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1 Prelude 
1.1 Acknowledgements  
I would like to thank Jian He for his ongoing support throughout the summer; thank you for 

patiently explaining to me while I struggled to understand the concepts and for holding many, many 

meetings with me, both in person and online. I have been very privileged to have you as a mentor 

and I would have been absolutely clueless without you. I would also like to thank Daniel Mathews, 

first for his enthusiasm towards knot theory and as a lecturer, it is you who got me interested in this 

project in the first place. I would also like to thank him for his delightful guidance, providing 

support both in meetings and out despite the busy period this project was done in. 

1.2 Abstract 
Dehn surgery is a fundamental method of constructing 3-manifolds. This project centres around the 

3d index, an invariant introduced by Dimofte, Gaiotto and Gukov, associated with a suitable ideal 

triangulation of a 3-manifold with torus boundary components. The 3d index has since been 

extended to closed 3-manifolds obtained via Dehn surgery, further Gang has conjectured that the 3d 

index is an indicator of whether or not the resulting manifold obtained by Dehn surgery on a knot 

has hyperbolic geometry. We focus on the numerical verification of this conjecture, specifically the 

conjectural vanishing of the 3d index for a -filling of the figure eight knot complement, which 

we compute to be zero up to degree 5. 

1.3 Statement of Authorship 
McQuire developed most of the code used to calculate the tetrahedron index, open 3d index and 

closed 3d index for the figure eight knot complement (included in the appendix) under the 

supervision and guidance of He, written in MATLAB. Some aspects of the code are written by He. 

McQuire wrote this report and also made the figures and tables included. The report was proofread 

by He and Mathews.   

2 Introduction 
Knot theory is a well established field of mathematics, with origins in the late 1700s [1]. The field 

has applications in areas such as DNA modelling and statistical mechanics [1], as a result, some 

major results in knot theory, including the focus of this report, emerge from fields such as physics, 

rather than purely from mathematics. One of the central concerns of knot theory is the classification 

(1,0)
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of knots and methods used to distinguish between different knots. A key tool for this is knot 

invariants, properties which are the same for all equivalent classes of knots (the notion of 

equivalence is discussed in the appendix). Examples of knot invariants include the crossing number, 

defined as the minimum number of crossings of a given knot, and knot polynomials, polynomials 

which are computed from properties of the knot or its complement and result in invariants of the 

manifold. [1] 

Definition 2.1. A knot is an embedding of the circle in any 3-manifold. In this project we focus on 

knots in the 3-sphere. A link is a collection of knots which do not intersect. 

Definition 2.2. Given an embedding of a knot in the 3-sphere, the knot complement is all the points 

in the 3-sphere not contained in the knot. The resulting space is a manifold, a space which locally 

looks like Euclidean space. 

 This report centres around an object introduced by three physicists Dimofte, Gaiotto and 

Gukov, the 3d index, which arose from their work on the low energy limit of gauge theory with 

 supersymmetry [2]. The 3d index, defined for 3-manifolds with  tori boundary components, 

is a collection of power series, one for each choice of a peripheral curve on each of the  boundary 

tori. It is a partially defined function since it does not necessarily converge (refer to [3] and [4] for 

more details) and is associated with a suitable triangulation (precise statements given in [5]). It is a 

formal Laurent series in  and, loosely speaking, is defined as the infinite sum over integer 

weights attached to edges in an ideal triangulation of a 3-manifold [4]. The 3d index is known to be 

a topological invariant of oriented cusped hyperbolic 3-manifolds, and is predicted to be a 

topological invariant of the underlying 3-manifold [3], however, this is not known in general [4].  

Definition 2.3. Manifolds can be characterised as the result of gluing polyhedra together by pairing 

up their faces in a particular way. These polyhedra can be decomposed into tetrahedra, giving what 

is known as a triangulation. An ideal triangulation is one which uses ideal tetrahedra; tetrahedra 

with vertices which are ‘ideal points’, points at infinity rather than in the interior of the hyperbolic 

space [6]. 

 Proposed by Gang and Yonekura [7], the 3d index can be extended to closed manifolds 

 obtained via Dehn fillings on knot/link complements.  

Definition 2.4. Dehn surgery is a method of constructing manifolds by the means of cutting and 

pasting a solid torus. Given a manifold , identified with a link , whose boundary components are 

N = 2 r
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tori, we remove an open tubular neighbourhood of  from , and glue in solid tori such that the 

meridian of the -th torus is mapped to the curve  on the torus boundary [8], where  and  

are the meridian and longitudinal curves, and  and  are relatively prime integers. When specifying 

a particular  and , we will refer to this as a -filling. The process of gluing in the tori is 

referred to as Dehn filling; a Dehn surgery consists of removing an open tubular neighbourhood 

together with a Dehn filling.  

 It is known that the -filling of a knot complement has hyperbolic geometry for all  

except for finitely many exceptions [9], however these exceptions can be hard to detect. Gang has 

conjectured that the 3d index should provide an effective way to detect these exceptions, depending 

on whether or not the 3d index of the resulting manifold is a power series [10]. In particular, Gang 

has conjectured that if a -filling is performed, that is, if one glues in a solid torus exactly in a 

manner such that one recovers , then the 3d index is zero [10]. The main focus of this report is 

the numerical verification of this conjecture, in particular, for the figure eight knot complement. 

 The following is an outline of this report. In section 3 we introduce the tetrahedron index, an 

object required to define the 3d index, and provide some example calculations. We then define the 

3d index in section 4 (also referred to as the open 3d index throughout), motivating the definition 

with some examples using the figure eight knot complement. In section 5, we introduce the 3d 

index for closed manifolds (also referred to throughout as the closed 3d index). Using Garoufalidis’ 

work [5] on the minimum degree of the tetrahedron index, we prove the following theorem: in order 

to be certain of the closed 3d index of a -filling of the figure eight knot complement up to 

degree , one must sum each of the relevant open 3d indices up to . Gang’s 

conjecture is then discussed where we present the numerical verification of the -filling of the 

figure eight knot complement up to degree 5, computed using a program written in MATLAB 

(included in the appendix). Finally, future directions for research are suggested in section 6.  

3 The tetrahedron Index 
Definition 3.1. The tetrahedron index is defined  by the equation  [5] 1

. 

L N

i xμ + yλ μ λ

x y

x y (x, y)

(x, y) x, y

(1,0)

𝕊3

(1,0)

n e = max(2n,7)

(1,0)

IΔ : ℤ2 → ℤ[[q1/2]]

IΔ(m , e) =
∞

∑
n=(−e)+

(−1)n q
1
2 n(n+1)−(n+ 1

2 e)m

(q)n(q)n+e

 The parameters  and  are named after magnetic and electric charges [5].1 m e
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Here  are q-pochhammer symbols defined by  for  and  by 

convention. Note that . We can consider the tetrahedron index as a formal 

infinite power series by considering  

    . 

 There is no obvious reason that the tetrahedron index should converge, nor that it should 

have no negative powers, however these turn out to be indeed the case [5]. The tetrahedron index 

satisfies a three fold symmetry [5], 

. 

Example 3.2. Some example calculations of the tetrahedron are listed (computed using the code 

included in the appendix). 

 

4 The 3d Index 
4.1 Evaluation at 0 
The 3d index can be evaluated along any peripheral curve on the torus boundary. In order to 

motivate the definition of the 3d index, we first consider the case where there are no peripheral 

curves. Let  be an ideal triangulation of a manifold  triangulated with  tetrahedra, with a 

boundary consisting of  tori. Note that the number of edges in  is equal to , this can be derived 

from a simple Euler characteristic calculation. Given , each edge class is 

assigned an integer weight  (where an edge class consists of all the edges in each tetrahedron 

which get glued to a single edge in the manifold). This results in a weight attached to each edge in 

each tetrahedron in . For each tetrahedron , we label the three pairs of opposite edges  

such that the labelled edges appear in the order  counterclockwise around a vertex when 

viewed from outside the tetrahedron, as in Figure 1. 

(q)n (q)n =
n

∏
i=1

(1 − qi) n ≥ 0 (q)0 = 1

(−e)+ = max(0, − e)

1
1 − qn

=
∞

∑
k=0

qnk = 1 + qn + q2n + q3n + . . .

IΔ(m , e) = (−q
1
2 )−eIΔ(e, − e − m) = (−q

1
2 )mIΔ(−e − m , m)

IΔ(0,0) = 1 − q − 2q2 − 2q3 − 2q4 + q6 + 5q7 + 7q8 + 11q9 + 13q10 + 16q11 + . . .
IΔ(1, − 1) = q(−1 + q2 + 2q3 + 3q4 + 3q5 + 3q6 + q7 − q8 − 5q9 − 9q10 − 15q11 + . . . )

IΔ(2,2) = q5 + q6 + 2q7 + 2q8 + 3q9 + 2q10 + 2q11 − 2q13 − 6q14 − 10q15 − 16q16 . . .

T N n

r T n

k = (k1, k2, . . . , kn) ∈ ℤn

ki

T j aj, bj, cj

aj, bj, cj
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Figure 1. Labelling of edges in tetrahedron . Opposite pairs of edges are labelled . 

 Let  be the sums of the weights associated with the edges labelled  

respectively. We now introduce an alternative, more symmetric notation for the tetrahedron index. 

For integers  write 

 

[4]. This leads to the following. 

Definition 4.1.1. The 3d index evaluated at 0 (meaning there are no peripheral curves) is defined by 

the equation [4] 

. 

Here, we are summing over the sublattice , which is equivalent to setting  of the integer 

weights  to be zero. In the case of a manifold with a single torus boundary, any set of  edges 

can be used, but in general the set of  edges must be chosen carefully (refer to [3] for details).   

Example 4.1.2. We demonstrate the above process for the figure eight knot complement. On the 

next page is shown a diagram of an ideal triangulation of the figure eight knot complement, where 

the faces of the tetrahedra with matching labels and edges with the same thickness are glued 

together. There are two tetrahedra, as shown in Figure 2, thus . Note that the figure eight knot 

complement has a boundary consisting of a single torus, so we can choose either edge to be zero. 

We label  as shown in Figure 2 and let us assign an integer weight  to the thick edges and  

to the thin edges. 

j aj, bj, cj

aj(k), bj(k), cj(k) aj, bj, cj

a, b, c,

JΔ(a, b, c) = (−q
1
2 )(−b)IΔ(b − c, a − b) = (−q

1
2 )(−c)IΔ(c − a, b − c) = (−q

1
2 )(−a)IΔ(a − b, c − a)

IN(0)(x) = ∑
k∈ℤn−r⊂ℤn

q ∑i ki
n

∏
j=1

JΔ(aj(k), bj(k), cj(k))

ℤn−r ⊂ ℤn r

ki n − 1

n − r

n = 2

aj, bj, cj k 0
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Figure 2. Ideal triangulation of figure eight knot complement. 

Then  

. 

This yields 

 

4.2 Evaluation Along a General Curve 
We now consider the general case. Given an oriented, non-contractible multicurve  on the 

boundary  of the manifold, we deform  so that it is a union of disjoint oriented normal arcs in 

each triangle of  (a normal arc being a simple arc which connects two distinct sides of a 

triangle). Each normal arc can be given a sign based on the orientation of  and the orientation of 

. In particular, we say the sign is positive if the arc winds counterclockwise around the vertex of a 

triangle, when viewed from outside . The sign is negative otherwise. We define 

              

              

, 

where  are defined as in section 4.1. These definitions are illustrated in Example 4.2.2. 

Definition 4.2.1. The 3d index along  is defined as  

. 

Again, the summation is over the sublattice , which has been shown to depend only on 

the homology class of  [4]. 

a1(k) = 2k , b1(k) = k , c1(k) = 0,a2(k) = 2k , b2(k) = k , c2(k) = 0

IN(0) = ∑
k∈ℤ

qkJΔ(2k , k ,0)2 = ∑
k∈ℤ

IΔ(k , k)2 = 1 − 2q + 3q2 + 2q3 + 8q4 + 18q5 + 18q6 + 14q7 + . . .

γ

δN γ

TδN

δN

γ

δN

aj(γ) = signed count of arcs in γ around aj

bj(γ) = signed count of arcs in γ around bj

cj(γ) = signed count of arcs in γ around cj

aj, bj, cj

γ

IN(γ)(q) = ∑
k∈Zn−r⊂Zn

q ∑i ki∏
j

JΔ(aj(k) + aj(γ), bj(k) + bj(γ), cj(k) + cj(γ))

ℤn−r ⊂ ℤn

γ
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Example 4.2.2. Let  be the figure eight knot complement. Then  can be triangulated with two 

tetrahedra, its boundary consisting of a single torus (as described in Example 4.1.2). We 

demonstrate how to derive the explicit formula for the open 3d index of the figure eight knot 

complement. 

 The diagram below shows the triangulation induced on the torus boundary. 

Figure 3. Triangulation of torus boundary of figure eight knot complement. 

 The red curve denotes the meridian  and the blue curve denotes the longitude . We count 

the number of times each arc winds around the edges accounting for the sign (where we 

give a positive sign if the arc winds counterclockwise around a vertex, when viewed from outside 

). This yields the following. 
Table 1. Signed count of meridian and longitudinal curves for figure eight knot complement. 

Hence, 

 

Here, we can let  be a half-integer since it always appears in the formula as , thus the 3d index is 

well-defined although the pair  no longer represent a curve on the torus boundary. Thus, 

. 

N N

μ λ

aj, bj, cj,

δN

−1

0λ

c2

10

−2

0

2

μ

a2

2y

b2

0

0

0

0

0 0

b1 c1

xμ + yλ x − 2y

a1

0

0 −x

IN(x, y)(q) = ∑
k∈ℤ

qkJΔ(2k , k , − x)JΔ(2k + x − 2y, k ,2y) = ∑
k∈ℤ

IΔ(k + x, k)IΔ(k − 2y, k + x − 2y)

y 2y

(x, y)

IN(x, y)(q) = ∑
k∈ℤ

IΔ(k + x, k)IΔ(k − y, k + x − y)
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Example 4.2.3. Below are some example calculations of the 3d index for the figure eight knot 

complement. 

 

Note that  is a half-integer in . 

5 The 3d Index for Closed Manifolds 
We now turn to the extension of the 3d index to closed 3-manifolds. Let  be a 3-manifold with a 

single torus boundary component. Denote the meridian and longitude of the torus boundary by  

and  respectively (here, we take  to be a knot complement in  to ensure that  and  are well 

defined). Denote the closed 3-manifold obtained by Dehn filling along the boundary cycle  

as , where  are necessarily taken coprime.  

Definition 5.1. The the 3d index for   is defined by the following equation [10] 

  

where . 

Here, r and s are integers such that . The choice of  is not unique, it is in fact 

invariant under the shift  [10]. Observe that the function  

means the summation is over three parallel lines  and 

.  

 Gang has made the following conjecture about the 3d index [10]. 

Conjecture 5.2.

 

Moreover, if  is a Lens space, then . 

 Thus, a -filling should produce  for any knot complement, with the resulting 3d 

index being . In this case,  and , so taking  and  yields 

. 

IN(1,0)(q) = − 2q − 2q2 + 2q3 + 8q4 + 16q5 + 16q6 + 19q7 − 14q8 − 52q9 − 102q10 − 154q11 + . . .
IN(0,1)(q) = q3 + 2q4 + 5q5 + 2q6 − 3q7 − 16q8 − 32q9 − 52q10 − 67q11 − 64q12 + . . .

IN(1, − 4)(q) = q10 + 3q11 + 7q12 + 12q13 + 20q14 + 27q15 + 35q16 + 35q17 + 26q18 − 3q19 − 55q20 + . . .

−4 IN(1, − 4)(q)

N

μ

λ N 𝕊3 μ λ

xμ + yλ

M = Nxμ+yλ x, y

Nxμ+yλ

INxμ+yλ
(q) = ∑

(m,e)∈ℤ2

K(m , e, x, y; q)IN(e, m)

K(m , e, x, y; q) =
1
2

(−1)rm+2se[δxm+2ye,0(q
rm + 2se

2 + q− rm + 2se
2 ) − δxm+2ye,−2 − δxm+2ye,2]

yr − xs = 1 (r, s)

(r, s) ↦ (r + x, s + y) K(m , e, x, y; q)

xm + 2ye = 0, xm + 2ye = − 2

xm + 2ye = 2

IM(q) = INxμ+yλ
(q) = {Infinite series beginning with 1 − . . . , if M is hyperbolic

0,1, or ∞ (does not converge) , if M is non-hyperbolic

M IM(q) = 0

(1,0) S3

0 x = 1 y = 0 r = 0 s = − 1

K(m , e,1,0; q) =
1
2

[δm,0(q−e + qe) − δm,−2 − δm,2]
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Putting this together and recalling that  is a half-integer gives 

. 

 In order to verify Gang’s calculations of the closed 3d index for a -filling of the figure 

eight knot complement, we prove the following theorem, which gives an indication of how many 

terms we should compute to be certain of our result. 

Theorem 5.3. Let  be the figure eight knot complement. In order to be certain of  up to degree 

, one must compute  and  up to . 

 To prove this theorem, we first prove the following lemmas, which immediately imply the 

result. 

Lemma 5.4. For all , the minimum degree of  is at least . 

 Proof. Recall that  .  

 Thus, to prove Lemma 5.4, we show that the minimum degree of   is 

at least  for sufficiently large . To do this, we use Garoufalidis’s work on the minimum degree 

of the tetrahedron index [5], summarised in the diagram below. 

Figure 4. The minimum degree of the tetrahedron index  [5]. The minimum degree depends on which 

of the three regions  lies in, which we refer to as Region 1, 2 and 3, as labelled above. 

 Now, writing , we can consider the summation in  as over the two lines 

 and , where each term is the product of  with . We will hereby 

e

2INμ = ∑
e

(q−e/2 + qe/2)IN(e,0) − ∑
e

IN(e, − 2) − ∑
e

IN(e,2)

(1,0)

N INμ

n IN(e,0), IN(e, − 2), IN(e,2) e = max(2n,7)

|e | ≥ 7 IN(e,0) |e |

IN(e,0) = ∑
e

IΔ(k + e, k)IΔ(k , k + e)

IΔ(k + e, k)IΔ(k , k + e)

|e | e

IΔ(a , b)

(a , b)

IΔ(a, b) IN(e,0)

b = a + e b = a − e IΔ(a, b) IΔ(b, a)
 11



refer to the line  as Line 1 and the line  as Line 2. A diagram of the situation is 

depicted below. 

Figure 5. There are four cases: Case 1:  and  both are in Region 1; Case 2:  is in 

Region 2 while  is in Region 1; Case 3:  is in Region 2 while  is in Region 3; Case 4: 

 and  both lie in Region 3. 

 There are four relevant cases, depicted in Figure 5. Due to the symmetry of the situation, it 

suffices to only consider the cases 1 and 2. 

Case 1: . Both Line 1 and 2 are in Region 1, so the minimum degree of   is 

given by 

 

since  and .  

Case 2: . Now, Line 1 is in Region 1 while Line 2 is in Region 2. Thus, the 

minimum degree is 

. 

This function is a quadratic in  so within the region we are considering, it achieves its minimum at 

. Thus,  

 for all .  

b = a − e b = a + e

IΔ(a , b) IΔ(b, a) IΔ(a , b)

IΔ(b, a) IΔ(a , b) IΔ(b, a)

IΔ(a , b) IΔ(b, a)

a ≥ 0,b ≥ e IN(e,0)

δ1 =
a(a + b)

2
+

a
2

+
b(a + b)

2
+

b
2

=
(a + b)2

2
+

a + b
2

≥
b2

2
+

b
2

> |e |

b ≥ e b ≥ 1

−
e
2

≤ a ≤ 0,
e
2

≤ b ≤ e

δ2 = −
ba
2

+
b(a + b)

2
+

b
2

=
b2

2
+

b
2

b

b =
e
2

δ2 ≥
b2

8
+

b
4

> |e | e ≥ 7
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The stated result follows. 

 Analogous results can be proven for  and . The proofs are omitted here and 

included in the appendix. 

Lemma 5.5. For all , the minimum degree of  is at least . 

Lemma 5.6. For all , the minimum degree of  is at least . 

 Observe that Lemma 5.4 implies the minimum degree of  is at least 

 for . Thus, Lemmas 5.4, 5.5 and 5.6 immediately imply Theorem 5.3. 

 Next we give an indication of how many terms must be computed in each open 3d index. 

Lemma 5.7. Let  be the figure eight knot complement. In order to be certain of  up to 

degree , one should sum for . 

 Proof. Recall that  

.  

Since  has non-negative degrees, the minimum degree of  is at least the minimum 

degree of . Observe that if  or , then the minimum degree of 

 is in Region 1 or 3 respectively. First suppose . Then the minimum degree of 

 is given by  

. 

 Now suppose . Then the minimum degree is 

. 

The statement follows. 

 Using the MATLAB code included in the appendix, we calculated the closed 3d index for a 

-filling of the figure eight knot complement. Our result is a power series with the first term 

. Here we give the specific inputs used in this calculation: 

Figure 6. Inputs used to compute , where  is figure eight knot complement. 

 Note that pochhammer_matrix(150,150,150) computes the product of 150 pochhammer 

symbols, tetmatrix(-100,100,50,A) computes the tetrahedron index for , 

IN(e, − 2) IN(e,2)

|e | ≥ 7 IN(e, − 2) |e | /2

|e | ≥ 7 IN(e,2) |e | /2

(q−e/2 + qe/2)IN(e,0)

|e | /2 |e | ≥ 7

N IN(x, y)

n |k | ≤ 2n + 2 |x |

IN(x, y) = ∑
k

IΔ(k + x, k)IΔ(k − y, k + x − y)

IΔ(m , e) IN(x, y)

IΔ(k + x, k) k > 2 |x | k < − 2 |x |

IΔ(k + x, k) k > 2 |x |

IΔ(k + x, k)

δ1 =
(k + x)(2k + x)

2
+

k + x
2

>
k
2

k < − 2 |x |

δ2 =
k (2k + x)

2
−

k
2

>
|k |
2

(1,0)

−6q14

INμ N

m ∈ [−100,0], e ∈ [0,100]
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summing from  to  in each tetrahedron index, filledIndexfig8(1,0,30,50,B) computes 

the closed 3d index for the figure eight knot complement, summing over , 

, also summing from  to  in each open 3d index, using 50 terms in each 

open 3d index. The appendix contains more details on the input values. 

 Since we have summed , Theorem 5.3 implies  is correct up to degree 15, 

provided each of the open 3d indices are accurate up to degree 15. Now, each of the open 3d indices 

 and  are summed from  to , thus by Lemma 5.7 we have that 

each of the open 3d indices are correct up to degree 5 for . Observe that the minimum 

degree of   and  are at least 5 for  by Lemmas 5.4-5.6. Since the 

first term in our result was , we have the following theorem. 

Theorem 5.8. Let  be the figure eight knot complement. Then  is zero up to degree 5.  

 The first input pochhammer_matrix(150,150,150) took approximately 6 hours to compute. 

Contrastingly, the second and third input took anywhere from 10-30 seconds to compute, indicating 

that once one has stored a large amount of pochhammer symbols, the 3d indices can be computed 

relatively quickly.  

 Our results provide some verification of Gang’s conjecture, however little can be said on 

why the cancellation indeed occurs. 

6 Discussion & Conclusions 
The major result of this project is that to be certain up to degree  of the -filling of the figure 

eight knot complement , where  is the figure eight knot complement, one must compute each of 

the open 3d indices  and  up to  (Theorem 5.3). Using 

this, we have computed that  is zero up to degree 5. Although this is a small step towards the 

numerical verification of Gang’s conjecture, the result shows support for the conjectural vanishing 

of a Lens space. The computation was limited by the computing power available; the use of a more 

capable machine may be able to verify the conjecture to a much higher degree for the figure eight 

knot complement. Likewise, the bounds for the summation required to be certain of 

 and  up to degree  given in this report are quite conservative; improved 

bounds could allow the conjecture to be verified to a higher degree. 

n = 0 n = 50

m ∈ [−30,30]

e ∈ [−30,30] k = − 30 30

e ∈ [−30,30] INμ

IN(e,0), IN(e, − 2), IN(e,2) k = − 30 30

|e | ≤ 10

IN(e,0), IN(e, − 2), IN(e,2) e > 10

−6q14

N INμ

n (1,0)

INμ N

IN(e,0), IN(e, − 2), IN(e,2) e = max(2n,7)

INμ

IN(e,0), IN(e, − 2), IN(e,2) n
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 In terms of direct avenues forward from this report, extending the MATLAB code used to 

compute the closed 3d index for a figure eight knot complement to other knot complements would 

allow further calculations on -filling, to thus numerically verify Gang’s conjecture for a 

variety of knots. Although the code can be run in reasonable time once a matrix of q-pochhammer 

symbols are stored, the use of symbolic calculations in the two functions fig8index and 

filledIndexfig8 (used to calculate the open and closed 3d indices for the figure eight knot 

complement) are thought to be making the computations slow. Using matrix computations 

throughout would potentially improve the efficiency. Moreover, the MATLAB code is currently 

capable of computing any -filling of the figure eight knot complement; performing analysis 

similar to that used to prove Theorem 5.3 on the closed 3d index of the figure eight knot 

complement may allow similar results to be proven for general -fillings.  

(x, y)

(x, y)

(x, y)
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7 Appendix 
7.1 Proof of Lemmas 5.5 & 5.6. 
Lemma 5.5. For all , the minimum degree of  is at least . 

 Proof. Recall that  

.  

Write , then this summation can be considered as one over the two lines  and 

, where each term is the product of  with . Again, we refer to the 

line  as Line 1 and the line  as Line 2. First consider the case . A diagram 

for this situation is depicted below. 

Figure 7. The key transitions from Region 1 to Region 2, and Region 2 to Region 3 occur along Line 2 at the 

points  and  respectively, corresponding to the points  and  on Line 1. 

The transition from Region 1 to Region 3 occurs along Line 1 at the point . 

 Observe that if  ,then , so the transition from Region 1 to Region 2 along 

Line 2 occurs before the transition from Region 1 to Region 3 along Line 1. Since we seek to prove 

Lemma 5.5 for , it suffices to only consider the case .  

|e | ≥ 7 IN(e, − 2) |e | /2

IN(e, − 2) = ∑
e

IΔ(k + e, k)IΔ(k + 2,k + e + 2)

IΔ(a, b) b = a + e

b = a − e IΔ(a, b) IΔ(b + 2,a + 2)

b = a − e b = a + e e ≥ 0

(0,e) (−e,0) (e − 2, − 2) (−2, − e − 2)

(
e
2

, −
e
2

)

e ≥ 4 e − 2 ≥
e
2

e ≥ 7 e ≥ 4
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 Case 1:  . In this region, both Line 1 and Line 2 lie in Region 1. Thus, the 

minimum degree of  is given by 

. 

Observe that  has no solutions so  has no critical points. 

Thus, its minimum is achieved at the boundary, . Hence, 

 for all . 

 Case 2:  . Now, Line 1 still lies in Region 1 but Line 2 is in 

Region 2. Thus, the minimum degree is  

.  

This function again has no critical points and varies quadratically in  and linear in , so its 

minimum is achieved at . Thus,  for all .  

 Case 3:  . Now, Line 1 is in Region 3 and Line 2 is in 

Region 2, so the minimum degree is 

.  

This function again has no critical points and varies quadratically in  and linear in , so its 

minimum is at . So  for all .  

 Case 4:  . Both lines are now in Region 3, so the minimum degree is  

.  

Again, this function has no critical points so the minimum occurs at the boundary,  

 for all .  

a ≥ e − 2, b ≥ − 2

IN(e, − 2)

δ1 =
a(a + b)

2
+

a
2

+
(b + 2)(a + b + 4)

2
+

b + 2
2

=
a2

2
+

b2

2
+ ab +

3
2

a +
7
2

b + 5

∇δ1 = (a + b +
3
2

, b + a +
7
2

) = 0 δ1

(a, b) = (e − 2, − 2)

δ1 ≥
e2

2
−

5
2

e + 3 >
|e |
2

e ≥ 5

e
2

≤ a ≤ e − 2, −
e
2

≤ b ≤ − 2

δ2 =
a(a + b)

2
+

a
2

−
(a + 2)(b + 2)

2
=

a2

2
−

a
2

− b − 2

a b

(a, b) = (
e
2

, − 2) δ2 ≥
e2

8
−

e
4

>
|e |
2

e ≥ 7

−2 ≤ a ≤
e
2

, −e − 2 ≤ b ≤ −
e
2

δ3 =
b(a + b)

2
−

b
2

−
(a + 2)(b + 2)

2
=

b2

2
−

3
2

b − a − 2

b a

(a, b) = (
e
2

, −
e
2

) δ4 ≥
e2

8
+

e
4

− 2 >
|e |
2

e ≥ 6

a ≤ − 2, b ≤ − e − 2

δ4 =
b(a + b)

2
−

b
2

+
(a + 2)(a + b + 4)

2
−

a + 2
2

=
a2

2
+

b2

2
+ ab +

5
2

a +
b
2

+ 3

δ4 ≥
e2

2
+

7
2

e + 5 >
|e |
2

e ≥ 0
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 The case for  can be done analogously and are in fact symmetric. The statement 

follows. 

Lemma 5.6. For all , the minimum degree of  is at least . 

 Proof. This proof can be rigorously done analogously to the proof of Lemma 5.5, again 

realising that we are summing over Line 1  and Line 2 , however this time 

taking the products of  with . Alternatively, we can note that by symmetry 

to  , the cases  of  correspond to the cases  in  and visa versa, 

so Lemma 5.5 implies Lemma 5.6. 

7.2 Equivalence of Knots 
The notion of equivalence of knots can be characterised by their knot diagrams and the following 

theorem. 

Theorem 7.2.1. If two knots  and  have the same knot diagram, then they are equivalent [1]. 

 This notion of equivalence satisfies the definition of an equivalence relation; it is transitive, 

symmetric and reflexive. In general, it is difficult to determine when two knots lie in the same 

equivalence class or are in fact equivalent; much of knot theory focuses on developing techniques 

which can be used to make this decision. 

 Reidemeister moves are also used to characterise equivalence.  

Definition 7.2.2. A Reidemeister move is an operation which can be performed on a knot diagram 

without altering the knot itself, and consists of one of the following moves. 

Figure 8. Reidemeister moves. Type I: twist and untwist in either direction, type 11: move one loop 
completely over another, type 111: move a string completely over or under a crossing [1]. 

e ≤ 0

|e | ≥ 7 IN(e,2) |e | /2

(b = a − e) (b = a + e)

IΔ(a, b) IΔ(b − 2,a − 2)

IN(e, − 2) e ≥ 0 IN(e,2) e ≤ 0 IN(e, − 2)

K K′ 
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 Reidemeister moves correspond to the simplest changes when a knot is deformed. We also 

have the following theorem. 

Theorem 7.2.3. If two knots are equivalent, then they are related by a sequence of Reidemeister 

moves [1]. 

7.3 Hyperbolic Manifolds 
Here, some background theory on hyperbolic manifolds is provided. 

Definition 7.3.1. A compact 3-manifold  is said to have a (complete) hyperbolic structure if 

 has a complete Riemannian metric that is locally isometric to  [9].  

 Hyperbolic geometry does not satisfy the parallel axiom and has many representations, 

including the Poincare disk model and the Klein model. For example, in the Poincare disk model, 

which models 2-dimensional hyperbolic geometry, hyperbolic straight lines appear as arcs of circles 

orthogonal to the boundary of the disk. There are a variety of important results concerning 

hyperbolic manifolds, including that most knot complements have hyperbolic geometry, 

specifically, 

Theorem 7.3.2. Let  be the exterior of a knot  in the 3-sphere. Then  has hyperbolic structure if 

and only if  is neither a satellite knot nor a torus knot [9].  

 Here, a torus knot is a knot which lies on the surface of an unkotted torus in , while a 

satellite knot is a knot which contains an incompressible, non boundary-parallel torus in its 

complement. 

7.4 Code used to Calculate 3d Index 

All code is written in MATLAB. Note that the function tetindex uses the 3-fold symmetry of the 

tetrahedron index to compute the tetrahedron index from the indices stored via tetmatrix.  

M

M − δM ℍ3

N K N

K

ℝ3
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