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1 Abstract

We study the Knizhnik-Zamolodchikov (KZ) functor, which maps rational Cherednik algebra

modules to Iwahori-Hecke algebra modules. We define a rational Cherednik algebra (RCA)

associated to a complex reflection group and prove an isomorphism result regarding a local-

isation of RCA. RCA modules and their horizontal sections are investigated, which are then

pushed across the KZ functor via monodromy to produce Hecke algebra modules. From there,

we compute examples of the KZ functor for cyclic groups and symmetric groups.

2 Introduction

Both rational Cherednik algebras and Iwahori-Hecke algebras are structures that appear exten-

sively in the study of representation theory. In [Gin+03], the KZ functor is introduced, which

maps RCA modules to Hecke algebra modules, allowing our knowledge about one structure to

help with the understanding of the other.

A complex reflection group W is generated by reflections and acts on a complex vector

space a∗. Associated to W , we define a rational Cherednik algebra H̃ (see [EM10]) in terms of

generators and relations. To allow certain denominators in the equations for later results, we

consider a localisation H̃0 of the RCA. We reprove first a result from [Gri10] regarding relations

of generators, then an isomorphism between H̃0 and D(a0) ⋊W from [Gin+03], where a0 is the

configuration space (see equation (43)). We then consider group representations of W , from

which we induce RCA modules and investigate conditions for their horizontal sections, leading

to systems of partial differential equations [Ram21]. RCA modules are mapped across the

KZ functor by calculating monodromy matrices, which produce corresponding Hecke modules.

Next, we explore explicit examples when W is a cyclic group or a symmetric group. In the

case of a cyclic group, we are able to fully solve the partial differential equations to obtain

horizontal sections and thus compute explicit parameters for the corresponding Hecke algebras

(see [Ram08]).

Statement of Authorship

This project topic was first proposed by Prof. Arun Ram and later conducted under the su-

pervision of Dr. Ting Xue and Prof. Ram. I also worked on this research in collaboration with
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another AMSI vacation scholar Haris Rao and his supervisor Dr. Yaping Yang. The theory

explored in this project was primarily developed in [Gin+03] and was presented by Prof. Ram

in a series of five lectures [Ram21]. Although this report does not include any new results, I

gained a better understanding of rational Cherednik algebras, KZ functor and related topics.

I also computed examples of the KZ functor for the cyclic and symmetric groups, first individ-

ually and then in discussion with Haris. I wrote this report, which was reviewed by Dr. Xue

and Prof. Ram.

3 Rational Cherednik algebras

3.1 Rational Cherednik algebras H̃

Let W be a complex reflection group (see Appendix A), acting on a complex vector space a∗.

Let κ ∈ C /{0} and cs ∈ C be complex parameters, such that cwsw−1 = cs for all reflections s ∈ R

and w ∈W .

The rational Cherednik algebra associated to W (see [EM10, Ch. 3 Prop. 3.2]) is the algebra

H̃ generated by xµ, yλ∨ , tw for µ ∈ a∗, λ∨ ∈ a and w ∈ W with relations (46) and (47) from

symmetric algebras (see Appendix B), and

twv = tvtw (1)

twxµ = xwµtw, twyλ∨ = ywλ∨tw (2)

yλ∨xµ = xµyλ∨ + κ⟨µ,λ
∨⟩ − ∑

s∈R
cs⟨µ,α

∨
s ⟩⟨αs, λ

∨⟩ts. (3)

3.2 Localisation of H̃

We may wish to rearrange (45′) as

⟨µ,α∨s ⟩ =
xµ − xsµ

xαs

. (45′′)

To do so, we first need to allow the presence of xαs in the denominator. This motivates us

to consider the following localisation of the rational Cherednik algebra.

Let ∆ = ∏s∈R xαs .
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Let H̃0 be the algebra generated by xµ, yλ∨ , tw and 1
∆ for µ ∈ a∗, λ∨ ∈ a and w ∈ W with

relations (46), (47) and (1)-(3) from H̃ and

∆
1

∆
=

1

∆
∆ = 1. (4)

Relation (3) describes how to interchange the order between yλ∨ and xµ. It may also be

useful to explore the relation between yλ∨ and a polynomial in S(a∗).

Propositon 1. [Gri10, Ch. 2 Prop. 2.3]

Let λ∨ ∈ a and f ∈ S(a∗). Then

yλ∨f = fyλ∨ + κ
∂f

∂λ∨
− ∑

s∈R
cs⟨αs, λ

∨⟩
f − sf

xαs

ts (5)

where ∂f
∂λ∨ is a derivation of S(a∗) determined by

∂xµ

∂λ∨ ∶= ⟨µ,λ
∨⟩ for µ ∈ a∗ and satisfies the

Leibniz rule ∂(fg)
∂λ∨ =

∂f
∂λ∨ g + f

∂g
∂λ∨ .

Proof. We will prove this using an induction on the degree of f .

Base case: Substitute (45′′) in (3),

yλ∨xµ = xµyλ∨ + κ⟨µ,λ
∨⟩ − ∑

s∈R
cs⟨µ,α

∨
s ⟩⟨αs, λ

∨⟩ts

= xµyλ∨ + κ
∂xµ

∂λ∨
− ∑

s∈R
cs⟨αs, λ

∨⟩
xµ − xsµ

xαs

ts.

Inductive step:

yλ∨(fg) − (fg)yλ∨ = (yλ∨f − fyλ∨)g + f(yλ∨g − gyλ∨)

= [κ
∂f

∂λ∨
− ∑

s∈R
cs⟨αs, λ

∨⟩
f − sf

xαs

ts] g + f [κ
∂g

∂λ∨
− ∑

s∈R
cs⟨αs, λ

∨⟩
g − sg

xαs

ts]

= κ(
∂f

∂λ∨
g + f

∂g

∂λ∨
) − ∑

s∈R
cs⟨αs, λ

∨⟩ (
f − sf

xαs

sg + f
g − sg

xαs

) ts

= κ
∂(fg)

∂λ∨
− ∑

s∈R
cs⟨αs, λ

∨⟩ (
fsg − sfsg + fg − fsg

xαs

) ts

= κ
∂(fg)

∂λ∨
− ∑

s∈R
cs⟨αs, λ

∨⟩ (
fg − s(fg)

xαs

) ts.
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3.3 Another algebra D0

In the definition of H̃0, relation (3) is relatively complicated. We will now define a very similar

algebra D0, where we will introduce an analogous but simpler relation (8). To differentiate

between the two algebras, we will use the symbol ∂λ∨ as a generator, in place of yλ∨ .

Let a0 be the configuration space (see equation (43)). Let D0 ∶= D(a0) ⋊W be the algebra

generated by xµ, ∂λ∨ , tw, and
1
∆ for µ ∈ a∗, λ∨ ∈ a and w ∈W with relations (46), (1), (4) and

∂λ∨+γ∨ = ∂λ∨ + ∂γ∨ , ∂cλ∨ = c∂λ∨ , ∂λ∨∂γ∨ = ∂γ∨∂λ∨ (6)

and

twxµ = xwµtw, tw∂λ∨ = ∂wλ∨tw (7)

∂λ∨xµ = xµ∂λ∨ + ⟨µ,λ
∨⟩. (8)

Observe that the definitions of the algebras H̃0 and D0 are very similar.

Propositon 2. [Gin+03, Ch. 5 Thm. 5.6] There exists an isomorphism ϕ between H̃0 and D0,

where

ϕ ∶ H̃0 → D0 (9)

xµ ↦ xµ (10)

tw ↦ tw (11)

yλ∨ ↦ κ∂λ∨ − ∑
s∈R

cs⟨αs, λ
∨⟩

1

xαs

(1 − ts). (12)

Remark. Note that this isomorphism is not unique. In fact, one can easily replace the ’1’ in

(12) by any arbitrary complex number A ∈ C

yλ∨ ↦ κ∂λ∨ − ∑
s∈R

cs⟨αs, λ
∨⟩

1

xαs

(A − ts) (12′)

and the following proof would still hold.

Proof. Let the term ∑s∈R cs⟨αs, λ∨⟩
1

xαs
(1−ts) in (12) be denoted by T . It is clear that an inverse

ϕ−1 exists with

ϕ−1(∂λ∨) = κ
−1 [yλ∨ + T ] . (13)
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Since an inverse map exists, ϕ is bijective. It remains to check the relations still hold in

each algebra. It is clear to see that relations (46), (1) and (4) regarding xµ and tw hold in both

algebras. Relations (47) and (6) also hold since ϕ as an algebra homomorphism is linear.

Moreover, T is commutative with tw:

twT = tw [∑
s∈R

cs⟨αs, λ
∨⟩

1

xαs

(1 − ts)]

= ∑
s∈R

cs⟨αs, λ
∨⟩

1

xwαs

tw(1 − ts)

= ∑
s∈R

cs⟨wαs,wλ
∨⟩

1

xwαs

(1 − twsw−1)tw

= ∑
wsw−1∈R

cs⟨αwsw−1 , λ
∨⟩

1

xwαs

(1 − twsw−1)tw

= Ttw.

Then, in H̃0, relation (2) is preserved by ϕ:

twyλ∨ ↦ tw [κ∂λ∨ − T ]

= [κ∂wλ∨ − T ] tw

↦ ywλ∨tw.

Similarly, relation (7) in D0 is preserved by ϕ−1.

Now we check relation (3) in H̃0 still holds:

yλ∨xµ ↦ [κ∂λ∨ − T ]xµ

= κ∂λ∨xµ − ∑
s∈R

cs⟨αs, λ
∨⟩

1

xαs

(1 − ts)xµ

= κxµ∂λ∨ + κ⟨µ,λ
∨⟩ − ∑

s∈R
cs⟨αs, λ

∨⟩ [
xµ

xαs

−
xsµ

xαs

ts]

= κxµ∂λ∨ + κ⟨µ,λ
∨⟩ − ∑

s∈R
cs⟨αs, λ

∨⟩ [
xµ

xαs

−
xµ

xαs

ts +
xµ − xsµ

xαs

ts]

= κxµ∂λ∨ + κ⟨µ,λ
∨⟩ − ∑

s∈R
cs⟨αs, λ

∨⟩ [
xµ

xαs

(1 − ts) + ⟨µ,α
∨
s ⟩ts]

= xµ [κ∂λ∨ − ∑
s∈R

cs⟨αs, λ
∨⟩

1

xαs

(1 − ts)] + κ⟨µ,λ
∨⟩ − ∑

s∈R
cs⟨αs, λ

∨⟩⟨µ,α∨s ⟩ts

↦ xµyλ∨ + κ⟨µ,λ
∨⟩ − ∑

s∈R
cs⟨µ,α

∨
s ⟩⟨αs, λ

∨⟩ts.

Similarly, relation (8) in D0 also holds.
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4 RCA Modules

4.1 Inducing RCA modules from group representations

Let (E,π) be a representation of the complex reflection group W , where vector space E =

span{e1, . . . , ed} and π ∶W → GL(E). The group representation can then induce a H̃0-module,

∆(E)0, with the action of W described by π

twej = π(w)ej (14)

and the action of S(a) be given by

yλ∨ej = 0 (15)

for w ∈W , λ∨ ∈ a and j ∈ {1, . . . , d}.

Since no action of xµ has been defined, any multiplication by xµ will simply be added on.

As a result, an element of ∆(E)0 has the form

p = p1e1 +⋯ + pded

where p1, ⋯, pd ∈ C[x1, . . . , xn,∆−1].

Note that with respect to (e1, . . . , ed), each tw acts as a d × d matrix, with

twej =
d

∑
i=1
(tw)ijei. (16)

Recall that relations (2) and (3) in H̃0 describes how to interchange the order among xµ,

yλ∨ and tw. Combined with (14) and (15), we have fully described the action of each generator

of H̃0 on the module ∆(E)0.

4.2 Horizontal sections

Prop. 2 describes a mapping from ∂λ∨ to an element of H̃0. Via (12), we obtain the corresponding

action of ∂λ∨ on ∆(E)0.

The space of horizontal sections of ∆(E)0 is

HS(∆(E)0) = {p ∈∆(E)0 ∣ ∂λ∨p = 0 ∀λ∨ ∈ a}. (17)
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Propositon 3. [Ram21, Lec. 4 p. 4]

An element p = p1e1 +⋯ + pded ∈∆(E)0 is a horizontal section if and only if

∂pi
∂xk

= κ−1∑
s∈R

cs⟨αs, ϵ
∨
k⟩

1

xαs

(−pi +
d

∑
j=1
(ts)ijpj) (18)

for i ∈ {1, . . . , d} and k ∈ {1, . . . , n}.

Remark. If we were to use an alternative isomorphism described in (12′) to compute the

corresponding action of ∂λ∨, we will again need to replace ‘1’ by the complex number A in the

partial differential equations above

∂pi
∂xk

= κ−1∑
s∈R

cs⟨αs, ϵ
∨
k⟩

1

xαs

(−Api +
d

∑
j=1
(ts)ijpj) . (18′)

Proof. Let p = p1e1 +⋯ + pded ∈∆(E)0. p is a horizontal section if and only if

∂λ∨p = 0 ∀λ∨ ∈ a

⇐⇒ κ−1 [yλ∨ + ∑
s∈R

cs⟨αs, λ
∨⟩

1

xαs

(1 − ts)]p = 0 ∀λ∨ ∈ a (substituting (12) in Prop. 2)

⇐⇒ yλ∨p + ∑
s∈R

cs⟨αs, λ
∨⟩

1

xαs

(1 − ts)p = 0 ∀λ∨ ∈ a

⇐⇒
d

∑
j=1

yλ∨pjej + ∑
s∈R

d

∑
j=1

cs⟨αs, λ
∨⟩

1

xαs

(1 − ts)pjej = 0 ∀λ∨ ∈ a

⇐⇒
d

∑
j=1

pjyλ∨ej +
d

∑
j=1

κ
∂pj
∂λ∨

ej −
d

∑
j=1
∑
s∈R

cs⟨αs, λ
∨⟩
pj − spj
xαs

tsej

+ ∑
s∈R

d

∑
j=1

cs⟨αs, λ
∨⟩

1

xαs

(1 − ts)pjej = 0 ∀λ∨ ∈ a (using Prop. (1))

⇐⇒ κ
d

∑
j=1

∂pj
∂λ∨

ej =
d

∑
j=1
∑
s∈R

cs⟨αs, λ
∨⟩ (

pj − spj
xαs

ts −
1

xαs

(1 − ts)pj) ej ∀λ∨ ∈ a

⇐⇒ κ
d

∑
j=1

∂pj
∂λ∨

ej = ∑
s∈R

cs⟨αs, λ
∨⟩

1

xαs

d

∑
j=1
(pjtsej − pjej) ∀λ∨ ∈ a

⇐⇒ κ
d

∑
j=1

∂pj
∂λ∨

ej = ∑
s∈R

cs⟨αs, λ
∨⟩

1

xαs

d

∑
j=1
(pj

d

∑
i=1
(ts)ijei − pjej) ∀λ∨ ∈ a.

Take the coefficient of ei on both sides:

⇐⇒ κ
∂pi
∂λ∨
= ∑

s∈R
cs⟨αs, λ

∨⟩
1

xαs

(
d

∑
j=1

pj(ts)ij − pi) ∀i ∈ {1, . . . , d}, λ∨ ∈ a

⇐⇒
∂pi
∂x∨k
= κ−1∑

s∈R
cs⟨αs, ϵ

∨
k⟩

1

xαs

(
d

∑
j=1

pj(ts)ij − pi) ∀i ∈ {1, . . . , d}, k ∈ {1, . . . , n}.
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5 Hecke modules via monodromy

Equation (18) provides a system of partial differential equations. To fully specify the horizontal

sections of the RCA module we desire, initial conditions need to be given.

Let a0 ∈ a0 be a basepoint in the configuration space. Let f1, f2, . . . , fd ∈ HS(∆(E)0) be

horizontal sections with

fj(a0) = ej. (19)

These are the initial conditions for the partial differential equations in (18).

For each reflection s ∈ R, the monodromy matrix Ts ∈ End(E) is given by

T −1s ej = t
−1
s fj(tsa0), (20)

i.e.,

Ts =

⎛
⎜
⎜
⎜
⎜
⎝

f1(tsa0) . . . fd(tsa0)

⎞
⎟
⎟
⎟
⎟
⎠

−1
⎛
⎜
⎜
⎜
⎜
⎝

1 1 1

1 ts 1

1 1 1

⎞
⎟
⎟
⎟
⎟
⎠

. (21)

Recall the vector space E = span{e1, . . . , ed} is from the group representation of W , which

induces the RCA module ∆(E)0. [Gin+03, Ch. 5 Th. 5.13] shows that the matrices Ts for s ∈ R

satisfy the Hecke relations of a Hecke algebra of W . Hence, the vector space E can be viewed

as a Hecke module with generators Ts of the Hecke algebra acting by the matrices in (21) .

This process of mapping rational Cherednik algebra modules to Hecke algebra modules is

the KZ functor.

6 Type G(r, 1, 1)

Let W = {1, t, . . . , tr−1 ∣ tr = 1}, which is a cyclic group of order r. W is a complex reflection

group acting on a one-dimensional complex vector space a∗ = span{ϵ1} ≅ C. (see Appendix A.5

for a detailed discussion on W .)

6.1 Rational Cherednik algebra

Let κ ∈ C /{0} and c1, c2, . . . , cr ∈ C. Since each element of the cyclic group is its own conjugacy

class, no pair of ci and cj has to be equal.
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Let ∆ = ∏
r−1
l=1 xαi

. A localisation H̃0 of the rational Cherednik algebra associated to the

cyclic group W is the algebra generated by x1, y1, t1,
1
∆ with relations

tr1 = 1 (22)

∆
1

∆
=

1

∆
∆ = 1 (23)

t1x1 = ζx1t1, t1y1 = ζ
−1y1t1 (24)

and

y1x1 = x1y1 + κ −
r−1
∑
l=1

cl⟨ϵ1, α
∨
l ⟩⟨αl, ϵ

∨
1⟩t

l
1 (25)

= x1y1 + κ −
r−1
∑
l=1

clbl
(1 − ζ l)

bl
tl1 (26)

= x1y1 + κ −
r−1
∑
l=1

cl(1 − ζ
l)tl1. (27)

Let D0 be the algebra generated by x1, ∂1, t1,
1
∆ with relations

t1x1 = ζx1t1, t1∂1 = ζ
−1∂1t1 (28)

∂1x1 = x1∂1 + 1. (29)

Using Prop. (2), H̃0 ≅ D0 via the mapping

y1 ↦ κ∂1 −
r−1
∑
l=1

cl
1

x1

(1 − tl1). (30)

6.2 RCA modules

Let E(j) = span{ej} with t1ej = ζjej for j ∈ {0,1, . . . , r − 1}. These are the irreducible repre-

sentations of G(r,1,1). We can also take the direct sum of these irreducible representations to

form the regular representation E = span{e0, . . . , er−1}.

Let ∆(E)0 be the H̃0-module induced by E with action of W described above and y1ej = 0

for j ∈ {0, . . . , r − 1}.

In other words, tl1 acts on E = span{e0, e1, . . . , er−1} by

tl1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 ⋯ 0

0 ζ l . . . 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ ζ(r−1)l

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

9



We can similarly define ∆(E(j))0 for the irreducible representations, with action given by the

1 × 1 matrix tl1 = [ζ
jl].

Hence, an element of ∆(E)0 has the form

p = p0e0 +⋯ + pr−1er−1

and an element of ∆(E(j))0 has the form

p = pjej

where p0, ⋯, pr−1 ∈ C[x1,∆−1].

Using the mapping (30) between y1 and ∂1, we can also compute the action of ∂1 on ∆(E)0.

This leads to the following conditions for p = p1e1 +⋯+ pded ∈∆(E)0 to be a horizontal section

using Prop. 3:
∂pi
∂x1

= κ−1
1

x1

r−1
∑
l=1

cl(ζ
il − 1)pi = ki

1

x1

pi (31)

for i ∈ {0, . . . , r − 1} and ki = κ−1
r−1
∑
l=1

cl(ζ il − 1).

The general solutions to the above differential equation are

pi = Cix
ki
1 (32)

where Ci ∈ C.

6.3 Monodromy in a0

Fix a basepoint a0 = µ0 ∈ a0 = C /{0}.

Let f0, f1, . . . , fr−1 ∈HS(∆(E)0) with fj(a0) = ej. To find such fj, let fj = p0e0+⋯+pr−1er−1,

then

fj(a0) = ej
r−1
∑
i=0

pi(a0)ei = ej

r−1
∑
i=0

Cia
ki
0 ei = ej

Ô⇒ Cj = a
−ki
0 and Ci = 0 ∀i ≠ j

Ô⇒ fj = a
−kj
0 x

kj
1 ej.

10



For i = 1, . . . , r − 1, the monodromy matrix Ti ∈ End(E) is given by

T −1i ej = t
−ifj(t

ia0)

= t−ifj(ζ
ia0)

= t−ia
−kj
0 (ζ

ia0)
kjej

= t−iζ ikjej

= ζ−ijζ ikjej

= ζ i(kj−j)ej

Ô⇒ Tiej = ζ
i(j−kj)ej. (33)

Hence, the monodromy matrix of E can be written as

Ti =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ζ−k0i

⋱

ζ(r−1−kr−1)i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (34)

6.4 Hecke algebra and its modules

The Hecke algebra Hr,1,1 associated with a group of type G(r,1,1) is generated by T1 with

(T1 − q0)(T1 − q1)⋯(T1 − qr−1) = 0 (35)

for parameters q0, q1, . . . , qr−1 ∈ C.

Assume qi are all distinct, the simple Hr,1,1-modules are

E(j) = span{ej} with T1e
(j)
1 = qjej

for j ∈ {0,1, . . . , r − 1} (see [Ram08, §1 Thm. 1.3]).

The direct sum of all simple modules also forms a module E = span{e0, . . . , er−1}.

Consider the monodromy matrix Ti in (34) calculated in the previous section. Observe that

T1 with action on E given by T1ej = ζ(j−kj)ej satisfies

r−1
∏
j=0
(T1 − ζ

(j−kj)) = 0 (36)

11



which is the Hecke relation when parameters qj = ζ(j−kj).

As a result, from the rational Cherednik algebra module ∆(E)0, we have indeed produced

a corresponding Hecke module E with the generator T1 of the Hecke algebra acting by T1ej =

ζ(j−kj)ej for j = 0,1, . . . , r − 1.

If we map the RCA module ∆(E(j))0 across the KZ functor instead, then T1 also has action

on E(j) given by T1ej = ζ(j−kj)ej. This produces a simple module E(j) of Hr,1,1 with parameter

qj = ζ(j−kj).

7 Type G(1, 1, n)

Let W = ⟨si ∣ i = 1,2 . . . , n − 1⟩, where si = (i, i + 1), be a symmetric group of order n!. W

acts on a complex n-dimensional vector space a∗ = span{ϵ1, . . . , ϵn} ≅ Cn via permutations of

coordinates. (see Appendix A.6 for a detailed discussion on W .)

7.1 Rational Cherednik algebra

Let κ ∈ C /{0} and c ∈ C. Let ∆ = ∏
1≤i<j≤n

(xi − xj).

We will use xi to denote xϵi , yi to denote yϵ∨i and ti to denote tsi .

A localisation of the rational Cherednik algebra H̃0 is the algebra generated by x1, . . . , xn,

y1, . . . , yn, t1, . . . , tn−1, and
1
∆ with relations (46), (47), (1), (2), (4) and

yixi = xiyi + κ − c∑
j≠i

t(i,j) (37)

yixj = xjyi + ct(i,j). (38)

7.2 RCA modules and horizontal sections

The irreducible representations of the symmetric group W are indexed by partitions of n. We

can also obtain other representations by taking the direct sum of the irreducible ones. From

each group representation E, we can then induce a RCA module ∆(E)0.

For each RCA module induced from group representation E = {e1, . . . , ed}, apply (3) to

12



obtain the following conditions for p = p1e1 +⋯ + pded ∈∆(E)0 to be a horizontal section:

∂pi
∂xk

= κ−1c∑
ℓ≠k

1

xk − xℓ

(−pi +
d

∑
j=1
(t(ℓ,k))ijpj) (39)

for i ∈ {1, . . . , d} and k ∈ {1, . . . , n}.

For instance, when n = 3, an irreducible representation of W is indexed by the partition

(2,1). This partition has two standard Young tableaux

1
2

3

and

1
3

2

. Hence, this

irreducible representation is of dimension two.

In this case, W acts by:

s1 =
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠
, s2 =

⎛
⎜
⎝

−1
2

3
2

1
2

1
2

⎞
⎟
⎠
.

Then, using Proposition 3, an element p = p1e1 + p2e2 in the induced RCA module is a

horizontal section if and only if the following partial differential equations are satisfied:

∂p1
∂x1

=
c

κ
[

1

x1 − x3

(−
3

2
p1 −

3

2
p2)]

∂p1
∂x2

=
c

κ
[

1

x2 − x3

(−
3

2
p1 +

3

2
p2)]

∂p1
∂x3

=
c

κ
[

1

x3 − x1

(−
3

2
p1 −

3

2
p2) +

1

x3 − x2

(−
3

2
p1 +

3

2
p2)]

∂p2
∂x1

=
c

κ
[

1

x1 − x2

(−2p2) +
1

x1 − x3

(−
1

2
p1 −

1

2
p2)]

∂p2
∂x2

=
c

κ
[

1

x2 − x1

(−2p2) +
1

x2 − x3

(
1

2
p1 −

1

2
p2)]

∂p2
∂x3

=
c

κ
[

1

x3 − x1

(−
1

2
p1 −

1

2
p2) +

1

x3 − x2

(
1

2
p1 −

1

2
p2)] .

A Hecke algebra associated with a symmetric group of order n! is generated by T1, . . . , Tn−1

with relations

TiTj = TjTi if ∣i − j∣ ≥ 2 (40)

TiTi+1Ti = Ti+1TiTi+1 (41)

(Ti − q)(Ti + q
−1) = 0 (42)
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for i, j ∈ {1, . . . , n − 1} (see [Ram21, Lec. 5 p. 5-7]).

Unfortunately, we did not manage to solve these systems of partial differential equations to

obtain the parameters qi for the Hecke relations of symmetric groups.

8 Discussion and conclusion

Associated to a complex reflection group, a rational Cherednik algebra is defined and related

results are explored. Infinite dimensional RCA modules are then pushed across the KZ functor

by solving partial differential equations for horizontal sections and computing monodromy

matrices.

Overall, three pieces of information are passed into the definition of a rational Cherednik

algebra — a complex reflection group W , a vector space a∗ on which W acts and some complex

parameters κ and cs. After mapping across the KZ functor, this data is manifested through the

relations of the corresponding Hecke algebra associated with W and its complex parameters qj.

In the example for cyclic groups, the resulting monodromy matrices are computed explicitly

and are verified to indeed produce Hecke modules. Although the example for symmetric groups

is also calculated, the systems of partial differential equations have not been solved, which could

be investigated further. I am also interested in exploring further properties of the rational

Cherednik algebras and Hecke algebras, and investigate the KZ functor for other types of

complex reflection groups in the future.
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Appendices

A Complex reflection groups

A.1 Complex reflections

Let a∗ be a C-vector space of dimension n.

a∗ ∶= span{ϵ1, . . . , ϵn}.

A linear transformation s ∈ GL(a∗) is a complex reflection if it fixes a hyperplane in a∗, i.e.,

dim(as) = n − 1, where as = {µ ∈ a∗ ∣ sµ = µ}.

We call such hyperplane as the reflecting hyperplane of s. If (e2, e3, . . . , en) is a basis of as and

αs ∈ a∗ is an nonzero element orthogonal to as, then with respect to the basis (αs, e2, e3, . . . , en),

the matrix of s is
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ms 0 ⋯ 0

0 1 . . . 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

for some ms ∈ C. Since sαs =msαs, αs is an eigenvector of s with non-trivial eigenvalue ms.

Figure 1 offers a visual intuition for the definition of a complex reflection in a two-dimensional

complex vector space.

A.2 Complex reflection groups

A complex reflection group W acting on a complex vector space a∗ is a subgroup of GL(a∗)

generated by the set of complex reflections it contains. Let R be the set of complex reflections

in W . Then, the set of reflecting hyperplanes of W is A = {as ∣ s ∈ R}.

The configuration space is

a0 = a∗ − ⋃
as∈A

as. (43)
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x

hyperplane Hsx

αs

Figure 1: Visualisation of a complex reflection s.

A.3 Dual vector space

Let the dual vector space of a∗ be a, consisting of linear maps λ∨ ∶ a∗ → C.

We define a pairing ⟨ , ⟩ ∶ a∗ × a → C in the usual way with ⟨µ,λ∨⟩ = λ∨(µ). We choose a

basis {ϵ∨1 , . . . , ϵ
∨
n} of the dual vector space a so that ⟨ϵi, ϵ∨j ⟩ = δij for all i, j ∈ {1, . . . , n}.

Given the action of W on a∗, let the action on the dual vector space a be given by wλ∨(µ) =

λ∨(w−1µ) for w ∈ W, µ ∈ a∗, λ∨ ∈ a. This can also be written in the pairing notation as

⟨µ,wλ∨⟩ = ⟨w−1µ,λ∨⟩.

This is a valid group action since

v[wλ∨(µ)] = vλ∨(w−1µ)

= λ∨(w−1v−1µ)

= λ∨((vw)−1µ)

= (vw)λ∨(µ) ∀µ ∈ a∗

Ô⇒ v(wλ∨) = (vw)λ∨.

Note that ⟨wµ,wλ∨⟩ = ⟨µ,λ∨⟩.
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A.4 More on eigenvectors of reflections

For each reflection s ∈ R, choose an element α∨s ∈ a such that the kernel of α∨s is the hyperplane

fixed by s, ie,

as = {µ ∈ a∗ ∣ ⟨µ,α∨s ⟩ = 0}. (44)

Recall that we let αs ∈ a∗ be an eigenvector of s with non-trivial eigenvalue ms. For both

αs and α∨s , we are also free to choose up to any scalar multiple. Let us normalise αs and α∨s

such that ⟨αs, α∨s ⟩ = 1 −ms.

Lemma 1. [Gri10, Ch. 2 p. 8] If αs ∈ a∗ is an eigenvector of s with non-trivial eigenvalue ms

such that ⟨αs, α∨s ⟩ = 1 −ms, then

sµ = µ − ⟨µ,α∨s ⟩αs ∀µ ∈ a∗. (45)

Proof. For the eigenvector αs, sαs =msαs = (1 − ⟨αs, α∨s ⟩)αs.

Let (e2, e3, . . . , en) be a basis of the hyperplane as fixed by s. Then, sei = ei = ei − ⟨ei, α∨s ⟩αs

since ei is in the kernel of α∨s , which means α∨s (ei) = ⟨ei, α
∨
s ⟩ = 0, for i = 2,3, . . . , n

We have now shown (45) is true for all elements of the basis (αs, e2, e3, . . . , en), and hence

it holds for all µ ∈ a∗.

Note that the converse is also true: If (45) holds, then substituting µ = αs gives sαs =

(1 − ⟨αs, α∨s ⟩)αs. Since s only fixes a hyperplane, there exists αs such that ⟨αs, α∨s ⟩ ≠ 0. So αs

is indeed an eigenvector of s with non-trivial eigenvalue ms = 1 − ⟨αs, α∨s ⟩. Hence, we can used

(45) to find an eigenvector αs when computing examples.

A.5 Complex reflection groups of type G(r,1,1)

Let r ∈ Z>0. A complex reflection group of type G(r,1,1) refers to a cyclic group of order r

W = {1, t, . . . , tr−1 ∣ tr = 1}

acting on a complex vector space of dimension 1

a∗ = span{ϵ1} ≅ C.
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Let ζ = e
2πi
r be a rth root of unity. Let the action of W on a∗ be given by tϵ1 = ζϵ1. Then

for its dual vector space a = span{ϵ∨1} ≅ C, the action is tϵ∨1 = ζ
−1ϵ∨1 .

For the cyclic group W , the set of reflections is R = {t, t2, . . . , tr−1} since each ti with non-

zero exponent fixes the origin, which is a hyperplane of dimension 0. Hence, the set of reflecting

hyperplanes is A = {{0}} and the configuration space is a0 = a∗ − {0} = C /{0}. Clearly, the set

of reflections in W can generate the cyclic group, and thus W is indeed a complex reflection

group.

For each reflection s = ti ∈ R, let us denote αs as αi and α∨s as α∨i for the sake of clearer

notations. Since as = {0} = {µ ∈ a∗ ∣ ⟨µ,α∨s ⟩ = 0}, α
∨
i can be any non-zero element of C. We can

see that the choice here does not affect the RCA defined in section 6.1. For now, let us choose

α∨i = biϵ
∨
1 for some bi ∈ C. Then, choose αi ∈ a∗ to ensure sµ = µ − ⟨µ,α∨s ⟩αs:

tiµ = µ − ⟨µ,α∨i ⟩αi

ζ iµ1ϵ1 = µ1ϵ1 − (µ1bi)αi

αi =
(1 − ζ i)ϵ1

bi
.

A.6 Complex reflection groups of type G(1,1, n)

Let n ∈ Z>0. A complex reflection group of type G(1,1, n) is a symmetric group of order n!

W = ⟨si ∣ i = 1,2 . . . , n − 1⟩ where si = (i, i + 1)

acting on a complex vector space of dimension n

a∗ = span{ϵ1, . . . , ϵn} ≅ Cn

via permutations of coordinates.

Let the dual vector space be a = span{ϵ∨1 , . . . , ϵ
∨
n}.

The set of reflections in W is R = {(i, j) ∣ 1 ≤ i < j ≤ n}, since each (i, j) fixes a hyperplane

in which the ith component equals to the jth component.

a(i,j) = {µ = (µ1, . . . , µn) ∈ a
∗ ∣ µi = µj}.

Hence, the set of reflecting hyperplanes of W is A = {a(i,j) ∣ (i, j) ∈ R}. All reflections in W

belong to the same conjugacy class since (i, j) = sj−1⋯si+1sisi+1⋯sj−1.
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Using (44) and (45), we find that α∨(i,j) = ϵ
∨
i − ϵ

∨
j and α(i,j) = ϵi − ϵj.

The configuration space is

a0 = {µ = (µ1, . . . , µn) ∈ a
∗ ∣ µi ≠ µj ∀i ≠ j} .

B Symmetric algebras

Let S(a∗) be the symmetric algebra of a∗, which is an algebra generated by xµ for µ ∈ a∗ with

relations

xµ+ν = xµ + xν , xcµ = cxµ, xµxν = xνxµ (46)

for µ, ν ∈ a∗, c ∈ C. For the simplicity of notation, let us write xi ∶= xϵi for i = 1, . . . , n.

Similarly, let S(a) be the symmetric algebra of the dual a, which is an algebra generated

by yλ∨ for λ∨ ∈ a with relations

yλ∨+γ∨ = yλ∨ + yγ∨ , ycλ∨ = cyλ∨ , yλ∨yγ∨ = yγ∨yλ∨ (47)

for λ∨, γ∨ ∈ a, c ∈ C. We write yi = yϵ∨i for i = 1, . . . , n.

Note that we can now write (45) as

xsµ = xµ − ⟨µ,α
∨
s ⟩xαs . (45′)
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