 2π/r). Define

ϕ : V reg/W −→ V reg

[p] 7−→ |p0|erarg(p0)i

The map ϕ defines a homeomorphism V reg/W ∼= V reg, and so

BW = π (V reg/W, a0) ∼= π (V reg, ϕ (a0)) = π (C− {0}) ∼= Z

The homomorphism between π (V reg/W, a0) and π (V reg, ϕ (a0)) is the one induced by the homeomorphism ϕ.

The group π (V reg, ϕ(a0)) is generated by the loop γ based at ϕ (a0) which goes around the origin anticlockwise

once. Thus, the corresponding loop in V reg/W based at a0 obtained by pushing through ϕ−1 is the generator
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of the braid group π1 (V
reg/W, a0). That is, π1 (V

reg/W, a0) is generated by the loop

T1 = ϕ−1 ◦ γ : [0, 1] −→ V reg/W

This means that the group algebra of the braid group C[BW ] is the free algebra generated by T1. Morevoer,

notice that T1 is a satisfactory choice of a small loop around the single hyperplane in V fixed by W , as described

in the definition of the Hecke algebra. Thus, given complex parameters q = (q1, q2, · · · , qr−1) ⊆ C, the Hecke

algebra has the following presentation in terms of generators and relations

Hq (W ) = C [BW ]

/〈
(T1 − 1)

r−1∏
j=1

(
T1 − e2jπi/rqj

)〉

=

〈
T1 | (T1 − 1)

r−1∏
j=1

(
T1 − e2jπi/rqj

)〉

2.2 Coxeter Group Case

Let S = {s1, s2, · · · , sN} be any finite set, M = [mij ]
N
i,j=1 a Coxeter matrix, and WM to the Coxeter group

with these specifications.

Then WM acts as a complex reflection group on h = CN . Then the braid group is (see background section

on Artin groups)

BWM
= π1 (h

reg/W ) ∼= AM =

〈
T1, T2, · · · , TN | TiTjTi · · ·︸ ︷︷ ︸

mi,j factors

= TjTiTj · · ·︸ ︷︷ ︸
mi,j factors

, where i ̸= j

〉

Moreover, from the discussion on the relationship between the braid group and Artin group in the background

section, Ti corresponds to the image in hreg/W of a path in hreg from the basepoint to its reflection by the

action of si which just avoids the hyperplane by circling around. This path is in the conjugacy class defined by

a small circle around the hyperplane.

Since we have a real reflection group, the pointwise stabilisers of each hyperplane are cyclic of order 2, so

there is only one complex parameter for each hyperplane.

Then, the Hecke algebra is

Hq (WM ) = C [BWM
]

/〈
(Ti − 1) (Ti + qi) , 1 ≤ i ≤ N

〉

where q = {qi | 1 ≤ i ≤ N} ⊆ C are the parameters.
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This is the algebra with generators {Ti | 1 ≤ i ≤ N} and relations

(Ti − 1) (T1 + qi) = 0 TiTjTi · · ·︸ ︷︷ ︸
mi,j factors

= TjTiTj · · ·︸ ︷︷ ︸
mi,j factors

for 1 ≤ i, j ≤ N and i ̸= j.

Dihedral Group Case Dn = G(n, n, 2)

Recall that the dihedral group Dn of order 2n as a Coxeter group is

Dn
∼= ⟨s1, s2 | s21 = (s1s2)

n = (s2s1)
n = s22 = 1⟩

Then the Hecke algebra with parameters q1, q2 ∈ C is the algebra with generators T1, T2 and relations

(T1 − 1) (T1 + q1) = (T2 − 1) (T2 + q2) = 0

TiTjTi · · ·︸ ︷︷ ︸
n factors

= TjTiTj · · ·︸ ︷︷ ︸
n factors

If n is odd, we require q1 = q2.

There is another way to specify the Hecke algebra for Dn in an isomorphic way. Make a choice of square

roots q
1/2
1 and q

1/2
2 with q

1/2
1 = q

1/2
2 when n is odd, and write q

k/2
i = (q

1/2
i )k for any integer k ∈ Z. Set

T ∗
i = q

−1/2
i Ti. In the free algebra generated by T1, T2, we have for any ideal I

(T1 − 1) (T1 + q1) ∈ I if and only if q1

(
q
−1/2
1 T1 − q

−1/2
1

)(
q
−1/2
1 T2 + q

1/2
1

)
∈ I

if and only if
(
q
−1/2
1 T1 − q

−1/2
1

)(
q
−1/2
1 T2 + q

1/2
1

)
∈ I

if and only if
(
T ∗
1 − q

−1/2
1

)(
T ∗
2 + q

1/2
1

)
∈ I

Likewise, we have for the other generator

(T2 − 1)(T2 + q2) ∈ I if and only if
(
T ∗
2 − q

−1/2
2

)(
T ∗
2 + q

1/2
2

)
∈ I

By treating the cases of even and odd n spearately, it is also true that

T1T2T1 · · ·︸ ︷︷ ︸
n factors

−T2T1T2 · · ·︸ ︷︷ ︸
n factors

∈ I if and only if T ∗
1 T

∗
2 T

∗
1 · · ·︸ ︷︷ ︸

n factors

−T ∗
2 T

∗
1 T

∗
2 · · ·︸ ︷︷ ︸

n factors

∈ I
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This means that the ideal generated by the relations

(T1 − 1) (T1 + q1) = 0 (T2 − 1) (T2 + q2) = 0 T1T2T1 · · ·︸ ︷︷ ︸
n factors

= T2T1T2 · · ·︸ ︷︷ ︸
n factors

is the same as the ideal generated by the relations

(
T ∗
1 − q

−1/2
1

)(
T ∗
1 + q

1/2
1

)
= 0

(
T ∗
2 − q

−1/2
2

)(
T ∗
2 + q

1/2
2

)
= 0 T ∗

1 T
∗
2 T

∗
1 · · ·︸ ︷︷ ︸

n factors

= T ∗
2 T

∗
1 T

∗
2 · · ·︸ ︷︷ ︸

n factors

Obviously, the algebra generated by T ∗
1 , T

∗
2 is the same as that by T1, T2. Sending Ti to T ∗

i and setting

p = q
−1/2
1 , q = q

−1/2
2 , we have that the Hecke algebra for Dn with parameters q1, q2 is isomorphic to the algebra

with generators T1, T2 and relations

(T1 − p)
(
T1 + p−1

)
= 0 (T2 − q)

(
T2 + q−1

)
= 0 T1T2T1 · · ·︸ ︷︷ ︸

n factors

= T2T1T2 · · ·︸ ︷︷ ︸
n factors

Symmetric Group Case Sn = G(1, 1, n)

The symmetric group as a Coxeter group is the group generated by {s1, s2, · · · , sn−1} with relations

s2i = 1 (sjsj+1)
3
= 1 (sisj)

2
= 1

where j < n − 1 and |i − j| > 1. Sn acts on h = Cn as a complex reflection group by permuting coordinates,

so the complement of the hyperplane arrangement hreg is the points all of whose coordinates differ. The braid

group is

BSn = π1 (h
reg/Sn) ∼=

〈
T1, T2, · · · , Tn−1 | TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi where |i− j| > 1, i < n− 1

〉

The complex reflections are the transpositions, which are all conjugate. So there is a single complex parameter

q ∈ C needed to specify the Hecke algebra. The Hecke algebra is generated by T1, T2, · · · , Tn−1 with relations

(Ti − 1) (Ti + q) = 0 TiTi+1Ti = Ti+1TiTi+1 TiTj = TjTi

where |i− j| > 1 and i < n− 1.

In the same way as in the dihedral group case, we can reparametrise by taking q∗ = q−1/2 so that the Hecke

algebra is isomorphic to the algebra generated by T1, T2, · · · , Tn−1 with relations

(Ti − q∗)
(
Ti + q−1

∗
)
= 0 TiTi+1Ti = Ti+1TiTi+1 TiTj = TjTi
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3 Monodromy Representations

Now we describe the method of going from a representation of a complex reflection group to the corresponding

Hecke module. Let W ⊆ GL(h) be a complex reflection group acting on some complex vector space h of

dimension n with basis {ε∨i | 1 ≤ i ≤ n}, let h∗ be the dual space with dual basis {εi | 1 ≤ i ≤ n}, let T ⊆ W

be the reflection elements, and for each s ∈ T , let Hs ⊆ h be the reflection hyperplane fixed by the action of s.

Let (ρ,E) be any C[W ]-module, where E is a complex vector space of some dimension d, and ρ : W −→ GL(E)

is a group homomorphism. For each s ∈ T , choose αs ∈ h∗ such that kerαs = Hs. This choice is unique up to

a constant multiple. Set

hreg = h−
⋃
s∈T

Hs

and fix a0 ∈ hreg.

As defined in [EM10], the rational Cherednik algebra of W is specified by some complex parameters {cs |

s ∈ T} where cs = ct when s, t are conjugate, and for each p ∈ E, this gives rise to a differential equation with

initial condition [AR21]

∂f

∂xλ∨
=
∑
s∈T

cs⟨αs, λ
∨⟩

⟨αs, x⟩
(−f + ρ (s) f) f (a0) = p

where ∂/∂xλ∨ denotes the partial derivative in the direction of λ∨ ∈ h. A solution to this system of partial

differential equations in a neighborhood a0 ∈ U ⊆ hreg is called horizontal section and is a function of the form

fp : U −→ E, fp (a0) = p

This allows us to define a representation of the braid group BW = π1 (h
reg/W, [a0]) as follows.

The braid group BW is generated by paths around the reflection hyperplanes [BMR98, Thm. 2.17]. To

compute the monodromy of BW , it suffices to compute the monodromy of those generators. These paths in

hreg/W can be obtained by choosing a particular path γs in hreg between a0 and sa0 and pushing through the

quotient map for each s ∈ T . Let

f̃s
p : Us −→ E

be the analytic continuation of fp along the path γs to a neighborhood Us of sa0.

10



Set Eq = E and define Ts : Eq −→ Eq by the rule [AR21]

T−1
s p = ρ

(
s−1
)
f̃s
p (sa0)

This defines an action of the generators of the monodromies which together generate the braid group BW . It

turns out that not only does this action satisfy the Artin braid relations and extend to a representation of BW ,

and hence of C [BW ], but by the main result [GGOR03, Thm. 5.13], also satisfies the Hecke algebra relation

(TH − 1)

mH−1∏
j=1

(
TH − e2jπi/mH qj,H

)
= 0

where the parameters {qj,H}1≤j<mH

H∈A depend on the parameters {cs | s ∈ T} for the rational Cherednik algebra

[EM10, Thm. 6.4].

In other words, Eq becomes a representation of the Hecke algebra of W whose parameters are controlled by

{cs | s ∈ T}.

If we make a choice of basis h = span {ε∨i | 1 ≤ i ≤ n} and E = span {ei | 1 ≤ i ≤ d}, and let [ρ(s)] be the

matrix representation of ρ(s) ∈ GL(E) for some s ∈ W with respect to the chosen basis, then we may instead

write

∂fi
∂xk

=
∑
s∈T

cs⟨αs, ε
∨
k ⟩

⟨αs, x⟩

−fi +

d∑
j=1

[ρ(s)]i,j fj

 p =

d∑
j=1

fj (a0) ej

for i ∈ {1, 2, · · · , d}, k ∈ {1, 2, · · · , n}, ∂/∂xk = ∂/∂xε∨k
, and the {fi}di=1 are the complex valued component

functions of f with respect to the basis of E. We will also write xi to be the ith componenent of x in the basis

of h.

Our goal is to write down these differential equation for several combinations of W , h and E.

3.1 Cyclic Group Case W = G(n, 1, 1)

The group W acts on h = C by multiplication by the nth roots of unity. Pick the basepoint a0 = 1 ∈ hreg, and

let E be the irreducible module of W on which the generator acts by multiplication by ζr. Pick p = 1 ∈ E.
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So here, the single differential equation to be solved is

∂f1
∂x1

=

n−1∑
ℓ=0

cℓ⟨αℓ, ε
∨
1 ⟩

xαℓ

(
−f1 + ζℓf1

)
=

n−1∑
ℓ=0

cℓ(1− ζ−ℓ)

(1− ζ−ℓ)x1
(ζℓ − 1)f1

=

n−1∑
ℓ=0

cℓ
x1

(ζℓ − 1)f1

=

[
n−1∑
ℓ=0

cℓ(ζ
ℓ − 1)

]
f1
x1

with initial condition f(1) = 1. So really, c = 0. The action of T1 is then

T1p = ρ
(
t−1
1

)
exp

(
2πi

n

n−1∑
ℓ=0

cℓ
(
ζrℓ.− 1

))
= e−2πi/rexp

(
2πi

n

n−1∑
ℓ=0

cℓ
(
ζrℓ.− 1

))

3.2 Odd Dihedral Group Case Dn = G(n, n, 2)

For a detailed study of the differential equations we are about to write down, see [Dun98].

Let h = C2 have basis {ε∨1 , ε∨2 }, and let h∗ be the dual space with dual basis {ε1, ε2}. Let n ≥ 3 be odd.

The reflection elements s0, · · · , sn−1 ∈ Dn acts on h as a complex reflection group by the matrix

sk =

 0 ζk

ζ−k 0


By inspection, the hyperplane fixed by sk is the span of th single vector ζkε∨1 + ε∨2 . Then we can choose

αk = αsk = ε1 − ζkε2

We will deal with the irreducible representations of dimension 2. They are {(πj , E)}(n−1)/2
j=1 with E = C2 and

πj (sℓ) =

 0 ζjℓ

ζ−jℓ 0
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The equations are then

∂f1
∂x1

= c0

n−1∑
ℓ=0

1

x1 − ζℓx2

(
−f1 + ζjℓf2

)
∂f1
∂x2

= c0

n−1∑
ℓ=0

−ζℓ

x1 − ζℓx2

(
−f1 + ζjℓf2

)
∂f2
∂x1

= c0

n−1∑
ℓ=0

1

x1 − ζℓx2

(
−f2 + ζ−jℓf1

)
∂f2
∂x2

= c0

n−1∑
ℓ=0

−ζℓ

x1 − ζℓx2

(
−f2 + ζ−jℓf1

)
Now we work on reducing these into a form without a summation. The following identity will be useful:

n−1∑
ℓ=0

ζjℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2) =

(
x1

x2

)j−1 (
nxn−1

2

)
where j > 0. This is true because

n−1∑
ℓ=0

ζjℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2) = − 1

x2

n−1∑
ℓ=0

ζ(j−1)ℓ
(
x1 − ζℓx2 − x1

) n−1∏
r=0,r ̸=ℓ

(x1 − ζrx2)

= −xn
1 − xn

2

x2

n−1∑
ℓ=0

ζ(j−1)ℓ +
x1

x2

n−1∑
ℓ=0

ζ(j−1)ℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)

=
x1

x2

n−1∑
ℓ=0

ζ(j−1)ℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)

This gives a recursive way to get from j to j − 1, and so on downwards. So

n−1∑
ℓ=0

ζjℓ
n−1∏

r=0,r ̸=ℓ

ζjℓ (x1 − ζrx2) =
x1

x2

n−1∑
ℓ=0

ζ(j−1)ℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)

=

(
x1

x2

)2 n−1∑
ℓ=0

ζ(j−2)ℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)

...

=

(
x1

x2

)j−1 n−1∑
ℓ=0

ζℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)

=

(
x1

x2

)j−1
(

∂

∂x2

n−1∏
r=0

(x1 − ζrx2)

)

= nxn−1
2

(
x1

x2

)j−1

The last equality follows from the fact that the sum over roots of unity is 0. In the case where we have −j,

13



(where j ≥ 0) we have an analogous result:

n−1∑
ℓ=0

ζ−jℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2) = nxn−1
1

(
x2

x1

)j

Now to write down the differential equations.

Equation 1: We have

∂f1
∂x1

= c0

r−1∑
ℓ=0

1

x1 − ζℓx2

(
−f1 + ζjℓf2

)
= − c0f1

xn
1 − xn

2

n−1∑
ℓ=0

n−1∏
r=0,r ̸=ℓ

(x1 − ζrx2) +
c0f2

xn
1 − xn

2

n−1∑
ℓ=0

ζjℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)

= − c0f1
xn
1 − xn

2

(
nxn−1

1

)
+ nxn−1

2

(
x1

x2

)j−1

=
nc0

xn
1 − xn

2

(
−xn−1

1 f1 + xn−1
2

(
x1

x2

)j−1

f2

)

Equation 2: The second is

∂f1
∂x2

= c0

r−1∑
ℓ=0

−ζℓ

x1 − ζℓx2

(
−f1 + ζjℓf2

)
=

c0f1
xn
1 − xn

2

n−1∑
ℓ=0

ζℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)−
c0f2

xn
1 − xn

2

n−1∑
ℓ=0

ζ(j+1)ℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)

=
c0f1

xn
1 − xn

2

(
nxn−1

2

)
− c0f2

xn
1 − xn

2

(
x1

x2

)j (
nxn−1

2

)
=

nc0x
n−1
2

xn
1 − xn

2

(
f1 −

(
x1

x2

)j

f2

)

Equation 3: And the third,

∂f2
∂x1

= c0

r−1∑
ℓ=0

1

x1 − ζℓx2

(
−f2 + ζ−jℓf1

)
= − c0f2

xn
1 − xn

2

n−1∑
ℓ=0

n−1∏
r=0,r ̸=ℓ

(x1 − ζrx2) +
c0f1

xn
1 − xn

2

n−1∑
ℓ=0

ζ−jℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)

= − c0f2
xn
1 − xn

2

(
nxn−1

1

)
+

c0f1
xn
1 − xn

2

(
x2

x1

)j (
nxn−1

1

)
=

nc0x
n−1
1

xn
1 − xn

2

((
x2

x1

)j

f1 − f2

)

14



Equation 4: And finally the last one is

∂f2
∂x2

= c0

r−1∑
ℓ=0

−ζℓ

x1 − ζℓx2

(
−f2 + ζ−jℓf1

)
=

c0f2
xn
1 − xn

2

n−1∑
ℓ=0

ζℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)−
c0f1

xn
1 − xn

2

n−1∑
ℓ=0

ζ−(j−1)ℓ
n−1∏

r=0,r ̸=ℓ

(x1 − ζrx2)

=
c0f2

xn
1 − xn

2

(
nxn−1

2

)
− c0f1

xn
1 − xn

2

(
x2

x1

)j−1 (
nxn−1

1

)
=

nc0
xn
1 − xn

2

(
−xn−1

1

(
x2

x1

)j−1

f1 + xn−1
2 f2

)

So together we have the system

∂f1
∂x1

=
nc0

xn
1 − xn

2

(
−xn−1

1 f1 + xn−1
2

(
x1

x2

)j−1

f2

)
∂f1
∂x2

=
nc0x

n−1
2

xn
1 − xn

2

(
f1 −

(
x1

x2

)j

f2

)
∂f2
∂x1

=
nc0x

n−1
1

xn
1 − xn

2

((
x2

x1

)j

f1 − f2

)
∂f2
∂x2

=
nc0

xn
1 − xn

2

(
−xn−1

1

(
x2

x1

)j−1

f1 + xn−1
2 f2

)

3.3 Even Dihedral Group Case Dn = G(n, n, 2)

Now for the case of even n ≥ 4. Let h, h∗, {ε∨1 , ε∨2 } and {ε1, ε2} be as before in the odd case. Set m = n/2, and

let the two conjugacy classes of reflections be {s0, s2, · · · , sm−1} and {t0, t2, · · · , tm−1}. Let ξ = ζ2, so that the

even roots of unity of order n are 1, ξ, ξ2, ξ3, · · · and the odd roots are ξζ−1, ξ2ζ−1, ξ3ζ−1, · · · . The irreducible

representations of dimension 2 are of course {(πj , E)}n/2−1
j=1 , with E = C2, and group actions

πj (tℓ) =

 0 ξjℓ

ξ−jℓ 0

 πj (sℓ) =

 0 ξjℓζ

ξ−jℓζ−1 0


Now say αtℓ = α

(1)
ℓ and αsℓ = α

(2)
ℓ and take

α
(1)
ℓ = ε1 − ξℓε2

α
(2)
ℓ = ε1 − ξℓζε2

15



If c0 is the parameter for the conjugacy class {t0, t2, · · · , tm−1} and c1 for {s0, s2, · · · , sm−1}, then the equation

is

∂fi
∂xk

=
∑
s∈T

cs⟨αs, ε
∨
k ⟩

xαs

(
−fi +

2∑
t=1

[πj(s)]itft

)

= c0

m−1∑
ℓ=0

⟨α(1)
ℓ , ε∨k ⟩
x
α

(1)
ℓ

−fi +

2∑
t=1

 0 ξjℓ

ξ−jℓ 0


it

ft

+ c1

m−1∑
ℓ=0

⟨α(2)
ℓ , ε∨k ⟩
x
α

(2)
ℓ

−fi +

2∑
t=1

 0 ξjℓζ

ξ−jℓζ−1 0


it

ft


We will work on each of the two summations over ℓ ∈ {0, 1, · · · ,m−1} for each of the four differential equations

separately. The sequence of steps to simplify each equation is similar: first, we factor out (xm
1 − xm

2 )−1 =∏m−1
r=0 (x1−ξr)−1, and this will leave us with the summation with a product inside. Then, we apply the identity

m−1∑
ℓ=0

ξjℓ
m−1∏

r=0,r ̸=ℓ

(x1 − ξrx2) = mxm−1
2

(
x1

x2

)j−1

for j > 0, and the analogous result for −j (j ≥ 0). Finally we will factorise.

The algebraic manipulations are long and arduous, and so have been moved to the appendices. In the end,

the system of differential equations together is

∂f1
∂x1

=
(n/2)c0

x
n/2
1 − x

n/2
2

[
−x

n/2−1
1 f1 + x

n/2−1
2

(
x1

x2

)j−1

f2

]
+

(n/2)c1

x
n/2
1 + x

n/2
2

[
−x

n/2−1
1 f1 − ζ1−jx

n/2−1
2

(
x1

x2

)j−1

f2

]
∂f1
∂x2

=
(n/2)c0x

n/2−1
2

x
n/2
1 − x

n/2
2

[
f1 −

(
x1

x2

)j

f2

]
+

(n/2)c1x
n/2−1
2

x
n/2
1 + x

n/2
2

[
−f1 + ζ1−j

(
x1

x2

)j

f2

]
∂f2
∂x1

=
(n/2)c0x

n/2−1
1

x
n/2
1 − x

n/2
2

[(
x2

x1

)j

f1 − f2

]
+

(n/2)c1x
n/2−1
1

x
n/2
1 + x

n/2
2

[
ζj−1

(
x2

x1

)j

f1 − f2

]
∂f2
∂x2

=
(n/2)c0

x
n/2
1 − x

n/2
2

[
−x

n/2−1
1

(
x2

x1

)j−1

f1 + x
n/2−1
2 f2

]
+

(n/2)c1

x
n/2
1 + x

n/2
2

[
−ζj−1x

n/2−1
1

(
x2

x1

)j−1

f1 − x
n/2−1
2 f2

]

3.4 Symmetric Group Case Sn = G(1, 1, n)

Let h = Cn with basis {ε∨1 , ε∨2 , · · · , ε∨n}. Then Sn acts on h by permuting coordinates as a complex reflection

group. For each transposition s = (q, r), its action τs = τq,r : h −→ h is by exchanging ε∨q , ε
∨
r , and fixing all the

other basis vectors. This means that the hyperplane fixed by the action of s is

Hs = Hq,r = span
{
ε∨i , ε

∨
q + ε∨r | i ̸= q, r

}
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We will choose αs = αq,r ∈ h∗ to then be

αq,r = εr − εq

Although we will always write αq,r = αr,q, for the above choice of αq,r we assume q < r.

Now to deform C[W ]-modules. We will focus on only the sign, permutation, and regular representations of

Sn.

Sign Representation

We have the sign representation (ρ,E) with E = C, and ρ : W −→ GL(E) defined by

ρ (σ) : E −→ E, z 7−→ sgn (σ) z

Pick any basis e1 ∈ E, and let [ρ(s)] be the matrix of the action of s on E. Then,

∂f

∂xk
= c0

∑
s∈T

⟨αs, ε
∨
k ⟩

⟨αs, x⟩
(−f + sgn (s) f)

= c0
∑

1≤q<r≤n

⟨εr − εq, ε
∨
k ⟩

⟨εr − εq, x⟩
(−2f)

= −2c0f

 ∑
1≤q<k

⟨εk − εq, ε
∨
k ⟩

⟨εk − εq, x⟩
+
∑

k<r≤n

⟨εr − εk, ε
∨
k ⟩

⟨εr − εk, x⟩


= −2c0f

 ∑
1≤q<k

1

xk − xq
+
∑

k<r≤n

1

xk − xr



So the horizontal sections are the solutions to

∂f

∂xk
= 2c0f

∑
ℓ ̸=k

1

xℓ − xk

Permutation Representation

Next, we deal with the permutation representation. Set E = Cn with basis {e1, e2, · · · , ed}, and let ρ : Sn −→

GL(E) be defined on any σ ∈ Sn by

ρ (σ) : E −→ E, ek 7−→ eσ(k)

17



Then for any transposition (q, r) ∈ Sn, the matrix representation [ρ((q, r))] of the Sn-action on E with respect

to the specified basis is

[ρ ((q, r))]ij =


1 , if i = j /∈ {q, r}

1 , if i = q, j = r or i = r, j = q

0 , otherwise

Now to get the differential equations. If ∂/∂xk is the directional derivative operator in the direction of the

vector εk ∈ h, then at x ∈ h the derivative of the ith components of our horizontal sections in the direction of

εk will be

∂fi
∂xk

=
∑
s∈T

c0⟨αs, ε
∨
k ⟩

⟨αs, x⟩

−fi +

n∑
j=1

[ρ(s)]ij fj


= c0

∑
1≤q<r≤n

⟨αq,r, ε
∨
k ⟩

⟨αq,r, x⟩

−fi +

n∑
j=1

[ρ((q, r))]ij fj


= c0

∑
1≤q<r≤n

⟨εr − εq, ε
∨
k ⟩

⟨εr − εq, x⟩

−fi +

n∑
j=1

[ρ((q, r))]ij fj


= c0

∑
1≤q<k

⟨εk − εq, ε
∨
k ⟩

⟨εk − εq, x⟩

−fi +

n∑
j=1

[ρ((q, k))]ij fj

+ c0
∑

k<r≤n

⟨εr − εk, ε
∨
k ⟩

⟨εr − εk, x⟩

−fi +

n∑
j=1

[ρ((k, r))]ij fj


= c0

∑
1≤q<k

1

xk − xq

−fi +

n∑
j=1

[ρ((q, k))]ij fj

+ c0
∑

k<r≤n

1

xk − xr

−fi +

n∑
j=1

[ρ((k, r))]ij fj


= c0

∑
ℓ ̸=k

1

xk − xℓ

−fi +

n∑
j=1

[ρ((ℓ, k))]ij fj


We will evaluate the inner sums by conditioning on the value of i, k. If i = k,

−fi +

n∑
j=1

[ρ((ℓ, k))]ij fj = −fk +

n∑
j=1

[ρ((ℓ, k))]kj fj = −fk + fℓ

If i ̸= k, then

−fi +

n∑
j=1

[ρ((ℓ, k))]ij fj =

−fi + fi = 0 , if ℓ ̸= i

−fi + fk , if ℓ = i

18



So the system of partial differential equations is

∂fi
∂xk

=


c0

xk − xi
(−fi + fk) , if i ̸= k

c0
∑
ℓ ̸=k

1

xk − xℓ
(−fk + fℓ) , if i = k

Regular Representation

Now, let E = C[Sn] be the group algebra with basis {eσ | σ ∈ Sn}, with the representation ρ : Sn −→ GL(E)

at some τ ∈ Sn defined by

ρ (τ) : E −→ E, eσ 7−→ eτσ

For any transposition (q, r), the matrix [ρ((q, r))] of the action on E with respect to the specified has a row and

column for each element of the symmetric group, so we will index them by σ, τ ∈ Sn. We have

[ρ((q, r))]σ,τ =

1 , if σ = (q, r)τ

0 , otherwise

The horizontal sections will have one complex valued component for each element of Sn. So we will index them

by σ ∈ Sn. The horizontal sections are then the solutions of

∂fσ
∂xk

= c0
∑
s∈T

⟨αs, ε
∨
k ⟩

⟨αs, x⟩

(
−fσ +

∑
τ∈W

[ρ(s)]σ,τ fτ

)

= c0
∑

1≤q<r≤n

⟨εr − εq, ε
∨
k ⟩

⟨εr − εq, x⟩
(
−fσ + f(q,r)σ

)
= c0

∑
1≤q<k

⟨εk − εq, ε
∨
k ⟩

⟨εk − εq, x⟩
(
−fσ + f(q,k)σ

)
+ c0

∑
k<r≤n

⟨εr − εk, ε
∨
k ⟩

⟨εr − εk, x⟩
(
−fσ + f(k,r)σ

)
= c0

∑
1≤q<k

1

xk − xq

(
−fσ + f(q,k)σ

)
+ c0

∑
k<r≤n

1

xk − xr

(
−fσ + f(k,r)σ

)

This is

∂fσ
∂xk

= c0
∑
ℓ ̸=k

1

xk − xℓ

(
−fσ + f(ℓ,k)σ

)
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4 Discussion and Conclusion

In this project, we studied the relationship between representations of a complex reflection group and its Hecke

algebra, via some partial differential equations which arise from the rational Cherednik algbra of the group.

The information passed in to get the differential equations is a representation of the complex reflection

group, and the parameters of the rational Cherednik algebra. The solutions of the differential equations specify

monodromy representations of a Hecke algebra of the group. The parameters of this Hecke algebra determining

exactly which Hecke algebra we have obtained are controlled by the parameters of the rational Cherednik

algebra.

The representation of the complex reflection group we started with also induces a module over the rational

Cherednik algebra, and the correspondence between this module and the Hecke algebra representation we

obtained is the Knizhnik-Zamolodchikov functor.

Initially, we hoped that we may be able to solve some of the differential equations to explicitly compute

the monodromy representations, but this was not something we got to. A continuation of this project could

be to extract more information about the differential equation through analytic means, or even numerically

compute approximate solutions as this may further elucidate the connection between representation theories of

the rational Cherednik algebra and Hecke algebras of a complex reflection group.
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A Manipulation of Differential Equations

Equation 1, Summation 1: This is

c0

m−1∑
ℓ=0

⟨ε1 − ξℓε2, ε
∨
1 ⟩

x1 − ξℓx2

[
−f1 + ξjℓf2

]
= −c0f1

m−1∑
ℓ=0

1

x1 − ξℓx2
+ c0f2

m−1∑
ℓ=0

ξjℓ

x1 − ξℓx2

= − c0f1
xm
1 − xm

2

m−1∑
ℓ=0

m−1∏
r=0,r ̸=ℓ

(x1 − ξrx2)

+
c0f2

xm
1 − xm

2

m−1∑
ℓ=0

ξjℓ
m−1∏

r=0,r ̸=ℓ

(x1 − ξrx2)

= −
c0f1

(
mxm−1

1

)
xm
1 − xm

2

+
c0f2

xm
1 − xm

2

(
x1

x2

)j−1 (
mxm−1

2

)
=

mc0
xm
1 − xm

2

[
−xm−1

1 f1 + xm−1
2

(
x1

x2

)j−1

f2

]

Equation 1, Summation 2: From now, we define z2 = ζx2. We have

c1

m−1∑
ℓ=0

⟨ε1 − ξℓζε2, ε
∨
1 ⟩

x1 − ξℓz2

[
−f1 + ξjℓζf2

]
= −c1f1

m−1∑
ℓ=0

1

x1 − ξℓz2
+ c1ζf2

m−1∑
ℓ=0

ξjℓ

x1 − ζℓz2

= − c1f1
xm
1 − zm2

m−1∑
ℓ=0

m−1∏
r=0,r ̸=ℓ

(
x1 − ξℓz2

)
+

c1ζf2
xm
1 − zm2

m−1∑
ℓ=0

ξjℓ
m−1∏

r=0,r ̸=ℓ

(x1 − ξrz2)

= −
c1f1

(
mxm−1

1

)
xm
1 + xm

2

+
c1ζf2

xm
1 + xm

2

(
x1

z2

)j−1 (
mzm−1

2

)
= −

c1f1
(
mxm−1

1

)
xm
1 + xm

2

− c1ζf2ζ
1−j

xm
1 + xm

2

(
x1

x2

)j−1 (
mxm−1

2

)
ζ−1

=
mc1

xm
1 + xm

2

[
−xm−1

1 f1 − ζ1−jxm−1
2

(
x1

x2

)j−1

f2

]

So equation 1 is

∂f1
∂x1

=
(n/2)c0

x
n/2
1 − x

n/2
2

[
−x

n/2−1
1 f1 + x

n/2−1
2

(
x1

x2

)j−1

f2

]
+

(n/2)c1

x
n/2
1 + x

n/2
2

[
−x

n/2−1
1 f1 − ζ1−jx

n/2−1
2

(
x1

x2

)j−1

f2

]
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Equation 2, Summation 1:

c0

m−1∑
ℓ=0

⟨ε1 − ξℓε2, ε
∨
2 ⟩

x1 − ξℓx2

[
−f1 + ξjℓf2

]
=

c0f1
xm
1 − xm

2

m−1∑
ℓ=0

ξℓ
m−1∏

r−0,r ̸=ℓ

(
x1 − ξℓx2

)
− c0f2

xm
1 − xm

2

m−1∑
ℓ=0

ξ(j+1)ℓ
m−1∏

r=0,r ̸=ℓ

(
x1 − ξℓx2

)
=

c0f1
(
mxm−1

2

)
xm
1 − xm

2

−
c0f2

(
mxm−1

2

)
x1m− xm

2

(
x1

x2

)j

=
mc0x

m−1
2

xm
1 − xm

2

[
f1 −

(
x1

x2

)j

f2

]

Equation 2, Summation 2:

c1

m−1∑
ℓ=0

⟨ε1 − ξℓζε2, ε
∨
2 ⟩

x1 − ξℓζx2

[
−f1 + ξjℓζf2

]
=

c1ζf1
xm
1 − zm2

m−1∑
ℓ=0

ξℓ
m−1∏

r=0,r ̸=ℓ

(x1 − ξrz2)

− c1ζ
2f2

xm
1 − zm2

m−1∑
ℓ=0

ξ(j+1)ℓ
m−1∏

r=0,r ̸=ℓ

(x1 − ξrx2)

=
x1ζf1

(
mzm−1

2

)
xm
1 + xm

2

− c1ξf2
xm
1 + xm

2

(
x1

z2

)j (
mzm−1

2

)
=

mc1z
m−1
2

xm
1 + xm

2

[
ζf1 − ξ

(
x1

z2

)j

f2

]

=
mc1x

m−1
2

xm
1 + xm

2

[
−f1 + ζ

(
x1

ζx2

)j

f2

]

=
mc1x

m−1
2

xm
1 + xm

2

[
−f1 + ζ1−j

(
x1

x2

)j

f2

]

So equation 2 is

∂f1
∂x2

=
(n/2)c0x

n/2−1
2

x
n/2
1 − x

n/2
2

[
f1 −

(
x1

x2

)j

f2

]
+

(n/2)c1x
n/2−1
2

x
n/2
1 + x

n/2
2

[
−f1 + ζ1−j

(
x1

x2

)j

f2

]

Equation 3, Summation 1:

c0

m−1∑
ℓ=0

⟨ε1 − ξℓε2, ε
∨
1 ⟩

x1 − ξℓx2

[
−f2 + ξ−jℓf1

]
= − c0f2

xm
1 − xm

2

m−1∑
ℓ=0

m−1∏
r=0,r ̸=ℓ

(x1 − ξrx2)

+
c0f1

xm
1 − xm

2

m−1∑
ℓ=0

ξ−jℓ
m−1∏

r=0,r ̸=ℓ

(x1 − ξrx2)

= −
c0f2

(
mxm−1

1

)
xm
1 − xm

2

+
c0f1

(
mxm−1

1

)
xm
1 − xm

2

(
x2

x1

)j

=
mc0x

m−1
1

xm
1 − xm

2

[(
x2

x1

)j

f1 − f2

]
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Equation 3, Summation 2:

c1

m−1∑
ℓ=0

⟨ε1 − ξℓζε2, ε
∨
1 ⟩

x1 − ξℓz2

[
−f2 + ξ−jℓζ−1f1

]
= − c1f2

xm
1 − zm2

m−1∑
ℓ=0

m−1∏
r=0,r ̸=ℓ

(x1 − ξrz2) +
c1ζ

−1f1
xm
1 − zm2

m−1∑
ℓ=0

ξ−jℓ
m−1∏

r=0,r ̸=ℓ

(x1 − ξrz2)

= −
c1f2

(
mxm−1

1

)
xm
1 + xm

2

+
c1ζ

−1f1
(
mxm−1

1

)
xm
1 + xm

2

(
z2
x1

)j

=
mc1x

m−1
1

xm
1 + xm

2

[
ζj−1

(
x2

x1

)j

f1 − f2

]

And now we have equation 3:

∂f2
∂x1

=
(n/2)c0x

n/2−1
1

x
n/2
1 − x

n/2
2

[(
x2

x1

)j

f1 − f2

]
+

(n/2)c1x
n/2−1
1

x
n/2
1 + x

n/2
2

[
ζj−1

(
x2

x1

)j

f1 − f2

]

Equation 4, Summation 1:

c0

m−1∑
ℓ=0

⟨ε1 − ξℓε2, ε
∨
2 ⟩

x1 − ξℓx2

[
−f2 + ξ−jℓf1

]
=

c0f2
xm
1 − xm

2

m−1∑
ℓ=0

ξℓ
m−1∏

r=0,r ̸=ℓ

(x1 − ξrx2)

− c0f1
xm
1 − xm

2

m−1∑
ℓ=0

ξ−(j−1)ℓ
m−1∏

r=0,r ̸=ℓ

(x1 − ξrx2)

=
c0f2

(
mxm−1

2

)
xm
1 − xm

2

−
c0f1

(
mxm−1

1

)
xm
1 − xm

2

(
x2

x1

)j−1

=
mc0

xm
1 − xm

2

[
−xm−1

1

(
x2

x1

)j−1

f1 + xm−1
2 f2

]

Equation 4, Summation 2:

c1

m−1∑
ℓ=0

⟨ε1 − ξℓζε2, ε
∨
2 ⟩

x1 − ξℓz2

[
−f2 + ξ−jℓζ−1f1

]
=

c1ζf2
xm
1 − zm2

m−1∑
ℓ=0

ξℓ
m−1∏

r=0,r ̸=ℓ

(
x1 − ξℓz2

)
− c1f1

xm
1 − zm2

m−1∑
ℓ=0

ξ−(j−1)ℓ
m−1∏

r=0,r ̸=ℓ

(
x1 − ξℓz2

)
=

c1ζf2
(
mzm−1

2

)
xm
1 + xm

2

−
c1f1

(
mxm−1

1

)
xm
1 + xm

2

(
z2
x1

)j−1

=
mc1

xm
1 + xm

2

[
−ζj−1xm−1

1

(
x2

x1

)j−1

f1 − xm−1
2 f2

]

So our last equation is

∂f2
∂x2

=
(n/2)c0

x
n/2
1 − x

n/2
2

[
−x

n/2−1
1

(
x2

x1

)j−1

f1 + x
n/2−1
2 f2

]
+

(n/2)c1

x
n/2
1 + x

n/2
2

[
−ζj−1x

n/2−1
1

(
x2

x1

)j−1

f1 − x
n/2−1
2 f2

]
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B Background: Topology

Hecke algebra can be defined in terms of fundamental groups of certain spaces, so here we will briefly recall the

basics. A standard reference is [Hat00].

Let X be a path connected topological space, and fix p ∈ X. A loop based at p is a continuous map

γ : [0, 1] −→ X such that γ(0) = γ(1) = p. Two loops γ1, γ2 based at p are said to be homotopic if there exists

a continuous map

F : [0, 1]× [0, 1] −→ X

such that γ1(t) = F (0, t) and γ2(t) = F (1, t) for all t ∈ [0, 1], and F (u, 0) = F (u, 1) = p for all u ∈ [0, 1]. In this

case, we say γ1 ≃ γ2. Homotopy equivalence is an equivalence relation on the set of loops in X based at p.

Given two loops γ1, γ2 based at p, we define the concatenation γ2γ1 : [0, 1] −→ X to be the loop based at p

which is the path obtained by traversing γ1, and then γ2.

Moreover, given a loop γ at p, define there is a loop γ−1 at p obtained by traversing γ in the reverse direction.

Further, set e : [0, 1] −→ X be the constant path at p. The following facts are true for any loop γ at p:

γγ−1 ≃ γ−1γ ≃ e eγ ≃ γe ≃ γ

Finally, it can be shown that the homotopy class of the concatenation of two loops based at p depends only

on their own homotopy classes. This means that if [γ] is the equivalence class of loops based at p which are

homotopic to γ, then the following operation is well defined for any loops γ1, γ2 based at p:

[γ2] · [γ1] = [γ2γ1]

Let π1 (X, p) be the set of all loops based at p identified upto homotopy equivalence class. Then π1 (X, p) is

a group under the above operation with [γ]−1 =
[
γ−1

]
and identity [e]. This is called the fundamental group

of the space X. Provided that X is path connected, choosing a different basis point other than p will yield an

isomorphic group, so in some cases we will also omit specifying the basepoint. We will omit the square bracket

and implicitly mean γ to be the homotopy class of the loop γ.

Recall that as per our definition, a homotopy leaves the endpoints fixed throughout the deformation. If we

allow our homotopies to move around the endpoints in between, then it turns out that γ1 and γ2 are conjugate

elements of π1 (X, p) if and only if γ1 and γ2 are homotopic in this weaker sense where the endpoints are free

to move.

25



Let ϕ : X −→ Y be a continuous map between path connected topological spaces X, and let p ∈ X. Then

ϕ induces a homomorphism of fundamental groups:

Φ : π1 (X, p) −→ π1 (Y, ϕ (p)) , [γ] 7−→ [ϕ ◦ γ]

If ϕ is a homeomorphism, then Φ becomes an isomorphism.

26



C Background: Group Theory

Here, we assume basic knowledge of basic group theory, and introduce the notions of reflection groups, Coxeter

groups, and Artin groups.

C.1 Reflection Groups and Shephard-Todd Classification

LetK be a field, either R or C, and let h be a non-zero vector space overK of dimension dim h = n. A hyperplane

H ⊆ h is a subspace of dimension n− 1. A linear map T ∈ GL(h) is called a reflection if ker (T − Idh) = n− 1.

That is, T fixes a hyperplane in h.

A reflection group W ⊆ GL(h) is a group such that the set of reflection elements T ⊆ W generates the whole

group. If K = R, then W is called a real reflection group, and if K = C, then W is called a complex reflection

group. From now, all reflection groups are finite.

The complex reflection groups were completely classifed by Shephard-Todd in 1954 [ST54] as follows.

Let r, p, n ∈ Z≥1 with r divisible by p. The group G(r, p, n) is defined as the n × n matrices with complex

entries satisfying the following:

1. Exactly one entry of each column and each row is non-zero

2. The non-zero entries are all powers of ζ = e2πi/r and

3. If P is the product over all the non-zero entries, then P r/p = 1

The result of Shephard-Todd is that every complex reflection group is one of G(r, p, n), or one of 34 exceptional

cases.

Some examples of complex reflection groups are Sn = G(1, 1, n), the symmetric group on n elements,

G(n, 1, 1), the cyclic group of order n, and G(n, n, 2), the dihedral group of order 2n.

C.2 Coxeter and Artin Groups

The standard reference for Coxeter groups is [Hu90]. Given a set S = {s1, s2, · · · , sN}, let FS be the free group

generated by S. A Coxeter matrix M = [mi,j ]
N
i,j=1 is a symmetric N × N matrix such that mi,i = 1, and
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mi,j ∈ N≥2∪{∞} when i ̸= j. The Coxeter and Artin groups to this information are given by the presentations

WM = ⟨s1, s2, · · · , sN | (sisj)mi,j = 1, for i, j ∈ {1, 2, · · · , N}⟩

AM = ⟨s1, s2, · · · , sN | sisjsi · · ·︸ ︷︷ ︸
mi,j factors

= sisjsi · · ·︸ ︷︷ ︸
mi,j factors

, for i, j ∈ {1, 2, · · · , N}, i ̸= j⟩

As we are about to see, the dihedral groups as an example of a Coxeter group. This way, the Coxeter groups

can be though of as a generalisation of dihedral groups.

After some examples, we will show how the Artin groups arise from the Coxeter groups via topology. This

will allow us to define the Hecke algebra of a wide class of complex reflection groups using just generators and

relations.

Next, we show that several of the complex reflection groups we want to study can be expressed as Coxeter

groups. As hinted before, the dihedral group is a prototypical example, so we will start there.

Dihedral Groups as Coxeter Groups

The dihedral group Dn = G(n, n2) is the complex reflection group

Dn =


ζk 0

0 ζ−k

 ,

 0 ζk

ζ−k 0

 | 0 ≤ k < n


Let S = {s0, s1}, and M be a 2× 2 matrix with entries 1 on the diagonal, and entries n off the diagonal. This

is a Coxeter matrix, and the Coxeter group specified by S and M is

WM = ⟨s0, s1 | s20 = (s0s1)
n
= (s1s0)

n
= s21 = 1⟩

The map WM −→ Dn

s0 7−→

0 1

1 0

 s1 7−→

 0 ζ

ζ−1 0


induces an isomorphism between WM and Dn, so we have a presentation of the dihedral group as a Coxeter

group:

Dn
∼= ⟨s0, s1 | s20 = (s0s1)

n
= (s1s0)

n
= s21 = 1⟩
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Symmetric Groups as Coxeter Groups

Let S = {s1, s2, · · · , sn}, and let the Coxeter matrix M be defined by

mi,j =


2 , if |i− j| > 1

3 , if j = i+ 1

1 , if i = j

The Coxeter group specified by this data turns out to be isomorphic to symmetric group Sn if one thinks of sk

as the transposition in Sn exchanging k and k + 1.

C.3 Coxeter Groups as Real Reflection Groups

Notice that the Coxeter group presentations of the dihedral and symmetric groups has a faithful representation

as a complex reflection group acting on a space the dimension of the size of the generating set. This makes one

wonder whether the class of Coxeter groups and the class of complex reflection groups are really the same.

The answer is in the negative: the cyclic group, although a complex reflection group, cannot in general be

written as a Coxeter group. This is because a necessary condition for a group to be a Coxeter group is that the

set of elements of the group which have order 2 must generate the group. For odd cyclic groups, there are no

non-trivial involutions, and for even cylic groups, there is a single involution, and the generated group only has

two elements. So the only cyclic group which is a Coxeter group is the one of order 2, which is of course just

the symmetric group S2.

The complex reflection groups which we have demonstrated to be Coxeter groups are more special than a

generic complex reflection group. The symmetric group of order n! not only acts on Cn by permuting coordinates,

but furthermore, restricting to Rn gives a representation as a real reflection group. Likewise, after a change of

basis, the dihedral group also acts on R2 as a real reflection group 0 ζk

ζ−k 0

 −→

cos
(
2kπ
n

)
sin
(
2kπ
n

)
sin
(
2kπ
n

)
− cos

(
2kπ
n

)
 ζk 0

0 ζ−k

 −→

cos
(
2kπ
n

)
− sin

(
2kπ
n

)
sin
(
2kπ
n

)
cos
(
2kπ
n

)


There is no representation of the cyclic group of order greater than 2 as a real reflection group since the reflection

elements can only have order 2.

This leads one to conjecture that perhaps any finite Coxeter group is a real reflection group. This is indeed

the case [Hu90, Section 5.3].

More precisely, given a generating set S with Coxeter matrix M of size N , and finite Coxeter group WM ,
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we have a real reflection reflection group W ⊆ GL
(
RN
)
with WM

∼= W .

C.4 Artin Groups as Fundamental Groups

Given a finite Coxeter group WM specified by the generating set S = {s1, · · · , sN} and Coxeter matrix M , the

group WM acts on h0 = RN as a real reflection group. We can extend this action to the complex vector space

h = CN , so that WM acts as a complex reflection group with a finite set of reflection hyperplanes A.

Let W ⊆ GL(h) be a complex reflection group isomorphic to WM and let Hi ⊆ h be of the reflection element

of W corresponding to si. Set

hreg = h−
⋃

H∈A
H

the topological space hreg is path connected. Furthermore, the only points of h which are mapped into the union

of the reflection hyperplanes by any w ∈ W are those already in the union of the hyperplanes. This means

that the restriction of each w ∈ W defines a valid map. Hence, we have the topological space hreg/W of the

orbits of the WM -action on hreg. Since hreg was path connected, so is the quotient hreg/W , so has a well defined

fundamental group π1 (V
reg/W ) based at any x0 ∈ hreg/W .

The fundamental group of hreg/W turns out to be the Artin group with the same specifications as the

Coxeter group with which we began [Bri71].

The way this happens is as follows. Pick any point p in one of the connected components of h0 whose walls

are the real hyperplanes Hi ∩ h0 for 1 ≤ i ≤ N .

Write h = Hi ⊕ Li where Hi is the hyperplane fixed by si, and Li is the one-dimensional eigenspace of si

corresponding to the eigenvalue −1. We can write then p = vi + v⊥i where vi ∈ Hi and v⊥i ∈ Li. The straight

line between p and si(p) can be slightly deformed into another path γi : [0, 1] −→ hreg which avoids Hi ∩ h0

γi (t) =

vi + (1− 2t) v⊥i , if t /∈
[
1
2 − ε, 1

2 + ε
]

vi + 2εiexp
(

1
2ε

(
t− 1

2

)
πi
)
v⊥i , if t ∈

[
1
2 − ε, 1

2 + ε
]

where ε ∈ (0, 1/2) is sufficiently small.

Then the images of the γi in the orbit space hreg/W as loops based at the orbit of p will be the generators

of the fundamental group, and the map between π1 (h
reg/W, p) and AM defined by

ϕ : AM −→ π1 (h
reg/W, p) , si −→ q ◦ γi

is an isomorphism, where q : hreg −→ hreg/W is the quotient map.
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D Background: Representation Theory

Here, we will recall some classical results on the representation theory of finite groups. All claims in this section

can be found in [FH91]. Here will classify the irreducible representations for the cylic and dihedral, and then use

them in the main section of this report to derive the differential equations for the monodromy representations

for the Hecke algebra.

The following results are well known:

Lemma. (Schur) Let (π, V ) and (ρ,W ) be irreducible representations of a finite group G. Then if f : V → W

is a homomorphism of representations, either f is invertible, or f = 0. Moreover, if (π, V ) = (ρ,W ) then

f = λIdV for some λ ∈ C.

Proof. It is easily checked that the subspaces Im f ⊆ W and ker f ⊆ V are invariant subspaces under the

G-action. Then by irreducibility of V,W , either ker f = {0}, Im f = W , or ker f = V, Im f = {0}.

If f is a self-map, then it has an eigenvalue λ ∈ C by algebraic closure. This implies f − λIdV is not

invertible, so the previous part tells us f − λIdV = 0.

A corollary of the above is that the elements of the center of G are represented as λIdV since they are self

maps which commute with all the other actions.

Given a representation (π, V ) of G, the character χV is the map

χV : G −→ C, g 7−→ Tr (π(g))

We say f : G → C is a class function if it is equal on the conjugacy classes of G. Clearly, the characters are

class functions. We introduce a complex inner product on the vector space of class functions:

⟨f1 | f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g)

This is well defined as the trace is basis independent, and is preserved under isomorphisms of representations.

We have:

Theorem. Let (π, V ) be a representation of G. Then ⟨χV | χV ⟩ = 1 if and only if (π, V ) is irreducible.

Theorem. Let (π, V ) be an irreducible representation of G, and (ρ,W ) any representation of G. Then ⟨χV |

χW ⟩ is a positive integer, which tells us how many times (π, V ) appears in the decomposition of (ρ,W ) as a

direct sum of irreducible representations.
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Theorem. If {(πi, Vi)}Ni=1 are all the irreducible representations of G, then

N∑
i=1

(dimVi)
2
= |G|

Theorem. The irreducible representations of a group G are in bijection with the conjugacy classes of G.

The last two theorems tell us that for Abelian groups, all irreducible representations are one-dimensional.

This is because there are |G| so so we have a sum of |G| positive integers equal to |G| which can only imply

that each dimension is 1.

Using the above results, we will classify the irreducible representations of cyclic, dihedral groups.

D.1 Classification of Cyclic Group Representations

Let W = Z/nZ be the cyclic group of order n. From the theorems in the previous part, W being abelian means

that all irreducible representations are one-dimensional, and there are n of them. If the elements of W are

{k | 0 ≤ k < n}, then it is easily seen that the exhaustive list of irreducible representations is

Ej = C , with kz = exp

(
2πjki

n

)
z for z ∈ Ej , k ∈ W

indexed by 0 ≤ j < n.

D.2 Classification of Dihedral Group Representations

Think of the dihedral group Dn as the Coxeter group

Dn
∼= ⟨s0, s1 | s20 = (s0s1)

n
= (s1s0)

n
= s21 = 1⟩

To specify a representation, we have to only specify the action of the generators s0, s1.

The two-dimensional representations of Dn are (πj , V ) indexed by 0 < j < n/2 where V = C2, and πj is

defined as

πj (s0) =

0 1

1 0

 πj (s1) =

 0 ζj

ζ−j 0
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where ζ = e2πi/n. This extends to the entire group. The matrices for the reflection elements are
 0 ζjk

ζ−jk 0

 | 0 ≤ k < n


and the matrices for the rotation elements are

ζjk 0

0 ζ−jk

 | 0 ≤ k < n


By computing the characters and taking the inner products between them, it can be easily checked using

character theory that these are all distinct irreducible characters. The sum over the squares of the dimensions

of these representations is 2n− 2 if n is odd, and 2n− 4 when n is even.

In the odd case, 2 one-dimensional representations would complete the sum. These are the one dimensional

modules (ρ1,C) and (ρ2,C) defined by the matrices

ρ1 (s0) = ρ1 (s1) =
(
1
)

ρ2 (s0) = ρ2 (s1) =
(
−1
)

In the even case, we need four one-dimensional representations. These are the above two and two additional

representations (ρ3,C) and (ρ4,C) defined by

ρ3 (s0) =
(
1
)

ρ3 (s0) =
(
−1
)

ρ4 (s0) =
(
−1
)

ρ4 (s0) =
(
−1
)

Again, it can be checked from the characters that all of these are distinct. This completes the classification.

D.3 Classification of Symmetric Group Representations

It is well-known that two permutations from Sn are conjugate if and only if they have the same cycle type.

Any cycle type can be written as a finite sequence of non-increasing positive integers which sum up to n, so the

conjugacy classes are indexed by partitions of n.

Thus, the irreducible representations of Sn are in bijection with the partitions of n. There is a way to

explitly write them down for any given partition, however, for the purpose of this project, we will only focus on

a few important ones. Therefore, we only refer to [FH91] for a detailed analysis of the irreducible representations

of Sn.
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The most obvious representation of Sn is the trivial representation where Sn acts on C as the identity map.

The next representation is the sign representation (ρ,C) which is defined for any σ ∈ Sn as follows:

ρ (σ) : C −→ C, z 7−→ sgn (σ) z

where

sgn (σ) =

1 , if σ is the product of evenly many transpositions

−1 , if σ is the product of oddly many transpositions

Now for the permutation and standard representations. Let E = Cn with some choice of basis {e1, e2, · · · , en}.

The permutation representation (π,E) is

π (σ) ek = eσ(k)

However, notice that

π (σ)

(
n∑

ℓ=1

eℓ

)
=

n∑
ℓ=1

eℓ

That is, the one-dimensional span of e1 + e2 + · · · + en is fixed pointiwse under the permutation action of Sn

which means that the permuation representation is is reducible. This is of course a copy of the one-dimensional

trivial representation in the n-dimensinoal permutation representation. The complementary representation of

dimension n− 1 is called the standard representation, and it turns out to be irreducible.
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