
Data Assimilation for

Korteweg-De Vries Equations

Michael D. Kaminski
Supervised by Dr. Andrew Zammit-Mangion

University of Wollongong

Vacation Research Scholarships are funded jointly by the Department of Education

and the Australian Mathematical Sciences Institute.

Contents

1 Introduction 2

1.1 Statement of Authorship . 3

2 The Korteweg-De Vries Equation 3

2.1 Density Stratification . 3

2.2 Simulation of the KdV . 4

3 Data Assimilation 5

3.1 Sequential Inference . 5

3.2 Filtering . 6

3.3 Kalman Filter . 7

3.4 Ensemble Kalman Filter . 8

4 A Linear Gaussian Toy Example 9

4.1 Accuracy of Filtering Estimates . 9

5 Inference for a KdV with Known Parameters 11

5.1 Incorporating Spatial Correlations . 11

5.2 Evaluation of EnKF Fit . 12

5.3 Importance of Data Assimilation . 15

6 Conclusion 17

A Python Code for the Toy Example 19

B Python Code for KdV and EnKF Implementation 22

1

Abstract

Data assimilation (DA) methods combine prior knowledge with observational data, in order to
obtain more representative estimates of the true state of a system. This project focuses on two
inferential sequential algorithms, through which DA is implemented: the Kalman filter (KF), and
the ensemble Kalman filter (EnKF). These algorithms implement DA through a Bayesian update
at each iteration, which incorporates data into the procured estimates. The main application of
interest is DA for Korteweg-De Vries (KdV) equations, which model the behaviour of internal
waves in shallow bodies of water. Necessary background theory underlying KdV equations
and DA is discussed. A toy example is then constructed, in which both the KF and EnKF
are implemented. The performance of the EnKF is benchmarked against the circumstantially
optimal KF, from which it is determined that the EnKF is implemented correctly. Subsequently,
the EnKF is implemented on simulated KdV data with known parameters, in order to estimate
the underlying true process. The implemented EnKF is found to fit the simulated data well,
providing reasonable estimates even when the measurements are sparse in space and time.

1 Introduction

In statistics, Bayesian inference is analogous to the scientific method: one holds a prior belief (or
hypothesis), gathers observations, and alters the held belief in accordance with inferences made
on the data. This system of inference, therefore, provides an ideal framework for combining
scientific knowledge with data, which constitutes the modus operandi of data assimilation (DA).
By combining information in this manner, DA methods make inferences on the underlying
process responsible for generating the observed data (Wikle & Berliner 2007). This project
investigates certain inferential sequential algorithms, falling under the umbrella of DA, which
involve propagating an algorithm forward through time to estimate the underlying process.
In particular, the two algorithms the project focuses on are the Kalman filter (KF), and the
ensemble Kalman filter (EnKF). Both of these algorithms implement DA through a Bayesian
update, which is performed at regular time intervals (Katzfuss et al. 2016).

Korteweg-De Vries (KdV) equations model the behaviour of internal waves in the ocean,
under the key assumption that the body of water is relatively shallow. The KdV model changes
form to account for varying physical processes and contexts, such as variable topography of
the seabed. These changes are quantified by alterations to the model parameters, and the
incorporation of additional terms into the equation (Holloway et al. 1997, Grimshaw et al.
2004). The main application of interest for this project involves estimating the true process of
a simulated KdV, with known model parameters. Future work on this project will investigate
parameter estimation, for KdV models with unknown parameters.

Section 2 introduces the necessary background theory for KdV equations, along with the-
oretical details pertaining to physical features of the ocean, and also provides an overview of
how the KdV equations were discretised for implementation in Python. Section 3 provides the
necessary background for data assimilation procedures, with thorough explanations given of
the workings of both the KF and the EnKF. After having established the underlying theory,
Section 4 introduces a toy example utilised for evaluating the efficacy of a Python-implemented
EnKF. The toy example consists of a model for which the KF operates optimally; this enables
the usage of the KF as a benchmark, against which the performance of the EnKF can be com-
pared. After confirming that the EnKF is correctly implemented, it is modified in Section 5

2

for usage on a KdV model with known parameters, in order to estimate the true underlying
KdV-governed process. By comparing the EnKF estimates with those given by a data-blind
algorithm, where DA is not used to adjust the state trajectories, the importance of the Bayesian
update in the EnKF is clearly illustrated.

1.1 Statement of Authorship

The project was formulated by Andrew Zammit-Mangion together with collaborators at the
University of Western Australia (Matt Rayson and Nicole Jones). Code to run the KdV equa-
tions was provided by Matt Rayson. Andrew Zammit-Mangion, Nicole Jones, and Matt Rayson
supervised Michael Kaminski. Code implementing the KF and EnKF on a toy example was
written by Michael Kaminski (c.f. Appendix A). Moreover, EnKF implementation on the KdV
simulations was carried out by Michael Kaminski (c.f. Appendix B), along with interpretation
of the resulting output.

2 The Korteweg-De Vries Equation

The Korteweg-De Vries equation, or KdV equation for short, is well-known as an appropriate
physical model for describing the behaviour of internal waves in relatively shallow bodies of
water (Holloway et al. 1997). The defining characteristic of internal waves is that their largest
vertical amplitudes occur in the interior of the fluid (Gerkema & Zimmerman 2008). The
constant-coefficients KdV equation is given by

∂tη(x, t) + c∂xη(x, t) + αη(x, t)∂xη(x, t) + β∂3xη(x, t) = 0 (1)

where η(x, t) is the vertical displacement of the internal wave, x is the horizontal coordinate,
and t is time. Furthermore, α, β, and c are the nonlinearity, dispersion, and wave propagation
speed (or phase speed) parameters, with units respectively given by s−1, m3 s−1, and m s−1.
A key underlying assumption of the KdV model is that the solutions are long waves, relative
to depth; namely, that H/λ and a/H are small, where H is the local water depth, λ is a
representative wavelength, and a is a representative wave amplitude (Holloway et al. 1997).

The constant-coefficients form (1) has limited real-world applicability, since it assumes a flat
ocean bed. Variable topography of the ocean floor is incorporated by permitting the parameters
α and β to vary horizontally as functions of x, and adding another term:

∂tη(x, t) + c∂xη(x, t) + α(x)η(x, t)∂xη(x, t) + β(x)∂3xη(x, t) +
c

2Q(x)

dQ(x)

dx
η(x, t) = 0. (2)

The function Q represents the amplification factor due to a horizontally-variable ocean floor
depth, oceanic density stratification, and current (Grimshaw et al. 2004). Various other versions
of the KdV equation also exist, which account for additional physical processes (Rayson 2021).

2.1 Density Stratification

The ocean water density is derived from temperature, salinity, and pressure variables; for a
particular water column, it can be measured at discrete depths from either a vertical mooring

3

or profiling instrument (Manderson et al. 2019). The density field may be regarded as the sum
of a mean (background) density ρ̄(z) at a particular vertical coordinate z, together with the
fluctuation ρ′(x, z, t) about this mean (Phillips 1966). Using the time series of density readings
ρ̃(z, t) obtained through the measurement apparatus installed at a particular water column, a
filtering operation can be applied to extract the estimated background density from the raw
data. It is the background density that is the dynamically significant quantity of interest for
most analyses.

In low and midlatitudes (i.e. excluding polar regions), the vertical density structure typically
consists of a surface mixed layer, a sharp gradient region referred to as the pycnocline where the
density changes most rapidly, followed by a weaker gradient region beneath, where the density
increases at an exponentially lower rate. An exception to this general picture are density
stratifications consisting of double pycnoclines, most often found in subtropical regions. The
double hyperbolic tangent (DHT) function has been implemented to reconstruct the vertical
structure of the background density profile ρ̄(z) in the upper ocean from observational mooring
data, and it is flexible enough to model density structures with one or two pycnoclines. The
DHT function is therefore suitable in low and midlatitudes, but only for depths less than 500
metres. It has the form

ρ(z) = β0 − β1
[
tanh

(
z + β2
β3

)
+ tanh

(
z + β4
β5

)]
(3)

where: β0 (kg m−3) is the approximate average density across the profile; β1 (kg m−3) is a scale
for the density difference across the water column; β2 and β4 (m) are the respective middepths
of the upper and lower pycnoclines; and β3 and β5 (m) are the respective widths of the upper
and lower pycnoclines. (Manderson et al. 2019).

2.2 Simulation of the KdV

The KdV was simulated in Python, using code kindly provided by Matt Rayson from the Oceans
Institute at the University of Western Australia. A discretisation of the KdV was implemented
using an IMEX numerical discretisation scheme elucidated by Rayson (2021). The simulation
was initialised using a background density profile, which was in turn created by specifying the
parameter values for an implemented DHT function.

The units of space (distance and amplitude) were metres, while the units of time were
seconds. The horizontal spatial domain consisting of coordinates x ∈ [0, 100000) was discretised
to consist of 2000 fixed points spaced by 50 metres. The temporal domain consisting of temporal
points t ∈ [0, 86400] was discretised, so that successive time points were separated by 15 seconds.
The final time T = 86400 s is equivalent to 24 hours. The vertical spatial domain, spanning
from the ocean bed z = −350 m to the surface z = 0 m, was discretised to consist of 50 fixed
points spaced by 7 m.

A sinusoidal disturbance was utilised as the boundary condition at the left-hand extremity
of the spatial domain (x = 0 m), in order to model an internal tide coming in from the left of the
domain. The sinusoid had the form a0 sin(ωt), with an angular frequency of ω = 2π

12×3600 rad s−1

and an amplitude of a0 = 20 m. The KdV implementation was capable of simulating both flat-
bed and idealised variable-topography scenarios. However, only the flat-bed case corresponding
to the constant-coefficients KdV (1) was considered, with a depth of H = 350 m.

4

3 Data Assimilation

Data assimilation (DA) involves combining observations with prior knowledge in order to obtain
an estimate of the true state of a system and the associated uncertainty of that estimate
(Katzfuss et al. 2016). The implementation of DA thus requires a statistical model for the
observations (the data or measurement model), and an a priori statistical model for the state
process (the state or process model). The paradigm of Bayesian statistics provides a coherent
probabilistic approach for combining information, and it therefore provides an appropriate
framework for data assimilation (Wikle & Berliner 2007).

Bayesian statistical inference consists of three steps. Firstly, one formulates a full proba-
bility model; the joint distribution of all observable and unobservable components of interest,
including the data, process, and parameters. The next step involves obtaining the posterior
distribution: the conditional distribution of the unobservable quantities of interest, given the
observed data. Formally, this is accomplished by the application of Bayes’ Theorem. Finally,
one should evaluate the fit of the model, and its ability to adequately characterise the process
of interest. In contrast to the posterior distribution, the prior distribution is the unconditional
distribution of the unobservable quantities of interest. The prior quantifies a priori theoretical
knowledge, while the posterior represents the update of the prior knowledge after taking the
actual observations into account. Therefore, the Bayesian approach is analogous to the scien-
tific method: one holds a prior belief, collects data, and then updates that belief given the new
data (Wikle & Berliner 2007).

3.1 Sequential Inference

With subscripts denoting time, let Y1:t := {Y1, . . . ,Yt} denote the observational data process
consisting of temporally-indexed observation vectors, and let X0:t := {X0, . . . ,Xt} denote the
state process consisting of temporally-indexed state vectors. Furthermore, let y1:t and x0:t de-
note the corresponding non-random realisations. Then, applying Bayes’ Theorem, the posterior
distribution of the states conditional on the observed data is given by

p(x0:t|y1:t) ∝ p(y1:t|x0:t)p(x0:t), (4)

where p(x0:t) represents the prior knowledge of the state process, and p(y1:t|x0:t) represents the
data or measurement distribution. Generally, the state process is assumed to be Markovian, so
that the state at time t, when conditioned on all previous states, only depends on the state at
time t− 1. Mathematically, the Markov assumption for the prior can be expressed as

p(x0:T) = p(x0)
T∏
t=1

p(xt|xt−1), (5)

where p(xt|xt−1) is the evolution distribution, p(x0) is the distribution for the initial state, and
T indicates the length of the analysis time period of interest.

An additional important assumption is that the observations are conditionally independent

5

of one another, given the true state, which is to say that

p(y1:T |x0:T) =
T∏
t=1

p(yt|xt). (6)

The Markovian assumption (5) and the conditional independence assumption (6) jointly permit
one to reformulate (4) as

p(x0:T |y1:T) ∝ p(x0)
T∏
t=1

p(yt|xt)p(xt|xt−1).

This form illustrates the quintessence of sequential updating procedures: as new data become
available, one can update the previous optimal estimate of the state process, without needing
to start calculations from scratch (Wikle & Berliner 2007).

3.2 Filtering

Sequential procedures referred to as filtering procedures involve two steps at each time point
t, assuming the availability of the analysis distribution (or filtering distribution) at time t− 1,
given by p(xt−1|y1:t−1). Firstly, the preceding analysis distribution at time t − 1 is used to
find the forecast distribution at time t, given by p(xt|y1:t−1). Then, a Bayesian update is
performed to obtain the analysis distribution at time t, given by p(xt|y1:t). Leveraging the
Markov assumption, the forecast distribution is given by

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

whence the analysis distribution is obtained using Bayes’ rule:

p(xt|y1:t) = p(xt|yt,y1:t−1) ∝ p(yt|xt,y1:t−1)p(xt|y1:t−1) = p(yt|xt)p(xt|y1:t−1).

By iterating between these two steps as new data becomes available, the forecast and analysis
distributions can be obtained for each time step (Wikle & Berliner 2007). In practice, the first
step of each filtering iteration is termed the forecast step, while the second step is termed the
update step.

The goal of filtering is to obtain the analysis distribution of the state at each time point,
since the analysis distribution at time t is equivalent to the posterior distribution of xt (the
state) given y1:t (the up-to-date data at time t). In particular, the forecast distributions quantify
prior knowledge known about the state based on all previous observations, whereas the analysis
distributions represent the updated knowledge obtained after taking the relevant up-to-date
observational data into account (Katzfuss et al. 2016).

6

3.3 Kalman Filter

Assume a linear Gaussian state-space model (having linear model operators and Gaussian error
distributions) of the form

yt = Htxt + vt, vt ∼ Nmt(0,Rt), (7)

xt = Mtxt−1 + wt, wt ∼ Nn(0,Qt), (8)

for t = 1, . . . , T , where yt is the observed mt-dimensional observation vector at time t, xt is
the n-dimensional unobserved state vector of interest. Moreover, the observation error vt and
innovation/evolution error wt are mutually and serially independent. Equations (7) and (8) are
respectively the observation model and process (or evolution) model. The observation matrix
Ht relates the states to the observations by mapping the state vectors to the observation space,
and the evolution matrix Mt relates each state iteration to its predecessor, thus determining
how the state evolves over time.

Filtering for the state-space model (7)–(8) can be undertaken with a Kalman filter (KF)
(Katzfuss et al. 2016), which is in fact optimal for sequential updating in linear Gaussian
models (Wikle & Berliner 2007). An iteration of the KF at time t initiates by assuming that
the analysis distribution at the previous time t− 1 is given by

xt−1|y1:t−1 ∼ Nn(µ̂t−1, Σ̂t−1). (9)

Then, utilising the process model (8), the forecast step computes the forecast distribution at
time t as

xt|y1:t−1 ∼ Nn(µ̃t, Σ̃t) (10)

where µ̃t = Mtµ̂t−1 and Σ̃t = MtΣ̂t−1M
′
t+Qt. The update step proceeds expectedly, modifying

the forecast distribution using the new data yt. Exploiting Gaussianity, the update equations
– with derivation omitted – are given by

µ̂t = µ̃t + Kt(yt −Htµ̃t), (11)

Σ̂t = (In −KtHt)Σ̃t, (12)

where In is the n × n identity matrix, and Kt = Σ̃H′t(HtΣ̃tH
′
t + Rt)

−1 is referred to as the
Kalman gain matrix, of dimension n×mt.

In summary, the KF provides the exact analysis distribution for linear Gaussian state-space
models such as (7)–(8) at each time step, and can therefore be utilised as a benchmark for
comparing with other sequential filtering algorithms on linear Gaussian models. However, if
the observation or state vectors are large, computations of the covariance matrices and the
matrix inversion in the Kalman gain formula become extremely expensive, necessitating ap-
proximations (Katzfuss et al. 2016). Furthermore, within the filtering framework, the forecast
and analysis distributions cannot be obtained explicitly for non-Gaussian models and/or non-
linear dynamic operators, thus limiting the scope of application for the Kalman filter (Wikle &
Berliner 2007).

7

3.4 Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) is essentially an approximate version of the KF, in which
the state distribution is represented by an ensemble: a random sample which is propagated for-
ward through time and updated when new data become available. The ensemble representation
is a type of dimension reduction, greatly reducing computational demands for high-dimensional
systems. An iteration of the EnKF at time t begins by assuming the availability of an ensemble
x̂
(1)
t−1, . . . , x̂

(N)
t−1 sampled randomly from the analysis distribution (9) at time t − 1. In the case

of a state-space model having the form (7)–(8), the EnKF forecast step obtains a sample from
the forecast distribution (10) at time t by applying the evolution equation (8) to each ensemble
member:

x̃
(i)
t = Mtx̂

(i)
t−1 + w

(i)
t , w

(i)
t ∼ Nn(0,Qt) (13)

for i = 1, . . . , N (Katzfuss et al. 2016). However, unlike the KF, the EnKF can also be applied
for process models with nonlinear evolution operators, of the form

xt =M(xt−1) + wt, wt ∼ Nn(0,Qt), (14)

where M(·) is the model evolution. In the case of a nonlinear process model (14), the matrix
Mt in the forecast equation (13) would be substituted with the nonlinear operator M(·) to
obtain the forecast ensemble (Wikle & Berliner 2007).

Considering again a linear Gaussian state-space model (7)–(8), for the forecast ensemble

(13), it holds that x̃
(i)
t ∼ Nn(µ̃t, Σ̃t), and so each forecast ensemble member follows the KF

forecast distribution. The process of updating the forecast ensemble based on new data can
be carried out either stochastically or deterministically; this report will only investigate the
stochastic variant of the EnKF, which employs the stochastic update. Conditional simulation
from the state analysis distribution utilises the forecast ensemble (13), together with a set of

simulated observations ỹ
(1)
t , . . . , ỹ

(N)
t from the observation forecast distribution. The simulated

observations are computed as ỹ
(i)
t = Htx̃

(i)
t + v

(i)
t where v

(i)
t ∼ Nmt(0,Rt). The forecast

ensemble is shifted based on the difference between the simulated and actual observations:

x̂
(i)
t = x̃

(i)
t + Kt(yt − ỹ

(i)
t)

for i = 1, . . . , N . It now holds that x̂
(i)
t ∼ Nn(µ̂t, Σ̂t), and so each analysis ensemble member

follows the KF analysis distribution (Katzfuss et al. 2016). On the other hand, when the
process model is nonlinear, the foregoing distributional results do not hold. In fact, for a
nonlinear model evolution M(·), the forecast distribution at time t cannot be Gaussian if the
analysis distribution at time t − 1 is Gaussian. Consequently, Gaussianity cannot hold for all
time, causing the EnKF to yield biased samples and estimates (Wikle & Berliner 2007).

Conditional simulation therefore provides a means of updating the forecast ensemble to
obtain an analysis ensemble, which is itself an exact sample from the analysis distribution
when a linear Gaussian model is being considered. However, this requires computation of the
Kalman gain, which in turn demands computation of the n× n forecast covariance matrix Σ̃t.
Since the calculation of this covariance matrix could potentially be very demanding, the update
step of the EnKF approximates conditional simulation rather than directly implementing it, by
substituting the Kalman gain with an estimate based on the forecast ensemble. Generally, the

8

estimated Kalman gain has the form

K̂t = CtH
′
t(HtCtH

′
t + Rt)

−1

where Ct is an estimate of Σ̃t, which can most simply be set equal to the sample covariance
matrix of the forecast ensemble. In summary, the EnKF only requires storing and operating
on N vectors (ensemble members) of length n, and the estimated Kalman gain can often be
calculated rapidly. As N →∞, the EnKF converges to the KF for linear Gaussian models, but
large values of N are usually infeasible in practice due to computational limitations (Katzfuss
et al. 2016).

4 A Linear Gaussian Toy Example

As alluded to in Section 3.3, the standard Kalman filter is optimal for linear Gaussian state-
space models, yielding exact analysis distributions at each iteration (Katzfuss et al. 2016).
This allows one to use the KF as a benchmark for comparing performance with other filtering
procedures, given a linear Gaussian model. In this Section, a linear Gaussian toy example will
be used for the purpose of (i) implementing the EnKF on a simple example prior to its usage
on a more complex KdV model, and (ii) comparing the performance of the EnKF with the KF
benchmark to determine whether it has been implemented correctly.

The state-space model we consider has the form (7)–(8), with mt = n = 2, and the observa-
tion matrix and covariance matrices set equal to the 2×2 identity matrix I2. Two formulations
of the evolution matrix Mt = M (constant in time) were tested, consisting of one diagonal ma-
trix, and another non-diagonal matrix purposed to introduce correlations into the state process.
Denoting the state vectors as zt, the resulting state-space model is given by

yt = zt + vt, vt ∼ N2(0, I2), (15)

zt = Mzt−1 + wt, wt ∼ N2(0, I2). (16)

The uncorrelated and correlated renditions of M correspondingly had the forms[
0.5 0
0 0.2

]
and

[
0.5 −0.1
0.1 0.2

]
with eigenvalues of precisely 0.5 and 0.2 for the uncorrelated version, and 0.46 and 0.24 for the
correlated version, to two decimal places. As a general rule for the linear evolution equation,
if any of the eigenvalues have a modulus of at least unity, then the process model is unstable,
and the state vectors will grow without bound as time increases (Wikle et al. 2019). Since the
foregoing eigenvalues all have modulus less than one, both of the considered evolution matrices
result in (16) being a stable process model.

4.1 Accuracy of Filtering Estimates

Let zt, yt, zKF,t, and zEnKF,t respectively denote the values of the true process, observations, KF
estimates, and EnKF estimates at time t. For the estimates and observations, the cumulative

9

Figure 1: Plots of R1(·) (red), R2(·) (blue), and R3(·) (green) against time

errors at time t∗ are given by

R1(t
∗) =

t∗∑
t=1

‖zKF,t − zt‖2, R2(t
∗) =

t∗∑
t=1

‖zEnKF,t − zt‖2, R3(t
∗) =

t∗∑
t=1

‖yt − zt‖2,

where ‖ · ‖2 denotes the L2-norm. The sums R1(·), R2(·), and R3(·) correspondingly denote the
cumulative errors for the KF, EnKF, and observations. These cumulative errors were plotted
against time, with separate plots being generated for different EnKF ensemble sizes N . The
goals of this plotting procedure were to: (i) confirm that the KF and EnKF (for reasonable
choices of N) came closer to the true process than the noisy observations; (ii) assess the accuracy
of the EnKF for various N relative to the KF benchmark; (iii) determine whether the plots
were supportive of the EnKF converging towards the KF as N increased.

The panels in Figure 1 show the cumulative errors of the EnKF estimates for ensemble
sizes N = 5, N = 10, N = 30, and N = 1000, together with those of the KF estimates and
observations. The horizontal axes correspond to time, while the vertical axes correspond to
the cumulative error. The process model corresponding to these plots utilised the correlated
evolution matrix considered earlier; usage of the uncorrelated matrix generated similar output,
with no discernable major differences. Firstly, the KF and EnKF both attain a lower cumu-
lative error over time, compared with the observations. Moreover, the EnKF tends to attain
intermediate accuracy between the KF estimate and the observations, with a lower error for
larger ensembles. For the simulated ensemble with size N = 1000, the EnKF appears to attain
a nearly identical cumulative error to the KF, which is indicative of the desired convergence
quality. Based on these results, the EnKF appears to have been implemented correctly for the
state-space model (15)–(16).

10

5 Inference for a KdV with Known Parameters

Retaining Gaussian error distributions, the EnKF employed for the linear Gaussian state-space
model (15)–(16) was modified for application on the KdV. This was achieved by modifying the
forecast step of the algorithm to account for a nonlinear evolution operatorM(·) (unavailable in
closed form), which modeled the temporal evolution of the KdV. All points within the horizontal
spatial domain of the discretised KdV (cf. Section 2.2) were utilised as the spatial points
corresponding to the state process, resulting in state vectors of 2000 entries. In addition, 20
equally-spaced points nested within this domain were utilised as the spatial points corresponding
to the observations, resulting in data vectors of 20 entries, and a 20×2000 constant observation
matrix H mapping the state vectors to the observation space.

The resulting state-space model has the form

yt = Hxt + vt, vt ∼ N20(0,R), (17)

xt =M(xt−1) + wt, wt ∼ N2000(0,Q), (18)

with observation and evolution covariance matrices R ∈ M20(R) and Q ∈ M2000(R), both
positive definite and constant in time. The state vectors xt represent the true amplitude of the
internal wave at time t, across all 2000 spatial points, whereas the data vectors yt represent
the observed amplitude of the wave at time t, at the 20 horizontal distances corresponding
to the locations of the data-gathering sensors. It should also be noted that whereas the KdV
implementation had a temporal resolution of 15 seconds, the time steps of the state-space model
(between t and t+ 1) were 10 minutes (600 seconds) long.

5.1 Incorporating Spatial Correlations

The observation covariance matrix R = σ2
vI20 for appropriate σv ∈ R+ was formulated with

the realistic assumption that the individual sensors gathering observational data operated in
such a manner that the observational errors were mutually independent in space. The evolution
covariance matrix Q was formulated to allow for spatial correlations, since any error in the state
evolution equation (18) would likely be spatially correlated. This was achieved by constructing
a distance matrix, and then applying a Matérn covariance function (Rasmussen & Williams
2006) to the entries of said matrix.

The 2000× 2000 distance matrix D has the form

D =

0 50 · · · 99900 99950

50 0
. 99900

...
.

...

99900
. 0 50

99950 99900 · · · 50 0

with entries representing spatial distances spaced by 50 metres, and zeros along the main
diagonal. For an input distance d, non-negative integral parameter p (yielding positive ν =

11

p+ 1/2), and positive parameter l, the Matérn covariance function can be written as

kν=p+1/2(d) = exp

(
−
√

2νd

l

)
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νd

l

)p−i

. (19)

Specifying p = 0 yields the simplest form of (19):

k1/2(d) = exp

(
−d
l

)
. (20)

A value of l equal to one third of the spatial domain length has been used in practice, and
parameter values of p = 1 and p = 2 have been suggested to yield forms of (19) which are
of interest in many applications (Rasmussen & Williams 2006). Trial and error has however
indicated that, for inference on the KdV, p = 2 and p = 1 both yield less desireable outcomes
compared to p = 0, due to either generating less realistic waves, or causing algorithmic errors.

Thus, the Matérn covariance function in (20) with l = 99950/3 (one third of the spatial
domain length) was applied to each entry of the distance matrix D, with the resulting matrix
denoted by k1/2(D). All entries of k1/2(D) were then multiplied by σ2

w for appropriate σw ∈ R+,
in order to obtain the desired covariance matrix Q = σ2

wk1/2(D) for the process model (18).
Over the course of experimenting with various standard deviation values for the innovation and
observation errors, the choices of σv = 0.1 and σw = 0.125 were found to yield desireable results,
for the sake of demonstrating inference with the EnKF. Furthermore, the EnKF was initialised
with an ensemble randomly sampled from N2000(0,Q), i.e. the error distribution of the process
model (18). This was found to yield an initial ensemble which: (i) had an appropriate spread;
(ii) incorporated spatial correlations into the time-zero wave; and (iii) had zero mean to account
for the form of the wave prior to the influence of the sinusoidal boundary condition.

5.2 Evaluation of EnKF Fit

A noisy KdV-governed process was generated, together with synthetic observations, in accor-
dance with the state-space model (17)–(18), using the aforementioned parameter values. In
addition, the covariance matrix Q was constructed utilising the procedure outlined above, in
Section 5.1. The terminal time value, for both the simulation and EnKF implementation, was
T = 86400 seconds (24 hours), thus illustrating the evolution of the internal wave over the
course of a single day. Briefly reiterating details from Section 2.2 for convenience, the wave
propagated rightwards from the sinusoidal boundary condition a0 sin(ωt) at the left extremity,
over a horizontal distance of 100000 metres, within a 350-metre deep flat-bottomed ocean. As
a result, the governing KdV equation had the constant-coefficients form (1).

The initialising background density profile was formulated with the DHT parametric model
(3), having parameter values of β0 = 1023.9, β1 = 0.91, β2 = 30, β3 = 40, β4 = 117, and β5 = 52.
These values were selected on the basis that they resembled parameter values estimated by
Manderson et al. (2019), in the context of relatively shallow-water conditions (250-metre depth).
The resulting KdV equation governing the internal wave dynamics had coefficient values of
α = −0.009062 s−1 for the nonlinearity parameter, β = 5965.233891 m3s−1 for the dispersion
parameter, and c = 1.115722 ms−1 for the phase speed (or wave propagation speed). The

12

Figure 2: Final-time vertical displacements of the true process, EnKF estimates, and observa-
tions over distance

governing KdV model can be written as

∂tη + 1.115772∂xη − 0.009062η∂xη + 5965.233891∂3xη = 0. (21)

An EnKF with N = 30 ensemble members was implemented on the simulated data, with
both forecast and analysis estimates at each time point being recorded. To elaborate, the
forecast estimates were those given by the EnKF forecast step at each iteration, while the
analysis estimates were those given by the EnKF analysis step at each iteration. The forecast
estimates were therefore impacted by the Bayesian updates performed at all preceding temporal
points, and so the accuracy of both the forecast and analysis estimates was regulated by the
incorporation of observational data.

Figure 2 illustrates the process of interest, together with the estimates and observations,
as functions of the horizontal distance x at the terminal time t = T . Lightly shaded regions –
henceforth referred to as uncertainty bands – around the forecast/analysis estimates illustrate
the uncertainty of the estimates, with the upper and lower bounds indicating a spread of ±2
standard deviations. Uncertainty bands are displayed for the forecast and analysis estimates,
shown in the same colours as the respective estimates. The plot is indicative of an overall
fair fit for both the forecast and analysis estimates. At most distances, the analysis estimates
do not display clearly superior accuracy to the forecast estimates, although improvements in
accuracy are observable at spatial points near the synthetic observations. Furthermore, the
analysis estimates were noticeably more precise than the forecasts, with thinner uncertainty
bands at all distances.

The top pane of Figure 3 corresponds to the state evolution at the horizontal coordinate
x = 20000 m, where synthetic observational data was gathered; the bottom pane corresponds

13

Figure 3: Vertical displacements of the true process, EnKF estimates, and observations over
time

Figure 4: A close-up of the top pane in Figure 3 for the first 40000 seconds

14

to x = 37500 m, where no observations were gathered. Despite the absence of observational
data at the latter coordinate, the EnKF forecast and analysis estimates both held up very well;
the analysis estimates were noticeably less uncertain, but only mildly more accurate relative
to the forecasts. The analysis estimates in the top pane appear to adhere more closely with
the true process, relative to those in the bottom pane. Since DA was only performed at the 20
spatial points where observations were present, this illustrates that: (i) the enhancing effects of
DA extended well beyond those 20 spatial points, in fact impacting the entire spatio-temporal
domain; and (ii) DA was most effective at locations where data was present. The close-up in
Figure 4 focuses on the first 40000 seconds of the state evolution at x = 20000 m, corresponding
to the top pane of Figure 3. This close-up clarifies the enhancing effect of the updates on the
precision and accuracy of the obtained state estimates, as can be seen by comparing the analysis
and forecast estimates.

5.3 Importance of Data Assimilation

The foregoing plots incorporated forecast estimates, which estimated the true process only using
observational data for all preceding time points. However, since the forecasts were cumulatively
affected by the Bayesian updates iteratively performed in the EnKF, they do not represent
estimates made without taking observations into account. By editing the update step out of
the implemented EnKF in Python, and re-running the code, a data-blind algorithm was formed
which only performed the EnKF forecast step at each iteration, without ever performing the
update step. In other words, the data-blind algorithm never performed DA, only utilising the
evolution model (18) to propagate the ensemble at each time step.

Figure 5 displays the data-blind estimates (labeled as the initial forecast), together with

Figure 5: Final-time vertical displacements of the true process, data-blind estimates (initial
forecast), and observations over distance

15

Figure 6: Vertical displacements of the true process, data-blind estimates (initial forecast), and
observations over time

the observations and process of interest, as a function of x at the terminal time t = T . The
true process appears nearly identical to that in Figure 2, due to the deterministic nature of
the M(·) evolution operator. The most visible difference between the data-blind estimates,
and the earlier forecast/analysis estimates, is that the uncertainty bands have significantly
greater spread. This indicates that the data-blind estimates had far higher uncertainty than the
forecast/analysis estimates of the EnKF. Furthermore, in the horizontal region approximately
between x = 60000 m and x = 73000 m, the oscillating feature of the internal wave was captured
very poorly by the data-blind estimates, relative to those of the EnKF. The uncertainty of the
data-blind estimates also greatly intensified throughout the oscillating feature, unlike the EnKF
estimates.

The time series plots in Figure 6 illustrate the state evolution together with the data-
blind estimates (labeled as the initial forecast), with the panes corresponding to the same
x-coordinates as the time series plots in Figure 3. While observations are also displayed in the
top pane, they obviously had no impact on the data-blind estimates. Relative to the EnKF
estimates, it appears that the data-blind estimates were substantially less accurate and more
uncertain. While the data-blind estimates followed the same overall trend as the true process,
as a consequence of utilising the same evolution model, it failed to capture the stochastic
variations in the true process, which were generated by the innovation error added at each
time step. The plots in Figure 6 also suggest that the uncertainty of the data-blind estimates
increased with time.

In summary, the data-blind algorithm resulted in (i) extremely high-variance estimates,
which (ii) failed to capture the stochastic variations of the true process, and (iii) poorly repli-
cated the oscillations generated by the KdV implementation, despite utilising the deterministic
KdV model evolution M(·). The EnKF analysis estimates investigated earlier usually did not

16

bring significant improvements over the EnKF forecasts, indicating that – at each iteration
– the updates had a minor enhancing impact on performance. However, by comparing the
EnKF with the data-blind algorithm, it could be clearly seen that the Bayesian updates had
a substantial cumulative impact on enhancing the state estimates obtained. Moreover, the
improvements in precision appear to be more pronounced the further in time the algorithm is
iterated, due to the observed effect of time-increasing uncertainty for the data-blind estimates.

6 Conclusion

This project primarily focused on performing data assimilation on a KdV-governed internal
wave, utilising the ensemble Kalman filter. By formulating a data-blind algorithm which only
performed the EnKF forecast step at each iteration, and comparing the data-blind estimates
with those of the EnKF, the importance of the EnKF update step was clearly illustrated. Since
the EnKF performs DA through the update step, the results therefore clearly demonstrate the
utility of DA in providing better estimates. Moreover, the foregoing EnKF implementation
utilised a constant-coefficients KdV model with known parameters. For cases in which the
parameters are unknown, parameter estimation methods must be employed, utilising likelihood
techniques. This will be investigated in future work on this project.

17

References

Gerkema, T. & Zimmerman, J. (2008), ‘An Introduction to Internal Waves’.

Grimshaw, R., Pelinovsky, E., Talipova, T. & Kurkin, A. (2004), ‘Simulation of the Transfor-
mation of Internal Solitary Waves on Oceanic Shelves’, Journal of Physical Oceanography
34(12), 2774–2791.

Holloway, P. E., Pelinovsky, E., Talipova, T. & Barnes, B. (1997), ‘A Nonlinear Model of Inter-
nal Tide Transformation on the Australian North West Shelf’, Journal of Physical Oceanog-
raphy 27(6), 871–896.

Katzfuss, M., Stroud, J. R. & Wikle, C. K. (2016), ‘Understanding the Ensemble Kalman
Filter’, The American Statistician 70(4), 350–357.

Manderson, A., Rayson, M. D., Cripps, E., Girolami, M. A., Gosling, J. P., Hodkiewicz, M. R.,
Ivey, G. N. & Jones, N. L. (2019), ‘Uncertainty Quantification of Density and Stratification
Estimates with Implications for Predicting Ocean Dynamics’, Journal of Atmospheric and
Oceanic Technology 36(7), 1313–1330.

Phillips, O. M. (1966), The Dynamics of the Upper Ocean, Cambridge University Press, Bentley
House, 200 Euston Road, London, p. 17.

Rasmussen, C. E. & Williams, C. K. I. (2006), Gaussian Processes for Machine Learning, Adap-
tive Computation and Machine Learning, The MIT Press, 55 Hayward Street, Cambridge,
Massachusetts, pp. 85–86.

Rayson, M. D. (2021), Numerical Discretisation of the Variable-Coefficient Korteweg Equation.
Preprint submitted to Ocean Modelling.

Wikle, C. K. & Berliner, L. M. (2007), ‘A Bayesian Tutorial for Data Assimilation’, Physica D:
Nonlinear Phenomena 230(1-2), 1–16.

Wikle, C. K., Zammit-Mangion, A. & Cressie, N. (2019), Spatio-Temporal Statistics with R,
CRC Press, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, Florida, pp. 215–216.

18

A Python Code for the Toy Example

"""

Code for applying the KF and EnKF to a linear Gaussian toy problem

"""

import numpy as np

import scipy.linalg as la

import matplotlib.pyplot as plt

import numpy.random as rand

plt.rcParams.update({'font.size': 14}) # Adjust font size in plots

sigma_v = 1 # Observation error std dev

sigma_w = 1 # Innovation error std dev

sigma_1 = 1 # Initial state std dev; unsuitable choice may cause burn-in

H = np.eye(2) # Observation matrix

Q = sigma_w**2 * np.eye(2) # Evolution covariance

R = sigma_v**2 * np.eye(2) # Observation covariance

P_b = sigma_1**2 * np.eye(2) # Initial covariance (P_0|0)

M = np.asarray(np.mat("0.5 -0.1; 0.1 0.2")) # Evolution matrix w/ correlation

M = np.asarray(np.mat("0.5 0; 0 0.2")) # Evolution matrix w/o correlation

Check the eigenvalues of M (must be less than one)

eigvals = la.eigvals(M)

Cholesky factors for sampling; need lower triangular factor

L_w = la.cho_factor(Q, lower=True)[0]

L_v = la.cho_factor(R, lower=True)[0]

L_1 = la.cho_factor(P_b, lower=True)[0]

T = 500 # Temporal horizon

lw = 1 # Line width in error plots

fig = plt.figure()

for ii in range(4):

if ii == 0:

Ne = 5

elif ii == 1:

Ne = 10

elif ii == 2:

Ne = 30

else:

Ne = 1000

########################

Generate true process

x1 = L_1 @ rand.normal(size=2) # Initial value

x_true = []

x_true.append(x1)

for t in range(T-1):

19

x_true.append(M @ x_true[t] + L_w @ rand.normal(size=2)) # Evolution model

########################

Generate observations

y = []

for t in range(T):

y.append(H @ x_true[t] + L_v @ rand.normal(size=2)) # Observation model

################

Kalman filter

x_b = L_1 @ rand.normal(size=2) # Background state (x_0|0)

kf_mean = [] # Analysis mean (x_t|t)

kf_mean.append(x_b)

kf_var = [] # Analysis variance (P_t|t)

kf_var.append(P_b)

for t in range(T-1):

Forecast step

x_f = M @ kf_mean[t] # Forecast mean (x_t|t-1)

P_f = Q + M @ kf_var[t] @ M.T # Forecast variance (P_t|t-1)

Update / Analysis step

K1 = P_f @ H.T @ la.inv(H.T @ P_f @ H + R) # Kalman gain matrix

kf_mean.append(x_f + K1 @ (y[t+1] - H @ x_f)) # Analysis mean (x_t|t)

kf_var.append((np.eye(2) - K1 @ H) @ P_f) # Analysis variance (P_t|t)

#########################

Ensemble Kalman filter

ens = [] # List for the ensemble

for n in range(Ne):

ens.append(L_1 @ rand.normal(size=2)) # Generate initial ensemble

enkf_mean = [] # Analysis mean MC estimates (x_t|t)

enkf_mean.append(np.mean(ens, axis=0)) # Initial analysis mean (x_0|0)

Compute sample covariance matrix of initial ensemble

init_cov = 0

for n in range(Ne):

cov_factor = ens[n] - enkf_mean[0]

init_cov += np.outer(cov_factor, cov_factor) / (Ne - 1)

enkf_var = [] # Analysis sample covariances (P_t|t)

enkf_var.append(init_cov) # Initial analysis covariance (P_0|0)

for t in range(1, T):

20

"""

Forecast step

"""

for n in range(Ne):

ens[n] = M @ ens[n] + L_w @ rand.normal(size=2) # Forecast ensemble members

x_f = np.mean(ens, axis=0) # Forecast mean (x_t|t-1)

Compute forecast covariance (P_t|t-1)

P_f = np.zeros((2, 2))

for n in range(Ne):

cov_factor = ens[n] - x_f

P_f += np.outer(cov_factor, cov_factor) / (Ne - 1)

"""

Update / Analysis step

"""

K2 = P_f @ H.T @ la.inv(H @ P_f @ H.T + R) # Kalman gain matrix

for n in range(Ne):

ens[n] = ens[n] + K2 @ (y[t] + L_v @ rand.normal(size=2) - H @ ens[n]) # Update forecasts

x_a = np.mean(ens, axis=0) # MC analysis mean (x_t|t)

Compute analysis covariance (P_t|t)

P_a = np.zeros((2, 2))

for n in range(Ne):

cov_factor = ens[n] - x_a

P_a += np.outer(cov_factor, cov_factor) / (Ne - 1)

Store the analysis mean and covariance estimates

enkf_mean.append(x_a)

enkf_var.append(P_a)

############################

Compute cumulative errors

err = np.repeat(0, 3) # Cumulative error vector at t=T [KF ENKF OBS]

err_cumul = np.zeros((3, T)) # Cumulative error matrix

for t in range(T):

kf_err = la.norm(kf_mean[t] - x_true[t], ord=2) # KF error

enkf_err = la.norm(enkf_mean[t] - x_true[t], ord=2) # EnKF error

obs_err = la.norm(y[t] - x_true[t], ord=2) # Observation error

err[0] += kf_err # Cumulative KF error

err[1] += enkf_err # Cumulative EnKF error

err[2] += obs_err # Cumulative observation error

Store cumulative errors

err_cumul[0, t] = err[0]

err_cumul[1, t] = err[1]

err_cumul[2, t] = err[2]

##################

Plot the output

21

x = np.arange(1, T+1)

plt.subplot(2, 2, ii+1)

plt.title("N = " + str(Ne))

plt.plot(x, err_cumul[0, :], 'r-', label="KF", linewidth=lw) # First row (KF)

plt.plot(x, err_cumul[1, :], 'b-', label="EnKF", linewidth=lw) # Second row (EnKF)

plt.plot(x, err_cumul[2, :], 'g-', label="Obs", linewidth=lw) # Third row (observations)

fig.text(0.5, 0.04, 'Time (t^*)', ha='center')

fig.text(0.07, 0.5, 'Cumulative Error ($R(\cdot)$)', va='center', rotation='vertical')

plt.show()

B Python Code for KdV and EnKF Implementation

"""

Code for generating the KdV and running the EnKF for state inference

"""

import numpy as np

from iwaves.kdv.vkdv import vKdV # KdV code provided by Matt Rayson

import matplotlib.pyplot as plt

import scipy.linalg as la

import numpy.random as rand

import scipy.special as spec

IMEX options (IMEX was the discretisation method used)

imex = {

'MCN_AX2': (1 / 8., 3 / 8.),

'AM2_AX2': (1 / 2., 1 / 2.),

'AI2_AB3': (3 / 2., 5 / 6.),

'BDF2_BX2': (0., 0.),

'BDF2_BX2s': (0., 1 / 2.),

'BI2_BC3': (1 / 3., 2 / 3.),

}

imexscheme = 'AM2_AX2'

#imexscheme = 'MCN_AX2'

c_im = imex[imexscheme][0]

b_ex = imex[imexscheme][1]

DHT function to create background density profile (from Manderson et al. 2019)

def rho_double_tanh(beta, z):

return beta[0] - beta[1] * (np.tanh((z + beta[2]) / beta[3]) + np.tanh((z + beta[4]) / beta[5]))

Sinusoidal boundary condition

def bcfunc(a0,t):

T = 12*3600

omega = 2*np.pi/T

return a0*np.sin(omega*t)

################################

Inputs for the KdV Simulation

22

a0 = 20. # Amplitude of initial sinusoidal disturbance

Physical meaning of density parameters (from Manderson et al. 2019)

beta0: Approximate mean density over the profile

beta1: A scale for the density difference across the water column

beta2: Middepth of the upper pycnocline

beta3: Upper pycnocline width

beta4: Middepth of the lower pycnocline

beta5: Lower pycnocline width

avg_density = 1023.9

pyc_scale = 0.91

upper_pyc_depth = 30

upper_pyc_width = 40

lower_pyc_depth = 117

lower_pyc_width = 52

NOTE: order of beta coefficients in vector input is 0,1,4,5,2,3

rho_params = np.array([avg_density, pyc_scale, lower_pyc_depth, lower_pyc_width, upper_pyc_depth,

upper_pyc_width])

H = 350 # Oceanic depth in metres

Nz = 50 # Number of discretised vertical points

Time units are seconds

dt = 15 # 15 second time resolution

runtime = 24 * (6 * 600) # Temporal horizon of 24 hrs / 1440 min

nsteps = int(runtime//dt) # Number of 15 second steps until temporal horizon

Spatial units are metres

Nx = 2000 # Number of discretised horizontal points (dimension of state vector)

dx = 50. # 50 metre horizontal spatial resolution

L_d = Nx*dx # Length of horizontal domain

mode = 0 # Wave mode

kdvargs = dict(

N=Nx,

dx=dx,

dt=dt,

spongedist=5e3,

spongetime=60.,

Nsubset=10,

nonhydrostatic=1.,

nonlinear=1.,

c_im=c_im,

b_ex=b_ex,

)

z = np.linspace(-H, 0, Nz) # Vertical domain

x = np.arange(0, L_d, dx) # Horizontal domain

rhoz = rho_double_tanh(rho_params,z) # Background density profile, ordered from seabed to surface

h = np.repeat(H, repeats=Nx) # Flat ocean floor

23

##

Simulate the KdV to generate the true process and synthetic data

mykdv0 = vKdV(rhoz, z, h, x, mode, **kdvargs) # Variable-coefficients KdV object

x_obs = np.arange(0, int(L_d * 1), L_d//20) # Choose observation spatial points

Nx_obs = len(x_obs) # Number of entries in observation vector

Exception to enforce subset restriction

x_relcomp = np.setdiff1d(x_obs, x)

if len(x_relcomp) > 0:

raise Exception("Error: Observational spatial points must be contained in horizontal domain.")

Distance matrix (used to construct covariance matrix of state vectors)

dist_x = np.insert(arr=x, obj=0, values=np.flip(x[1:]))

dist_mx = np.zeros((Nx, Nx))

for k in range(Nx):

dist_mx[:, k] = np.flip(dist_x[k:(Nx + k)])

sigma_v = 0.1 # Observation error std dev

sigma_w = 0.1 # Innovation error std dev

sigma_1 = sigma_w # Initial state std dev

Matern covariance function (p=0 only)

def matern_p0(d, l=x[-1]/3):

return np.exp(-d / l)

Matern covariance function (general form)

def matern_cov(d, p=0, l=x[-1]/3):

nu = p + 0.5

gamma_term = spec.gamma(p + 1) / spec.gamma(2*p + 1)

sum_term = 0

for i in range(p + 1):

fact_term = spec.gamma(p + i + 1) / (spec.gamma(i + 1) * spec.gamma(p - i + 1))

power_term = (np.sqrt(8 * nu) * d / l) ** (p - i)

sum_term += fact_term * power_term

return np.exp(-d * np.sqrt(2 * nu) / l) * gamma_term * sum_term

Covariance matrices

R = sigma_v ** 2 * np.eye(Nx_obs) # Observation covariance matrix

Q = sigma_w ** 2 * matern_p0(dist_mx) # Evolution covariance matrix (incorporating spatial correlations)

P_b = Q # Background covariance matrix (initial analysis covariance P_0|0)

Cholesky factors (used for random sampling)

L_v = la.cho_factor(R, lower=True)[0]

L_w = la.cho_factor(Q, lower=True)[0]

L_1 = la.cho_factor(P_b, lower=True)[0]

Observation matrix

H = np.zeros(shape=(Nx_obs, Nx))

x_index = np.intersect1d(x, x_obs, return_indices=True)[1]

H[:, x_index] = np.eye(Nx_obs)

timestep = 10*60 # Ten minute time steps for EnKF algorithm

n_dt = timestep // dt # Number of 15 second steps in each EnKF time step

n_obs = nsteps // n_dt + 1 # Number of time steps with data present

24

Initialise solution/data matrices; rows for time points and columns for spatial points

B_true = np.zeros(shape=(n_obs, Nx)) # True solution values

B_obs = np.zeros(shape=(n_obs, Nx_obs)) # Synthetic data values

Compute KdV solution values

for ii in range(nsteps + 1):

if ii % n_dt == 0:

B_true[ii // n_dt, :] = mykdv0.B + L_w @ rand.normal(size=Nx)

B_obs[ii // n_dt, :] = H @ B_true[ii // n_dt, :] + L_v @ rand.normal(size=Nx_obs)

mykdv0.B = B_true[ii // n_dt, :] # Store values in KdV object

if mykdv0.solve_step(bc_left=bcfunc(a0, mykdv0.t)) != 0: # Advance KdV forward in time

print('Blowing up at step: %d' % ii) # Safety check

break

###

Run an EnKF to infer the true process from the simulated data

Ne = 30 # Number of ensemble members

ens = [] # List for the ensemble

for n in range(Ne):

ens.append(L_1 @ rand.normal(size=Nx)) # Generate initial ensemble (background state)

enkf_mean = [np.mean(ens, axis=0)] # Analysis mean estimates (x_t|t)

enkf_prior = [np.mean(ens, axis=0)] # Forecast mean estimates (x_t|t-1)

enkf_var = [P_b] # Analysis sample covariances (P_t|t)

enkf_varF = [P_b] # Forecast sample covariances (P_t|t)

rho_ens = np.tile(rhoz, reps=(Ne, 1)).T # Columns are density profiles for each ensemble member

B_ens = np.zeros(shape=(Ne, n_obs, Nx)) # Ensemble array for all time steps; shape = # sets/rows/columns

for n in range(Ne):

B_ens[n, 0, :] = ens[n]

mykdv = []

for n in range(Ne):

mykdv.append(vKdV(rhoz, z, h, x, mode, **kdvargs)) # Distinct KdV objects initialised identically

Function to step KdV forward by one time step (used in EnKF forecasts)

def kdv_stepper(k):

for ii in range(n_dt):

if mykdv[k].solve_step(bc_left=bcfunc(a0, mykdv[k].t)) != 0:

print('Blowing up at step: %d' % ii)

break

density = np.flip(np.mean(mykdv[k].rhoZ, axis=1))

mykdv[k].B = mykdv[k].B + L_w @ rand.normal(size=Nx)

return mykdv[k].B, density

Run the EnKF forward in time

for t in range(1, n_obs):

"""

Forecast step

"""

25

for n in range(Ne):

ens_fwd_n = kdv_stepper(n) # Forecast each ensemble member forward in time

B_ens[n, t, :] = ens_fwd_n[0] # Store ensemble forecasts

rho_ens[:, n] = ens_fwd_n[1] # Store density profiles

ens[n] = B_ens[n, t, :] # Update ensemble list with forecasts

mykdv[n].B = ens[n] # Store forecasts in associated KdV object

x_f = np.mean(ens, axis=0) # Forecast mean (x_t|t-1)

Compute forecast covariance (P_t|t-1)

P_f = np.zeros((Nx, Nx))

for n in range(Ne):

cov_factor = ens[n] - x_f

P_f += np.outer(cov_factor, cov_factor) / (Ne - 1)

"""

Update / Analysis step

"""

K2 = P_f @ H.T @ la.inv(H @ P_f @ H.T + R) # Kalman gain matrix

for n in range(Ne):

ens[n] = ens[n] + K2 @ (B_obs[t, :] + L_v @ rand.normal(size=Nx_obs) - H @ ens[n]) # Update forecasts

mykdv[n].B = ens[n] # Store updates in associated KdV object

x_a = np.mean(ens, axis=0) # MC analysis mean (x_t|t)

Compute analysis covariance (P_t|t)

P_a = np.zeros((Nx, Nx))

for n in range(Ne):

cov_factor = ens[n] - x_a

P_a += np.outer(cov_factor, cov_factor) / (Ne - 1)

Store the analysis mean and covariance estimates

enkf_mean.append(x_a)

enkf_var.append(P_a)

Store the forecast mean and covariance estimates

enkf_prior.append(x_f)

enkf_varF.append(P_f)

B_enkf = np.asmatrix(enkf_mean) # Array of EnKF analysis estimates

B_prior = np.asmatrix(enkf_prior) # Array of EnKF forecast estimates

obs_index = np.intersect1d(x, x_obs, return_indices=True)[1] # Observation indices within state vector

Examine KdV parameters

print(mykdv[0].to_Dataset().data_vars)

mykdv[0].print_params()

##################

Plot the output

plt.rcParams.update({'font.size': 14}) # Adjust font size in plots

Function to plot KdV process and estimates as function of distance

26

def plot_kdv_space(prior=False, enkf_spread=False, prior_spread=False, only_prior=False, spread=False,

legend=False):

if spread == True:

prior_spread = True

enkf_spread = True

if only_prior == True:

prior_spread = True

if prior_spread == True:

prior = True

Plot the true KdV solution against 1d space

plt.figure()

plt.plot(x, B_true[n_obs - 1], color="tab:blue", label="True")

Plot the EnKF prior estimates against 1d space

if prior == True:

if only_prior == False:

plt.plot(x, enkf_prior[n_obs - 1], linestyle=":", color="tab:green", label="Forecast")

else:

plt.plot(x, enkf_prior[n_obs - 1], linestyle="--", color="tab:green", label="Initial Forecast")

if prior_spread == True:

stdev_f = [] # List containing standard deviations for the spatial point over time

for d in range(Nx):

stdev_f.append(np.sqrt(enkf_varF[nsteps // n_dt][d, d]))

stdev_f = np.asarray(stdev_f)

mean_f = np.asarray(B_prior[nsteps // n_dt, :]).T # Require column 1d array for len() to work

mean_f = mean_f.reshape(len(mean_f))

plt.fill_between(x, mean_f - 2 * stdev_f, mean_f + 2 * stdev_f, alpha=0.3, color="tab:green")

Plot the EnKF posterior estimates against 1d space

if only_prior == False:

plt.plot(x, enkf_mean[n_obs - 1], linestyle="--", color="tab:orange", label="Analysis")

if enkf_spread == True:

stdev_a = [] # List containing standard deviations for the spatial point over time

for d in range(Nx):

stdev_a.append(np.sqrt(enkf_var[nsteps//n_dt][d, d]))

stdev_a = np.asarray(stdev_a)

mean_a = np.asarray(B_enkf[nsteps//n_dt, :]).T # Require column 1d array for len() to work

mean_a = mean_a.reshape(len(mean_a))

plt.fill_between(x, mean_a - 2 * stdev_a, mean_a + 2 * stdev_a, alpha=0.3, color="tab:orange")

Plot the synthetic observations against 1d space

plt.plot(x_obs, B_obs[n_obs - 1], linestyle="", marker="o", color="tab:red", label="Observations")

plt.xlabel("Distance (m)")

plt.ylabel("Amplitude (m)")

if legend == True:

plt.legend()

plt.show()

Function to plot KdV process and estimates as function of time

def plot_kdv_time(which_x=[0], prior=False, enkf_spread=False, prior_spread=False, only_prior=False,

spread=False, position="right", legend=False):

27

Note: which_x input must be a list containing x value indices of interest

Inputs

td = np.arange(0, runtime + 1, timestep) # Time domain (10 minute intervals)

xstate_step = x[1] # Spatial gap between state vector entries

xobs_step = x_obs[1] # Spatial gap between observations

n_panes = len(which_x) # Number of panes to plot (for each spatial point of interest)

if position not in ["left", "right"]:

raise Exception("Invalid positional argument.")

if position == "left":

legend_pos = "upper right"

else:

legend_pos = "upper left"

if spread == True:

prior_spread = True

enkf_spread = True

if only_prior == True:

prior_spread = True

if prior_spread == True:

prior = True

Plot KdV solution against time

plt.figure()

for p in range(n_panes):

ax1 = plt.subplot(n_panes, 1, p + 1)

xx = which_x[p] # Indexing for list input

plt.plot(td, B_true[:, xx], color="tab:blue", label="True")

if only_prior == False:

plt.plot(td, B_enkf[:, xx], linestyle="--", color="tab:orange", label="Analysis")

Standard deviation bands for analysis estimates

if enkf_spread == True:

stdev_a = [] # List containing standard deviations for the spatial point over time

for k in range(n_obs):

stdev_a.append(np.sqrt(enkf_var[k][xx, xx]))

stdev_a = np.asarray(stdev_a)

mean_a = np.asarray(B_enkf[:, xx])

mean_a = mean_a.reshape(len(mean_a))

plt.fill_between(td, mean_a - 2 * stdev_a, mean_a + 2 * stdev_a, alpha=0.3, color="tab:orange")

if prior == True:

if only_prior == False:

plt.plot(td, B_prior[:, xx], linestyle=":", color="tab:green", label="Forecast")

else:

plt.plot(td, B_prior[:, xx], linestyle="--", color="tab:green", label="Initial Forecast")

Standard deviation bands for forecast estimates

if prior_spread == True:

stdev_f = [] # List containing standard deviations for the spatial point over time

for k in range(n_obs):

stdev_f.append(np.sqrt(enkf_varF[k][xx, xx]))

stdev_f = np.asarray(stdev_f)

28

mean_f = np.asarray(B_prior[:, xx])

mean_f = mean_f.reshape(len(mean_f))

plt.fill_between(td, mean_f - 2 * stdev_f, mean_f + 2 * stdev_f, alpha=0.3, color="tab:green")

Include observations when possible

if len(np.intersect1d(obs_index, xx)) > 0:

plt.plot(td, B_obs[:, int(xx * xstate_step // xobs_step)], marker=".", linestyle="",

color="tab:red", label="Observations")

if p != n_panes - 1:

ax1.axes.xaxis.set_ticklabels([])

plt.tick_params(bottom=False)

plt.ylabel("Amplitude (m)")

if position == "right":

plt.text(runtime, a0, str.format("x = {0} m", int(x[xx])), ha="center", va="center")

else:

plt.text(0, a0, str.format("x = {0} m", int(x[xx])), ha="left", va="center")

if legend == True:

plt.legend(loc=legend_pos)

plt.xlabel("Time (sec)")

plt.ylabel("Amplitude (m)")

plt.show()

Function to plot ensemble members as function of time

def plot_ens_time(xx=0):

td = np.arange(0, runtime + 1, timestep) # Time domain (10 minute intervals)

fig = plt.figure()

fig.suptitle(str.format("Ensemble Members at Distance x = {0} m with N = {1}", x[xx], Ne))

Plot each ensemble member

plt.plot(td, B_ens[0][:, xx], linestyle="--", linewidth=1, label="Members")

for ee in range(1, Ne):

plt.plot(td, B_ens[ee][:, xx], linestyle="--", linewidth=1)

Plot ensemble mean

plt.plot(td, B_prior[:, xx], linewidth=1.2, label="Mean", color="k")

plt.ylabel("Amplitude (m)")

plt.xlabel("Time (sec)")

plt.grid(b=True)

plt.legend()

plt.show()

Function to plot ensemble members as function of distance

def plot_ens_space():

fig = plt.figure()

fig.suptitle(str.format("Final-Time Ensemble Members with N = {0}, T = {1} min", Ne, runtime/60))

29

Plot each ensemble member

plt.plot(x, B_ens[0][nsteps // n_dt, :], linestyle="--", linewidth=1, label="Members")

for ee in range(1, Ne):

plt.plot(x, B_ens[ee][nsteps//n_dt, :], linestyle="--", linewidth=1)

Plot ensemble mean

plt.plot(x, B_prior[nsteps//n_dt, :].T, linewidth=1.2, label="Mean", color="k")

plt.ylabel("Amplitude (m)")

plt.xlabel("Distance (m)")

plt.grid(b=True)

plt.legend()

plt.show()

30

