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Abstract

The goal of this research project is to find an analytic solution for the size and shape of

skyrmions as a function of magnetic material properties. Our analytic solution and theory

are simpler and easier to be understood by those who are not from mathematical fields

compared to the results developed by Büttner et al.. The expressions developed reveal the

underlying physics of the problem. We use an analytic method which was developed from

solving magnetic domain wall problems. We identify five major energy contributions that

determine the size and shape of skyrmions: Dzyaloshiniskii-Moriya interaction (DMI) en-

ergy, exchange interaction energy, anisotropy energy, Zeeman energy and demagnetization

energy. Piecewise functions were used to approximate the magnetization angle function

to simplify the energy density expressions for each of the contributions. The energy per

unit area was calculated for a thin film by integrating over cylindrical coordinates. In

order to examine the solution accuracy, the results were plotted alongside plots using the

function from Büttner et al. That function is more accurate than our results but is very

complicated. Our energy contributions are generally close to that of Büttner et al.. We

produced an analytical result to describe the size and width of skyrmions by minimizing

the total energy of the skyrmion.
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1 Introduction

Magnetic skyrmions are tiny swirls of local magnetization in magnetic materials. As depicted

in Figure 1, the direction of magnetization of a typical skyrmion varies from down −z direction

in the centre region to up +z direction at the edge of the skyrmion. This variation occurs

along the radial axis ρ.[1] A skyrmion is described in some papers as a topologically protected

quasiparticle, which has unique properties as a whole rather than its individual components.

Its stability and dynamics depend strongly on its topological properties. [1] Skyrmions are

promising magnetic structures in materials for transportation and storage of digital information.

[2]

Figure 1: The schematic of a typical skyrmion: arrows show the direction of magnetization, and

the colour indicates the projection along the out-of-plane z direction. The local magnetization

gradually rotates from −z direction (centre of the skyrmion) to +z direction (edge of the

skyrmion) along the axis ρ.(a) 2D view from above the skyrmion. (b) 3D view of the skyrmion.

There are three features of skyrmions, which make them one of the best candidate materi-

als for next generation information storage technology. Due to skyrmions being a topologically

protected atomic spin configuration, they are relatively stable compared to other magnetic

structures such as magnetic vortices or bubbles.[4] Skyrmions can be extremely small, down

to the “single-digit nanometre scale” with the support of the interfacial Dzyaloshinskii-Moriya

interaction (DMI). DMI arises from spin-orbit coupling and stabilizes smaller skyrmion struc-

tures at room temperature. [2] Moreover, skyrmions can be created, deleted and moved like
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a single particle through a material using very small amounts of electric current. The current

densities used in moving skyrmions (through magnetic material such thin films) can be several

orders of magnitude smaller than the one used in moving magnetic domain walls. [2] Hence,

the future digital data storage device by using magnetic skyrmions would have better stability,

higher information density and much lower energy costs as well as ease of manipulation via

electric current. [5] Although today’s hard-disk drive can achieve high densities of information

storage, they have very complex and fragile mechanical parts. On the other hand, skyrmions

do not require extra parts to be moved, and skyrmions can achieve even higher bit density

compared to today’s magnetic data storage devices.[4]

Besides data storage devices, skyrmions are also a good candidate for some logic gates. [2]

However, both future information and communication technologies require individual skyrmions

to be small and stable at room temperature and in zero or very small applied fields.[1] In a

sea of choices of potential material, a good mathematical model that can predict the size and

shape and behaviour of a skyrmion as magnetic properties of the material are varied, would

enable material scientists to search for the ‘holy grail’ of skyrmionic devices in bright daylight

rather than in the dark.

Büttner et al. developed a very complicated analytical framework and numerical solutions

to predict the property of isolated skyrmions in any magnetic thin film.[5] The downside of the

work by Büttner et al. is that the analytical model is complicated for scientists who do not have

a mathematical background. Moreover, some parts of the framework rely on numerical data

fitting to a function rather than being purely derived from physics theories. Hence, the goal

of our work is to develop simpler analytical theories that actually represent physical properties

of skyrmions. The solution should be easier to use and understand by material scientists and

engineers from different academic fields.

In this report, the aim is to present the analytic theories that we developed for describing

the size and shape of skyrmions in thin films, as a function of magnetic material properties. In

section II, our analytic energy densities contributions for skyrmions are described in detail. In

Section III, energy minimization to find the skyrmion size is detailed. Finally, the conclusion

and future work will be discussed in section IV.

Statement of Authorship: All works presented in this report are Ellen Lu’s calculation
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except equation (17) and (18), which were proved by Karen Livesey. The results were confirmed

and examined by Karen Livesey.

2 Skyrmion energy contributions

In the following subsections, the major energy density contributors are introduced and they

are presented in cylindrical coordinates. The piecewise function for the magnetization inside a

skyrmion is presented in detail, allowing analytic integration of the energy densities. Then, the

final energy per unit area of each energy contributors are analysed in graphs.

2.1 Dzyaloshinskii-Moriya interaction energy

DMI is the antisymmetric exchange interaction, which was initially found in weak ferromagnetic

materials. It arises from spin orbit coupling. [6, 7] It is the interaction that gives rise to the

formation of skyrmions in magnets. D⃗ is the DMI vector with units of J/m2 and it is assumed

that D is positive. The expression for the DMI energy density in Cartesian coordinates [9] is

wDMI = −D

(
[ŷ × ẑ] ·

[
m̂× ∂m̂

∂ŷ

]
+ [x̂× ẑ] ·

[
m̂× ∂m̂

∂x̂

])
, (1)

where m̂ is the magnetization vector, and x̂, ŷ, ẑ are unit vectors. Transforming the energy

density equation to cylindrical coordinates is not only for the convenience of calculation but

also a better representation of skyrmion structure, since it has cylindrical symmetry. By close

investigation of Equation (1), we realise that the cross product of ŷ and ẑ is the unit vector x̂.

Similarly, x̂× ẑ = −ŷ. This means the the dot products between x̂ and any other vectors has

only the component in x direction left. Thus the equation can be written as:

wDMI = D

[(
my

∂mz

∂y
−mz

∂my

∂y

)
+

(
mx

∂mz

∂x
−mz

∂mx

∂x

)]
. (2)

Using the relationship between Cartesian and cylindrical coordinates, we can obtain the mag-

netization unit vector m̂ components

mx = mρ cosϕ−mϕ sinϕ

my = mρ sinϕ−mϕ cosϕ

mz = mz.

(3)
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The chain rule can be used to obtain the coordinate transformation for the partial derivatives:

∂

∂x
=

∂ρ

∂x

∂

∂ρ
+

∂ϕ

∂x

∂

∂ϕ
+

∂z

∂x

∂

∂z
∂

∂y
=

∂ρ

∂y

∂

∂ρ
+

∂ϕ

∂y

∂

∂ϕ
+

∂z

∂y

∂

∂z

(4)

Substituting Equation (3) and Equation (4) into Equation (2), we can obtain a function that

only have cylindrical components. As shown in Figure 1, there is no change of magnetization

along the azimuthal axis ϕ. So, the energy density function can be further simplified into:

wDMI = −D

(
mρ

∂mz

∂ρ
−mz

∂mρ

∂ρ
+

mzmρ

ρ

)
. (5)

2.2 Other energy contributions

The exchange interaction energy density in Cartesian coordinates is expressed as

wex = A

{ ∑
i=x,y,z

[(
∂mi

∂x

)2

+

(
∂mi

∂y

)2

+

(
∂mi

∂z

)2
]}

. (6)

Using the same technique as for the DMI energy calculation, we can transform the coordinates

system of the equation above. Similarly, all the derivatives with respect to ϕ go to zero due to

no change in the magnetization relative to azimuthal direction. The exchange energy density

in cylindrical coordinates is given by:

wex = A

[(
∂mρ

∂ρ

)2

+

(
∂mϕ

∂ρ

)2

+

(
∂mz

∂ρ

)2

+

(
∂mρ

∂z

)2

+

(
∂mϕ

∂z

)2

+

(
∂mϕ

∂z

)2

+
mϕ

2 +mρ
2

ρ2

]
,

(7)

where A is the exchange stiffness constant for a material. Because the skyrmion exists in a

thin film in the z direction, there is no change of magnetization on the z direction, all the

derivatives with respect to z vanish in the Equation (7). The ϕ component of magnetization

does not change along the ρ direction either. The term
∂mϕ

∂ρ
goes to zero. Now the Equation (7)

can be simplified as below:

wex = A

[(
∂mρ

∂ρ

)2

+

(
∂mz

∂ρ

)2

+
mϕ

2 +mρ
2

ρ2

]
(8)

Anisotropy energy describes the preference of the magnetization to point in or out of the

plane, ±z. Its energy density is given by:

wanis = K(1−mz
2), (9)
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which is unchanged in cylindrical coordinates.

The Zeeman effect describes the lowering of the energy when the magnetization points along

the applied field direction, taken to be +z here. Its energy density can be expressed as:

wzee = µ0MsB(1−mz) (10)

where µ0 is the permeability of free space with unit [m · kg · s−2 · A−2], Ms is the saturation

magnetization with unit [A/m] and B is the magnetic induction with unit T.

2.3 Piecewise magnetization angle approximation

It would be too complicated to integrate over the original magnetization angle θ function

(θ(ρ) = ±2 tan−1
[
e(ρ−R)/∆

]
), where R is the location of the magnetization variation and ∆

is the variation width. Thus, we need a simpler function to approximate the original θ, which

would ultimately produce a reliable analytic result for the energy. Our skyrmion piecewise

function is formulated as shown in Figure 2 below. We define R as size of the skyrmion and ∆

Figure 2: Piecewise function describing the Skyrmion magnetization angle profile: the Orange

line presents the local magnetization angle θ function as function of radial direction ρ; The blue

dash line presents the Linear Ansatz function of the angle θ.

as the width of skyrmion. The magnetization angle θ can be approximated by a linear ansatz

6



function of ρ:

θ(ρ) =


0, 0 < ρ < (R−∆), region I

π
2∆

ρ− π
2∆

(R−∆), (R−∆) < ρ < (R +∆), region II

π, ρ > (R +∆), region III

(11)

As shown in Figure 2, the function describes the magnetization angle θ from the +z direction

from the centre of the skyrmion to the outside region. This allows the local magnetization

function can be express as mz = cos[θ(ρ)] and mρ = sin[θ(ρ)].

Substituting Equation (11) into cylindrical DMI energy density (Equation 5), one sees that

regions I and III do not contribute to the total DMI energy. Hence, we only needed to integrate

the energy density over region II, the DMI energy per unit area was obtained:∫ ∞

0

dρ

∫ 2π

0

dϕ

∫ +∞

−∞
dz (ρ · wDMI) ≡ EDMI = 2πt · πRD (12)

where t is the thickness of skyrmion material in metres, through the z direction. The factor

of 2π comes from integration over the azimuthal angle ϕ. The equation shows that the DMI

energy increases with the skyrmion size R and thickness t of the material.

In order to examine the accuracy of our approximation functions, we plot our energy densi-

ties as a function of skyrmion size R and width ∆ on the same graph that was created by using

the results from Büttner et al..[5] The results from Büttner et al. have high accuracy and are

proven by comparison to experimental and simulation data. [5]

Figure 3 is the DMI energy density as a function of width ∆ and size R. It shows that

DMI has no impact on the width ∆ of the skyrmions. However, DMI energy linearly decreases

with increase of the size R. This might indicate that the higher DMI energy does make smaller

skyrmions more stable. Our analytic approximation (solid lines) give a perfect fit with the

result from the work of Büttner et al. (dashed lines) [10].

Substitution of Equation (11) into the exchange energy density given in Equation (8) leads

to the energy by integrated over region II. Regions I and III do not contribute to the total

energy. However, the integration can not be solved easily at first. The exchange energy integral

is given by

Eex = 2πtA

∫ R+∆

R−∆

dρ

{
ρ
( π

2∆

)2

+
1

ρ
sin2

[ π

2∆
(ρ−R +∆)

]}
. (13)
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Figure 3: DMI energy per unit area as an function of Width ∆ & size R: (a) with fixed width

∆ = 2nm, DMI energy linearly decreases with increase of the size R. Our approximation of

DMI energy (blue line) is a perfect fit with the results from Büttner et al. [10] (orange line);

(b) with fixed size R = 20nm, DMI has no effect on width of the skyrmions, and the result

from Büttner’s group also confirmed this.

A Taylor expansion to first order is used to approximate the value 1
ρ
near ρ ∼ R. This is where

the integrand has its main contribution. One obtains 1/ρ ∼
(
2
R
− ρ

R2

)
. This allows us to obtain

a much simpler expression for the exchange energy, namely

Eex = 2πtA

(
π2R

4∆
+

2∆

R

)
. (14)

Higher order approximations by using Taylor series were examined, the first order gave the

closest and simplest result. The result is plotted along side the result from Büttner et al. in

Figure 4 to examine the accuracy.

The Figure 4 is the exchange energy as a function of the size (R) and transition width

(∆) of the skyrmion. It shows that the Taylor expansion to first order preforms better than

the second order approximation. Although, our function slightly underestimates the exchange

contribution, it is sufficient for energy minimization (see the next Section).

Solving for the anisotropy and Zeeman energy contributions is easier by substituting the

piecewise functions [equation (11)] into the energy density equations [(9) and Equation (10)]

accordingly. The anisotropy energy is result is

Eanis = (2πt) · 2∆RK, (15)
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Figure 4: The exchange energy per unit area as a function of width and size of the skyrmion:

(a) with fixed width ∆ = 2nm, the exchange energy increase with size R; (b) with fixed size R

= 20nm, the exchange energy exponentially decay with increase of the skyrmion width. Our

approximation slightly underestimates the energy contribution of exchange energy. Both (a)

and (b) shows that Taylor expansion first order gives better result compare to second order.

[10]

where K is the anisotropy energy density constant for a given material. The Zeeman energy is

Ezee = (2πt) ·BMs

[
−R2 − 4

(
1− 8

π2

)
∆2

]
. (16)

Both Equation (15) and (16) agree with the results from Büttner’s group. (see Figure 5 and

Figure 6, respectively).

Figure 5 is the anisotropy energy per unit area as function of the size (R) and transition

width (∆) of the skyrmion (solid lines). It shows that anisotropy energy linearly increases with

the size and the width of the skyrmion. Our anisotropy energy is a another perfect fit with the

result from Büttner et al. (dashed lines)

Figure 6 shows the Zeeman energy per unit area as a function of size (R) and transition

width (∆) of the skyrmion. It shows that the Zeeman energy decreases with both width and

sized of skyrmion. This is because the applied field here is in the same direction as the skyrmion

core and so the magnetic field favours the expansion of the skyrmion. Compared with other

energy contributes, the Zeeman energy contribution is smaller due to the size B = 0.001T used

here.
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Figure 5: The anisotropy energy per unit area as function of the width and size of the skyrmion:

(a) with fixed width ∆ = 2nm, anisotropy energy linearly increases with the skyrmion size R;

(b) with fixed size R = 20nm, anisotropy energy linearly increases with the skyrmion width ∆.

Our predicted results is exact as same as the Büttner’s result [10] within the given intervals

where skyrmion usually are found.

2.4 Stray-field energy

The stray field energy is the hardest contribution to calculate. The magnetic field outside a

magnet is called stray field and within a magnet is known as the demagnetization field. Stray

field can be found whenever the magnetization has a component normal to an external or

internal surface or nonuniform magnetization.

From Livesey and Davidson’s past derivation, the shape of the demagnetization field function

actually is similar to a negative magnetization function, which can be approximated by a

similar piecewise function, which were used in other energy contribution. [12, 3, 13] The only

difference is that the piecewise function profile would be slightly wider and the maximum

magnetization would not reach 1. The difference in maximum magnetization is named the δ.

The demagnetization field function and δ value, which were calculated by Livesey, were used to

develop the expression of demagnetization energy contribution.This produces simple functions

of out-of-plane (z) demagnetization energy per unit area and in-plane (ρ) demagnetization

energy.
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Figure 6: The Zeeman energy per unit area as a function of width and size of the skyrmion:

(a) with fixed width ∆ = 2nm, the energy decreases with the size of skyrmion R. Our results

is identical as Büttner’s result [10]; (b) with fixed size R = 20nm, the energy decreases with

the width ∆, the energy from our function is almost as same as the Büttner’s result [10].The

Zeeman energy contribution is smaller compared to other contributions. This is due to the use

of a small magnetic field B = 0.001T here.

Ez
demag = (2πt) · 1

2
µ0M

2
s

[
−2R

(
∆+

t

2

)
− 4

2
R + t

(
∆+

t

2

)
+

t
(
∆+ t

2

)2
R

(
1− 4

π2

)]
(17)

Eρ
demag = (2πt) · µ0M

2
sR∆

(
t

t+ 4∆

)
(18)

Equation (17) and (18) are significantly simpler compared to the functions given by Büttner’s

group, while the values that our functions predict are close to the results of Büttner et al..(see

Figure 7 and Figure 8)

3 Energy minimization

In order to do the minimization step, all the energies of different contributors are added together.

These are given in the summary Table 1.

The minimization step involves solving for the skyrmion size R and the variation width ∆

by differentiating the total energy E and setting the results to zero, namely

∂E(R,∆)

∂R
=

∂E(R,∆)

∂∆
= 0. (19)
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Figure 7: The demagnetization energy (z direction) per unit area as a function of width and

size of the skyrmion: (a) with fixed width ∆ = 2nm, the energy decreases with the size of

skyrmion R; (b) with fixed size R = 20nm, the energy decreases with the width ∆, both results

are very close to Büttner’s result [10].

Equation (19) was solved when the external magnetic field B = 0. It offers decent analytical

result for the width and size of a skyrmion on a thin film. The width of the skyrmion as a

function of properties of magnetic material is

∆ =
−Dπ + 3

4
µ0M

2
s t

4K + 2µM2
s t

t−πD
K

(20)

The size of the skyrmion as a function of properties of magnetic material is

R =

∣∣∣∣Dπ − 3

4
µ0M

2
s t

∣∣∣∣
√√√√√ A

2π2A

[
K + µ0M2

s t

2(t−πD
K )

]2
−

(
Dπ − 3

4
µ0M2

s t
)2 [

K + µ0M2
s t

2(t−πD
K )

] (21)

When the thickness t in Equations (20) and (21) goes to zero, i.e, when we treat the film as an

infinitely thin film, the result agrees with the analytic result from Wang et al. [14].

4 Conclusion, Discussion and Future Work

We developed an analytic solution for the size and shape of skyrmions as a function of magnetic

material properties. Our results show that the method of using piecewise function to approx-
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Table 1: Simplified energy per unit area of each contributors for minimization

Energy contributors energy per unit area

DMI EDMI

2πR
= DπR

Exchange interaction Eex

2πR
= A

[(
π2

4

)
R
∆
+ 2∆

R

]
Anisotropy Eanis

2πR
= 2R∆K

Zeeman Ezee

2πR
= BMs

[
−R2 − 4

(
1− 8

π2

)
∆2

]
Stray field / demagnetization (z)

Ez
demag

2πR
= 1

2
µ0M

2
s

(
−2R∆− 3

2
Rt+∆t

)
Stray field / demagnetization (ρ)

Eρ
demag

2πR
= µ0M

2
sR∆

(
t

4+4∆

)

imate the magnetization function is a viable way to simplify mathematical models while still

being able to accurately predict experimental results. Comparing our results in Equations (21)

and (20) to the analytical result given by Wang et al. (need reference), our result contains the

actual thickness of the film t. This is more realistic and practical than assuming the magnetic

film is vanishingly thick. As shown in Figure 9, the radius or size of the skyrmion blows up

when the film is too thick (t > 3 nm). This cannot be predicted using a theory that ignores

the film’s thickness.

Another interesting results by looking into the DMI energy and how it has effect on the size

and width of the skyrmion. (see Figure 10) As theoretically predicted, DMI strength is one of

the most important energy contribution which plays a major role in stabilizing skyrmions in a

thin film. However, when the force of DMI too strong, skyrmions also could not exist on the

think film.

Although the analytical result does not involve Zeeman energy contribution, Zeeman energy

contribution (see Figure 6) relatively small compared to other energy contribution. Therefore,

a small external magnetic field would have a big impact on our analytical result.

For the future work, we would like to compare our result for R and ∆ with the result from

minimizing the total energy given by Büttner et al.. Their functions can not by minimized

analytically but only numerically. To minimizing their function requires further work on nu-

merically analysis process. However, their result would be a good bench mark for the accuracy

of our analytical result and theory.
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Figure 8: The demagnetization energy (ρ direction) per unit area as a function of width and

size of the skyrmion: (a) with fixed width ∆ = 2nm, the energy decreases with the size of

skyrmion R; (b) with fixed size R = 20nm, the energy decreases with the width ∆, both results

are very close to Büttner’s result [10].

Figure 9: Size of skyrmion as a function of the magnetic film thickness: there is a limitation of

thickness for skyrmions to exist in a think film.
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Figure 10: Size of skyrmion as a function of DMI strength: it proves that DMI stabilized the

skyrmion, but skyrmions also could not form when DMI energy is too big.
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