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Abstract

In this report, we give an introduction to Additive Combinatorics before introducing the history and

background of the Cap Set problem. A concise proof to this problem is given which incorporates Tao’s

optimisations to the proof of Ellenberg and Gijswijt. A natural generalisation of capsets, known as almost

capsets, is introduced and a theorem of Fish and Roy on the cardinality of almost cap sets is generalised. A

paper of this is currently in production and will be submitted to a peer-reviewed journal.

1 Introduction

1.1 Introduction to Additive Combinatorics

Additive Combinatorics is the study of the interplay between the combinatorial and additive structure of sets

and, as a field, has been very active over the past century. One of the biggest results in this field is the proof of

the Erdös-Turán conjecture in which Erdös and Turán published a paper in 1936, containing the following[5]:

Conjecture 1 (Erdös-Turán Conjecture). If A ⊂ N is a set with positive upper density, meaning that

lim sup
N→∞

|A ∩ {1, 2, . . . , N} |
N

> 0,

then A contains infinitely many k-term arithmetic progressions, for every k ∈ N.

The k = 3 case was proven by Roth in 1953[11], with it being proved for the k = 4 case in 1969[12] and

general k in 1975[13] by Szemerédi. Szemerédi’s proof of the Erdös-Turán conjecture motivates the consideration

of subsets of N and Z with strongly additive structure in order to understand arithmetic progressions within

them.

1.2 SET® and the Cap Set Problem

In the early 1990’s, the card game SET® became very popular. In a standard deck of SET, there are 81 cards

with each card having four attributes with three possible values. The attribute/option pairs are as follows:

• Colour (red,green,purple)

• Shape (diamond, oval, squiggle)

• Number (1,2,3)

• Fill (solid, shaded, no-fill)

A Set is three cards such that the values across the cards are either the same or distinct for each attribute. The

aim of the game is to find Sets as fast as possible. Initially, 12 cards are laid face up on the table. If there is no

Set on the table, three more cards are laid face up. This is repeated until eventually someone finds a Set.

One natural question to ask is what is the maximum number of cards possible such that no Set exists amongst
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Figure 1: The above is a Set as the cards are (green,squiggle,3,solid), (red,squiggle,2,solid), (purple, squiggle,
1, solid). The colours, shape and fill are the same across the cards whilst the number is distinct.

them?

Each value for each attribute can be mapped to a value in F3. As there are 4 attributes, we can consider

each card as an element of F4
3.

Theorem 1.1. Three distinct cards x, y, z ∈ F4
3 form a Set if and only if x+ y + z = 0.

Proof. Let {xi}i∈I , {yi}i∈I , {zi}i∈I be the components of x, y, z respectively. We consider the following cases:

Case 1: xi = yi = zi

If xi = yi = zi, then xi + yi + zi = 0.

Case 2: xi = yi and yi ̸= zi up to relabelling

If xi = yi and yi ̸= zi, then xi + yi + zi = 2xi + zi = zi − xi ̸= 0 as xi ̸= zi.

Case 3: xi, yi, zi distinct

If xi, yi, zi are distinct then xi + yi + zi = 0.

Clearly, xi + yi + zi = 0 if and only if xi = yi = zi or xi, yi, zi distinct, meaning that x+ y + z = 0 if and only

if xi = yi = zi or xi, yi, zi distinct for each i ∈ I as xi, yi, zi ∈ F3. However, this is only the case if x, y, z form

a Set and the theorem is proven.

As such, this leads to the natural mathematical formulation, and generalisation, of our prior question as the

following:

Problem (Cap Set Problem). Let A ⊆ Fn
3 be such that A contains no lines, ie.

x+ y + z ̸= 0 ∀x, y, z ∈ A (distinct).

How does the maximum size of A grow as n grows?

The n = 4 case is exactly our question, leading to a set A satisfying the above conditions being called a

capset.

As such, at most 20 cards can be on the table such that there no Set exists amongst them and thus 21 cards

are needed to guarantee the existence of a Set.
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n 2 3 4 5 6

|A| 4 9 20 45 112

Table 1: Known maximal capset sizes for different n

With regard to the Cap Set Problem for general n, one of the first bounds on |A| was by Meshulam[10] in

1995 who showed that |A| ≤ 2 · 3
n

n . In 2011, Bateman and Katz[1] improved this bound to O(3n/n1+ε) for some

ε > 0. It was not until 2016 that Croot, Lev and Pach[3] published a paper which used a revolutionary new

idea called “the polynomial method” to solve the problem in the case where A ⊆ Zn
4 . This was then extended

and generalised by Ellenberg and Gijswijt[4] (independently) in 2017 to finally solve the Cap Set problem and

attain an upper bound for |A| of O(2.756n).

In this report, a proof of the Cap Set problem using the polynomial method will be shown. Almost capsets

will be introduced and ideas from the aforementioned proof will be used to generalise a theorem from Fish and

Roy[6] about the cardinality of almost capsets.

2 Statement of Authorship

Theorem 4.1 and its proof is our own original work whilst all other results are from others and their sources

have been referenced.

3 Proof of the Cap Set Problem

3.1 Introduction to Tensors

An integral part of the Cap Set problem is the polynomial method which analyses the properties of tensors.

Definition 1 (k-tensor). Let A be a finite set and Fq be the finite field with q elements. A k-tensor is a function

T : Ak → Fq.

A special type of k-tensor is a diagonal k-tensor.

Definition 2 (Diagonal tensor). A k-tensor T : Ak → Fq is diagonal if

T (x1, x2, . . . , xk) ̸= 0 =⇒ x1 = x2 = · · · = xk.

A fundamental concept in the polynomial method is the notion of the slice-rank of a tensor.

Definition 3 (Slice-rank of a tensor). Let F : Ak → Fq be a polynomial function in kn variables from Fq where

dim(A) = n. F is called a slice and has slice-rank 1 if ∃g : A → Fq, h : Ak−1 → Fq with g, h polynomials such

3
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that there exists j ∈ {1, 2, . . . , k} such that

F (x1, x2, . . . , xk) = g(xj)h(x̃j)

where x̃j denotes the set {x1, x2, . . . , xj−1, xj+1, . . . , xk}. For a general F , the slice-rank of a general function

F is defined by

slice-rank(F ) = min

{
s
∣∣F =

s∑
i=1

Fi where slice-rank(Fi) = 1

}
.

Theorem 3.1. Let T : Ak → Fq be a k-tensor. Then slice-rank(T ) ≤ |A|.

Proof. Every k-tensor can be written as

T (x1, x2, . . . , xk) =
∑
x∈A

δx1
(x)T (x, x2, . . . , xk)

where δx1
(x) = 1 if x = x1 and 0 otherwise. However, each term on the RHS is a slice so slice-rank(T ) ≤ |A|.

A more precise version of the above theorem is possible in the case that T is diagonal due to Tao[14].

Theorem 3.2. If T : Ak → Fq is a diagonal k-tensor with non-zero diagonal entries, then slice-rank(T ) = |A|

Theorem 3.2 is the crux of the polynomial method and allows us to solve general problems in additive and

extremal combinatorics involving restrictions on the k-tuples of sets. In general, one aims to construct a tensor

T such that when restricted to a set Ak, where A is the set with the largest cardinality satisfying the initial

restriction, then T is diagonal. Computing an upper bound on slice-rank(T ) results in an upper bound on |A|

by Theorem 3.2[9]. We shall now apply the above method to solve the Cap Set problem.

3.2 Proof of the Cap Set Problem

Suppose that A ⊂ Fn
3 is a capset. Define the function F : Fn

3 → F3 as

F (x, y, z) = δ0n(x+ y + z)

=

1 x+ y + z = 0

0 otherwise

.

However, if F is resricted to A×A×A, then by definition of a capset

F |A×A×A(x, y, z) =

1 x = y = z

0 otherwise

.

Delta functions are clumsy, however, and it’ll much more prudent to convert F to a polynomial.
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Let x, y, z have components (x1, x2, . . . , xn), (y1, y2, . . . , yn), (z1, z2, . . . , zn) respectively. Now, x + y + z =

0 =⇒ xi + yi + zi = 0 ∀i ∈ {1, 2, . . . , n}. Now as xi, yi, zi ∈ F3, xi + yi + zi = 0, 1, 2 so if x = y = z then

xi + yi + zi ̸= 1, 2 ∀i ∈ {1, 2, . . . , n}. Thus, F (x, y, z) can be expressed as

F (x, y, z) =

n∏
i=1

(xi + yi + zi − 1)(2− xi − yi − zi)

=

n∏
i=1

1− (xi + yi + zi)
2

Note that F (x, x, x) = 1 ̸= 0 ∀n ∈ N and so F (x, y, z) is a diagonal 3-tensor for x, y, z ∈ A and as such

slice-rank(F ) = |A|. We now prove the following critical lemma due to Croot, Lev, and Pach[?] (which was

generalised by Ellenberg and Gisjwist[4]).

Lemma 3.3. The slice-rank of the function defined by F : A3 → F3 as above is at most 3N where

N :=
∑

a,b,c∈N0
a+b+c=n
b+2c≤2n/3

n!

a!b!c!

.

Proof. Clearly F (x, y, z) is a polynomial of degree 2n in the 3n variables x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zn.

In fact, every monomial m in F (ignoring constant coefficients) is of the form

m = xα1
1 xα2

2 . . . xαn
n yβ1

1 . . . yβn
n zγ1

1 . . . zγn
n

where
n∑

i=1

αi + βi + γi ≤ 2n

and

αi, βi, γi ∈ {0, 1, 2} ∀i ∈ {1, 2, . . . , n} .

Let dx(m), dy(m) and dz(m) be the degrees of the terms in the monomial m containing components of x,y and

z respectively. That is to say that

dx(m) =

n∑
i=1

αi, dy(m) =

n∑
i=1

βi, dz(m) =

n∑
i=1

γi

so that

deg(m) = dx(m) + dy(m) + dz(m) ≤ 2n.

However, by the Pigenhole Principle, this means that at least one of dx(m), dy(m), dz(m) ≤ 2n/3. Let Mx be

the set of monomials in F with dx(m) ≤ 2n/3, My be the set of monomials in F for which dy(m) ≤ 2n/3, and
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let Mz be the set of monomials in F with dz(m) ≤ 2n/3. For simplicity, we force Mx,My,Mz to be disjoint by

removing anything in My ∩Mx from Mx and then removing anything in Mz ∩My or Mz ∩Mx from Mz. As a

result, we have that

F (x, y, z) =
∑

m∈Mx

m+
∑

m∈My

m+
∑

m∈Mz

m.

As such, one can express F (x, y, z) as

F (x, y, z) =
∑

α,β,γ∈Fn
3

cα,β,γ

(
n∏

i=1

xαi
i

)(
n∏

i=1

yβi

i

)(
n∏

i=1

zγi

i

)

where cα,β,γ is some constant depending on α, β, γ. But,

∑
m∈Mx

m =
∑

α,β,γ∈Fn
3∑n

i=1 αi≤2n/3

cα,β,γ

(
n∏

i=1

xαi
i

)(
n∏

i=1

yβi

i

)(
n∏

i=1

zγi

i

)

and similarly for the summations over My and Mz. Thus, we have that

F (x, y, z) =
∑

α,β,γ∈Fn
3∑n

i=1 αi≤2n/3

cα,β,γ

(
n∏

i=1

xαi
i

)(
n∏

i=1

yβi

i

)(
n∏

i=1

zγi

i

)

+
∑

α,β,γ∈Fn
3∑n

i=1 βi≤2n/3

cα,β,γ

(
n∏

i=1

xαi
i

)(
n∏

i=1

yβi

i

)(
n∏

i=1

zγi

i

)

+
∑

α,β,γ∈Fn
3∑n

i=1 γi≤2n/3

cα,β,γ

(
n∏

i=1

xαi
i

)(
n∏

i=1

yβi

i

)(
n∏

i=1

zγi

i

)
.

But this is the same as saying

F (x, y, z) =
∑

α,β,γ∈Fn
3∑n

i=1 αi≤2n/3

(
n∏

i=1

xαi
i

)
fα(y, z)

+
∑

α,β,γ∈Fn
3∑n

i=1 βi≤2n/3

(
n∏

i=1

yβi

i

)
gβ(x, z)

+
∑

α,β,γ∈Fn
3∑n

i=1 γi≤2n/3

(
n∏

i=1

zγi

i

)
hγ(x, y)
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for 2-tensors fα(y, z), gβ(x, z), hγ(x, y). Now, all terms on the RHS are slices. As such, we see that

slice-rank(F ) ≤ 3

∣∣∣∣∣
{
(α1, . . . , αn) ∈ {0, 1, 2}n

∣∣ n∑
i=1

αi ≤ 2n/3

}∣∣∣∣∣ .
We now show that∣∣∣∣∣
{
(α1, . . . , αn) ∈ {0, 1, 2}n

∣∣ n∑
i=1

αi ≤ 2n/3

}∣∣∣∣∣ = ∑
a,b,c∈N0
a+b+c=n
b+2c≤2n/3

n!

a!b!c!
= N

from which the lemma is proven. Let the number of αi which equal 0, 1, 2 be a, b, c respectively. Since every αi

takes exactly one of these values we have that

a+ b+ c = n.

However,

n∑
i=1

αi ≤ 2n/3 ⇔ 0a+ 1b+ 2c ≤ 2n/3 ⇔ b+ 2c ≤ 2n/3

As such, we have that∣∣∣∣∣
{
(α1, . . . , αn) ∈ {0, 1, 2}n |

n∑
i=1

αi ≤ 2n/3

}∣∣∣∣∣ = ∑
a,b,c∈N0
a+b+c=n
b+2c≤2n/3

∣∣{(α1, . . . , αn) ∈ {0, 1, 2}n
∣∣ with a 0’s, b 1’s and c 2’s

}∣∣ .

We wish to find the number of vectors (α1, . . . , αn) which all have components in F3 which have a 0’s, b 1’s and c

2’s for given values of a, b, c. Now, all possible vectors are permutations of the vector (0, 0, . . . , 0︸ ︷︷ ︸
a 0’s

, 1, 1, . . . , 1︸ ︷︷ ︸
b 1’s

, 2, 2, . . . , 2︸ ︷︷ ︸
c 2’s

)

where a + b + c = n. As such, the number of distinct vectors (that is no two vectors having all identical com-

ponents) is n!
a!b!c! and so the above is equal to

=
∑

a,b,c∈N0
a+b+c=n
b+2c≤2n/3

n!

a!b!c!

= N

and the lemma is proven.

All that is left is to evaluate N . The standard continuation from here is to use Stirling’s approximation as
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well as probabilistic arguments (Cramer’s theorem for large deviations and Shannon entropy) to show that

N ∼ θn(1+o(1)) where θ = max
a,b,c≥0

a+b+c=1
b+2c≤2/3

eh(a,b,c)

where

h(a, b, c) = a ln

(
1

a

)
+ b ln

(
1

b

)
+ c ln

(
1

c

)
is the Shannon entropy. A routine Lagrange Multiplier calculation reveals that the values for a, b, c corresponding

to θ are

a =
32

3(15 +
√
33)

, b =
4(
√
33− 1)

3(15 +
√
33)

, c =

(√
33− 1

)2
6
(
15 +

√
33
)

so that

θ = 1.01345 =⇒ N ≈ 2.755neo(1)n =⇒ |A| ≤ O(2.756)n.

This proof is, however, quite convoluted and cumbersome and we provide a more elementary way to evaluate

N below.

Lemma 3.4. N as defined in Lemma 3.3 is at most cn3 where c3 = 3
8

3
√
207 + 33

√
33 ≈ 2.756 is a constant.

Proof.

(1 + x+ x2)n =
∑

a,b,c∈N0
a+b+c=n

n!

a!b!c!
xb+2c by the Multinomial Theorem

which upon dividing both sides by x2n/3 implies

(1 + x+ x2)n

x2n/3
=

∑
a,b,c∈N0
a+b+c=n

n!

a!b!c!
xb+2c−2n/3.

Let f(x) =
(1 + x+ x2)n

x2n/3
= (x−2/3 + x1/3 + x4/3)n. Then,

f(x) >
∑

a,b,c∈N0
a+b+c=n
b+2c≤2n/3

n!

a!b!c!
xb+2c−2n/3 if x > 0

>
∑

a,b,c∈N0
a+b+c=n
b+2c≤2n/3

n!

a!b!c!
if 0 < x < 1 as b+ 2c− 2n/3 ≤ 0.
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Therefore, finding the minimum of f(x) for 0 < x < 1 will allow us to find an upper bound for N and thus an

upper bound on |A|. A routine calculation shows that f(x) is minimised when x =
√
33−1
8 . Thus,

f

(√
33− 1

8

)
=

3

8

3

√
207 + 33

√
33

=⇒ N ≥ 3

8

3

√
207 + 33

√
33

As such, we can combine Theorem 3.2, Lemma 3.3 and Lemma 3.4 to show that

|A| ≤ 3(2.756)n

≤ O(2.756)n

and the Cap Set problem is solved! In fact the above argument can be generalised to find the largest subset

of Fn
q that has no non-trivial solutions to the equation ax + by + cz = 0, where a, b, c ∈ (Fq \ {0})3 such that

a+ b+ c = 0 (as noted in [4]).To do this, the function δ0n(x+ y + z) is replaced by δ0n(ax+ by + cz).

4 Almost Capsets

4.1 Introduction to Almost Capsets

A natural multivariate generalisation of capsets are subsets of Fn
q that have no non-trivial solutions to the

equation a1x1 + a2x2 + · · · + akxk = 0, where a1, a2, . . . , ak ∈ (Fq \ {0})k such that a1 + a2 + · · · + ak = 0.

One can also consider almost capsets where the condition “non non-trivial solutions” is replaced with “not too

many non-trivial solutions”. These were first introduced and studied by Fish and Roy[6] in the three variable

case. In this section we obtain analogous upper bounds on the cardinality of almost cap sets in the multivariate

case, which satisfy a much weaker structural rigidity than cap sets in Fn
q and build upon techniques developed

by Tao[14] to analyse them.

Definition 4 (Almost Capset). An (ϵ, δ)-cap set, sometimes referred to as an almost capset, is a set A ⊂ Fn
q

for ϵ, δ > 0 corresponding to a k-tuple a = (a1, a2, . . . , ak) ∈ (Fq \ {0})k with a1 + a2 + · · · + ak = 0, if there

exists A′ ⊂ A with |A′| ≥ δA such that for every x1 ∈ A′, the number of (k − 1)-tuples (x2, x3, . . . , xk) ∈ Ak−1

satisfying a1x1 + a2x2 + · · ·+ akxk = 0 is less than |A|ϵ.

In a similar fashion, for an arbitrary ϵ > 0, k-tuple a = (a1, a2, . . . , ak) ∈ (Fq \ {0})k with a1+a2+ · · ·+ak = 0,

and set A ⊂ Fn
q , we denote Aϵ

a by the following

Aϵ
a =

{
x1 ∈ A | ∃ at least |A|ϵ (k − 1)-tuples (x2, x3, . . . , xk) ∈ Ak−1 with a1x1 + a2x2 + · · ·+ akxk = 0

}
.
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Theorem 4.1. Suppose that k, q ∈ N>2. There exist ϵ > 0 and cq < q such that for any δ > 0, A ⊂ Fn
q with

|A| > cnq and a = (a1, a2, . . . , ak) ∈ (Fq \ {0})k, then for sufficiently large n

|Aϵ
a| ≥ (1− δ)|A|.

The above theorem was proven for the case k = 3 in Fish and Roy[6].

4.2 Proof of Theorem 4.1

Let δ, ϵ > 0 and a = (a1, a2, . . . , ak) ∈ (Fq \ {0})k with a1+a2+ · · ·+ak = 0. Furthermore, assume that A ⊂ Fn
q

is an (ϵ, δ)-cap set. Now, we introduce the function F : Ak → Fq to be

F (x1, x2, . . . , xk) = δ0n(a1x1 + a2x2 + · · ·+ akxk) (1)

=
∑

α=(α1,α2,...,αk)∈Ak

cα

k∏
i=1

δαi
(xi)

where

cα =

1 if a1α1 + a2α2 + · · ·+ akαk = 0

0 otherwise.

4.2.1 Proof of the lower bound on slice-rank(F )

It was assumed that ∃A′ ⊂ A with |A′| ≥ δ|A| such that for every x1 ∈ A′, the number of (k − 1)-tuples

(x2, x3, . . . , xk) ∈ Ak−1 with a1x1 + a2x2 + · · ·+ akxk = 0 is smaller than |A|ϵ. From this we deduce that

∣∣∣{cα ̸= 0 | α ⊂ (A′)
k
}∣∣∣ ≤ |A′| |A|ϵ

≤ |A′|(δ−1|A′|)ϵ as |A′| ≥ δ|A|

≤ δ−1|A′|1+ϵ (2)

We introduce an important definition.

Definition 5 (Independent Set). A set I ⊂ {1, . . . , N} is an independent set for a tensor T if for any α =

(α1, . . . , αd) ∈ Id such that cα ̸= 0 we have that α1 = . . . = αd.

As F only takes values 0 and 1, we can consider F to be the adjacency matrix for a k-uniform hypergraph with

|A′| vertices. We invoke the generalised Caro-Wei lower bound for the maximal cardinality of an independent

set for this hypergraph.

Theorem 4.2 (Caro-Tuza [2]). Let H be a k-uniform hypergraph for k ≥ 3 with edges E(H) and vertices V (H).

A set I ⊂ V (H) is an independent set of H if for every e ∈ E(H), we have that e ̸⊆ I. Then there exists dk > 0

10

th4.1


such that the maximum size of an independent set in H, denoted by α(H), is given by

α(H) ≥ dk
∑

v∈V (H)

1

(d(v) + 1)
1

k−1

where d(v) is the degree of the vertex v.

By the above theorem, there exists I ⊂ A′ an independent set satisfying

|I| ≥ C1

∑
x∈A′

1

(dx + 1)
1

k−1

,

where dx =
∣∣∣{cα ̸= 0 | α1 = x, α ⊂ (A′)

k
}∣∣∣ and C1 > 0 is a constant.

Lemma 4.3. Assuming
∑

x∈A′ dx = dsum is constant,
∑

x∈A′
1

(dx+1)
1

k−1
is minimised whenever all the summa-

tions are equal - that is when all vertices have equal degree.

Proof. Let a1, a2, . . . , a|A′| be the elements of A′ and d1, d2, . . . , d|A′| be the degree of these vertices of the

hypergraph respectively. Thus,

∑
x∈A′

1

(d(x) + 1)1/k−1
=

|A′|∑
i=1

1

(di + 1)1/k−1

≥ |A′|2∑|A′|
i=1(di + 1)1/k−1

by the AM-HM inequality

≥ |A′|2

|A′|1−
1

k−1

(∑|A′|
i=1 di + 1

)1/k−1
by the Power Mean Inequality

=
|A′|1+

1
k−1

(dsum + |A′|)1/k−1

with equality if and only if (d1 + 1) = (d2 + 1) = · · · = (d|A′| + 1) =⇒ d1 = d2 = · · · = d|A′| = dsum/|A′| =

davg.

Now, it follows from (2) that
∑

x∈A′ dx ≤ δ−1 |A′|1+ε
. Therefore, there exists a constant C2 = C(q, k, δ) > 0

such that

|I| ≥ C2 |A′|1−
ϵ

k−1

We invoke a theorem by Lovett.

Theorem 4.4 (Lovett[8], Theorem 1.7). There exists a positive constant c = C(d, q) such that for any d-tensor

T we have

slice-rank(T ) ≥ c|I|

for any independent set I ⊂ {1, . . . , N}.
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As such, there exists a constant C3 = C(q, k, δ) > 0 such that

slice-rank(F ) ≥ C3|A|1−
ϵ

k−1 . (3)

4.2.2 Proof of the upper bound on slice-rank(F )

It should be seen that the nature of the proof of this part is inspired by that of Ellenberg and Gijswijt[4] with

some additional techniques being used to prove the generalisation.

Lemma 4.5. The slice-rank of the function defined by F : Ak → Fq as in (1) is at most kN where

N :=
∑

N0,N1,...,Nq−1∈N0∑q−1
i=0 Ni=n∑q−1

i=1 iNi≤(q−1)n/k

n!∏q−1
i=0 Ni!

.

Proof. One can consider F (x1, x2, . . . , xk) as a polynomial in the components of x1, x2, . . . , xk. Let the compo-

nents of x1, x2, . . . , xk be (x11, x12, . . . , x1n), (x21, x22, . . . , x2n), . . . , (xk1, xk2, . . . , xkn) respectively where

xij ∈ Fq ∀i ∈ {1, 2, . . . , k} , j ∈ {1, 2, . . . , n} .

Clearly, F (x1, x2, . . . , xk) can be expressed as

F (x1, x2, . . . , xk) = δ0n(a1x1 + a2x2 + · · ·+ kxk)

=

n∏
j=1

1− (a1x1j + a2x2j + · · ·+ akxkj)
q−1.

F is a polynomial of degree n(q−1) in the kn variables x11, x12, . . . , x1n, x21, x22, . . . , x2n, . . . , xk1, xk2, . . . , xkn.

In fact, every monomial m in F (ignoring constant coefficients) is of the form

xβ11

11 xβ12

12 . . . xβ1n

1n xβ21

21 xβ22

22 . . . xβ2n

2n . . . xβk1

k1 xβk2

k2 . . . xβkn

kn

where
∑k

i=1

∑n
j=1 βij ≤ n(q − 1).

Let dxi
(m) be the degrees of the terms in the monomial m containing components of xi for i ∈ {1, 2, . . . , k}.

That is to say that

dxi(m) =

n∑
j=1

βij .

However, by the Pigeonhole Principle, this means that at least one of dx1
(m), dx2

(m), . . . , dxk
(m) ≤ n(q− 1)/k.

Let Mi be the set of monomials in F with dxi
(m) ≤ n(q − 1)/k. For simplicity, we force M1,M2, . . . ,Mk to be

disjoint by removing anything in M2 ∩M1 from M1, and then removing anything in M3 ∩M1 or M3 ∩M2 from

M3 and so on.
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It should be clear that F (x1, x2, . . . , xk) can be expressed as

F (x1, x2, . . . , xk) =
∑

β1,β2,...,βk∈[0,q−1]n

cβ1,β2,...,βk

k∏
i=1

n∏
j=1

x
βij

ij

where cβ1,β2,...,βk
is some constant depending on β1, β2, . . . , βk. But,

∑
m∈Mi

m =
∑

β1,β2,...,βk∈[0,q−1]n∑n
j=1 βij≤n(q−1)/k

cβ1,β2,...,βk

k∏
l=1

n∏
j=1

x
βlj

lj .

As such, we have that

F (x1, x2, . . . , xk) =

k∑
i=1

∑
m∈Mi

m

=

k∑
i=1

∑
β1,β2,...,βk∈[0,q−1]n∑n

j=1 βij≤n(q−1)/k

cβ1,β2,...,βk

k∏
l=1

n∏
j=1

x
βlj

lj

=

k∑
i=1

∑
βi∈[0,q−1]n∑n

j=1 βij≤n(q−1)/k

(
n∏

l=1

xβil

il

)
fβi(xi)

where fβi
are (k − 1)-tensors and xi denotes the set {x1, x2, . . . , xk} \ {xi}.

All terms on the RHS have slice rank 1. As such, we see that

slice-rank(F ) ≤ k

∣∣∣∣∣
{
(γ1, γ2, . . . , γn) ∈ [0, q − 1]|

n∑
i=1

γi ≤ n(q − 1)/k

}∣∣∣∣∣
where β11, β12, . . . , β1n have been relabeled as γ1, γ2, . . . , γn for simplicity. Let the number of γi which equal

to 0, 1, . . . , q − 1 be N0, N1, . . . , Nq−1 respectively. Since γi takes exactly one of these values, we have that

N0 +N1 + · · ·+Nq−1 = n. However,

n∑
i=1

γi ≤ (q − 1)n/k ⇔
q−1∑
i=0

iNi ≤ (q − 1)n/k ⇔
q−1∑
i=1

iNi ≤ (q − 1)n/k.
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As such, we have that ∣∣∣∣∣
{
(γ1, . . . , γn) ∈ [0, q − 1]|

n∑
i=1

γi ≤ (q − 1)n/k

}∣∣∣∣∣
=

∑
N0,...,Nq−1∈N0∑q−1

i=0 Ni=n∑q−1
i=1 iNi≤(q−1)n/k

∣∣{(γ1, . . . , γn) ∈ [0, q − 1]
∣∣ with Ni i’s for i ∈ Fq

}∣∣ .

We wish to find the number of vectors (γ1, . . . , γn) which all have components in Fq which have N0 0’s, N1

1’s, ..., Nq−1 (q − 1)’s for given values of N0, N1, . . . , Nq−1. Now, all possible vectors are permutations of the

vector (0, 0, . . . , 0︸ ︷︷ ︸
N0 0’s

, 1, 1, . . . , 1︸ ︷︷ ︸
N1 1’s

, . . . , q − 1, q − 1, . . . , q − 1︸ ︷︷ ︸
Nq−1 (q − 1)’s

) where N0 +N1 + · · ·+Nq−1 = n. As such, the number

of distinct vectors (that is no two vectors having all identical components) is n!∏q−1
i=0 Ni!

and so the above is equal

to

=
∑

N0,N1,...,Nq−1∈N0∑q−1
i=0 Ni=n∑q−1

i=1 iNi≤(q−1)n/k

n!∏q−1
i=0 Ni!

:= N

so that

slice-rank(F ) ≤ kN.

and the proof of the lemma is complete.

Lemma 4.6. For k, q ∈ N>2 and sufficiently large n, kN < bnq where bq < q.

Proof. As seen in Appendix 1.

It should be noted that the k = 3 case of Lemma 4.6 was proven by Ellenberg and Gijswijt[4].

4.2.3 Tying it all together

Combining (3) and Lemma 4.5 and Lemma 4.6, one has that

C3|A|1−
ϵ

k−1 ≤ slice-rank(F ) < bnq (4)

for some bq < q. Finally, we choose ϵ > 0 to satisfy

b
1

1− ϵ
k−1

q < q

=⇒ ϵ < (k − 1)

(
1− ln(bq)

ln(q)

)
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and cq such that

b
1

1− ϵ
k−1

q < cq < q.

Thus, Theorem 4.1 holds true for these choices of ϵ and cq.

5 Discussion and Conclusion

In this report, we gave a background for the Cap Set problems and provided an elegant proof of such (based on

that of Ellenberg and Gijswijt[4] and Tao[14]). Almost capsets were introduced and a theorem from Fish and

Roy[6] regarding their cardinality was generalised and improved in the case of more than three variables.

One possible future direction is the incorporation of a generalisation of Green’s regularity type lemma[7] into

the proof of Theorem 4.1. A corollary of the generalisation for the case of 3 variables is

Theorem 5.1. If A ⊆ Fn
q where q = pr for some integer r, the number of (x, y, z) ∈ A3 satisfying ax+by+cz = 0

is at least
(

|A|
3qn

)1+ 1
cp

q2n where cp is defined as

cp = 1− 1

p
ln

(
min

0<x<1
x−(p−1)/3

(
x0 + x1 + · · ·+ xp−1

))
.

Generalising Theorem 5.1 for multiple variables would allow for the tightening of ϵ and cq in Theorem 4.1

and the upper and lower bounds for slice-rank(F ) where F is defined in (1).
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7 Appendix 1: Proof of Lemma 4.3

By the Multinomial Theorem,

(x0 + x1 + · · ·+ xq−1)n =
∑

N0,N1,...,Nq−1∈N0∑q−1
i=0 Ni=n

n!∏q−1
i=0 Ni!

x
∑q−1

i=1 iNi

=⇒ (x0 + x1 + . . .+ xq−1)n

x(q−1)n/k
=

∑
N0,N1,...,Nq−1∈N0∑q−1

i=0 Ni=n

n!∏q−1
i=0 Ni!

x(
∑q−1

i=1 iNi)−q(n−1)/k.

Let f(x) =
(x0 + x1 + . . .+ xq−1)n

x(q−1)n/k
. Then,

f(x) >
∑

N0,N1,...,Nq−1∈N0∑q−1
i=0 Ni=n∑q−1

i=1 iNi≤(q−1)n/k

n!∏q−1
i=0 Ni!

x(
∑q−1

i=1 iNi)−q(n−1)/k if x > 0

>
∑

N0,N1,...,Nq−1∈N0∑q−1
i=0 Ni=n∑q−1

i=1 iNi≤(q−1)n/k

n!∏q−1
i=0 Ni!

if 0 < x < 1 as

(
q−1∑
i=1

iNi

)
− q(n− 1)/k ≤ 0.

= N

Therefore, finding the minimum of f(x) for 0 < x < 1 will allow us to find an upper bound for N and thus an

upper bound on slice-rank(F ). The x-value which minimises g(x) = f(x)1/n =
∑q−1

i=0 x(ki−(q−1))/k on 0 < x < 1

will also minimise f(x). But,

g(x) =

q−1∑
i=0

x(ki−(q−1))/k

=
(xq − 1)x(1−q)/k

x− 1

so that

g′(x) =
x−(k+q−1)/k (q(x− 1) ((k − 1)xq + 1)− ((k − 1)x+ 1) (xq − 1))

k(x− 1)2
.

Define h(x) := g(x)− q. Then,

lim
x→0+

h(x) = +∞ and lim
x→1−

h(x) = 0−.

However, h(x) is clearly continuous on (0, 1) and so there must ϵ2 > 0 and ϵ3 > 0 such that h(x) > 0 for

0 < x ≤ ϵ2 and h(x) < 0 for 1 > x ≥ ϵ3. As such, by the Intermediate Value Theorem there exists a root of

h(x) in the interval (ϵ2, ϵ3) and by extension, a root of h(x) for x ∈ (0, 1).

We now prove that this root is unique. Let the x-value of this root be ζ and let’s assume that there exists
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a root ζ2 of h(x) in the interval (ζ, 1). By Rolle’s theorem there must exist x ∈ (ζ2, 1) where h′(x) = 0 (as

h(1) = 0). It can be shown, through some algebraic manipulation, that h′(x) is strictly increasing for x > 0

and as such the equation h′(x) = 0 has only 1 solution for x > 0. However, by Rolle’s theorem one has that

h′(x) = 0 for some x ∈ (ζ, ζ2) as well as for some x ∈ (ζ2, 1). This implies that h′(x) = 0 has two solutions for

x > 0 which is a contradiction. Thus, there is a unique root of h(x) = 0 for 0 < x < 1.

Furthermore, by Rolle’s theorem, there exists an extrema, xext of h(x) in the interval (ζ, 1). However, as

h′(x) is strictly increasing for x > 0, the only extrema of h(x) occurs at x = xext. Moreover, as h′(x) is strictly

increasing, we have that h′(x) < 0 for 0 < x < xext and h′(x) > 0 for x > xext. As such, the extrema at x = xext

is a minimum. As ζ ̸= xext, however, one has that h(xext) < 0 which implies that g(xext) < q.

Thus as f(x) = g(x)n, and as min0<x<1 (g(x)) = gext < q, then min0<x<1 (f(x)) = gnext < qn. However, we

have that N < min0<x<1 (f(x)) = gnext and so we have that

slice-rank(F ) = kN

< kgnext

= (k1/ngext)
n

< bnq

for some bq < q if n is big enough as gext < q.
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