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1 Abstract

This report is an investigation into an Excess-Loss reinsurance relationship within a continuous-time Principal-

Agent framework where it is assumed that the claims process can be described by the Cramer-Lundberg model

and the Agent’s (Insurer), and Principal’s (Re-insurer) wealth equation’s adhere to the Expected-Premium

Principal. This is subject to conditions regarding how the wealth is allocated at any given time. Based

upon the paper Robust reinsurance contracts with uncertainty about jump risk (Hu, Chen, & Wang 2018)[5].

Bellman’s Principle of optimality is utilised, with the respective Hamilton-Jacobin-Bellman Equation for the

wealth dynamics of the Principal and Agent being solved to find the value functions. During this procedure the

optimal values for the Agent’s Risk Retention (Insurer’s Retention Rate) and the Principal’s Safety Loading

Factor (Reinsurance price) is expressed. A form of the claim distribution is assumed to produce explicit solutions.

The nature of these solutions, namely the Safety Loading Factor and the Risk Retention rate is analysed using

Sensitivity Analysis.
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2 Introduction

This report is primarily based on the papers Robust reinsurance contracts with uncertainty about jump risk

by (Hu, Chen & Wang 2018) and Reinsurance contract design when the insurer is ambiguity-averse (Hu &

Wang 2019). These two papers similarly elucidate an optimisation process of the Safety Loading Factor and

Risk Retention factor of the Principal and Agent respectively for given wealth processes of an Insurer and a

Re-Insurer. The model presented by (Hu et al. 2018) was constructed under the assumption of uncertainty in

regards to the claim intensity rate of the Poisson Process. In this research report, it is assumed that there is

no uncertainty is held by both parties and, it is to this extent that it must be stated that this report is the

representation of a specific case of the generalised model outlined in the aforementioned papers. This is with the

distinction that the process of solving for the parameters produced in this model requires numerical methods

to approximate, which was able to be mitigated through the utilisation of a jump intensity adjuster function in

the original paper.[5]

Re-insurance contracts are risk management tools used by Insurance companies to transfer risk to external

entities. They are contracts between Insurance and Re-insurance firms where there is an agreement that the

insurance company will transfer some level of risk to the re-insurer in the form of the re-insurer agreeing the

indemnify the insurance company in the case of a loss. This has the effect of reducing the probability of the

insurance company being liable to meet claim obligations in excess of what is predicted. Reinsurance serves

many functions within the financial sector, it reduces the unearned premium reserves and increases the insur-

ance companies underwriting capacity. The process of optimising the parameters such as the Re-insurer’s Safety

Loading Factor and Insurer’s Risk Retention factor is an important part of ensuring that risk retained by the

Insurer is effectively and efficiently pooled, or transferred. In this report it is assumed that the Reinsurance

contract which is agreed upon in this Reinsurance relationship is an Excess-loss contract. This stipulates that

if the obligations faced by an Insurance company in relation to claims to policyholders are over a pre-specified

monetary value then the excess amount owing over that level is covered for by the Reinsurance company.

This report will consist of three main sections followed by Sensitivity Analysis. The first two sections will

encompass the derivation of the optimised reinsurance proportion and Safety Loading Factor, and the corre-

sponding value functions for the Insurer and the Re-insurer. The third section will outline an assumed claim

distribution function as outlined in Hu et al. (2019) to produce semi-analytic representations of the optimised

parameters. The Agent section will be positioned from the perspective of the insurance company with the goal

of trying to determine expressions for the value function of the insurer and solve the optimal control problem

for the Risk Retention parameter. The second section will focus on the Principal problem from the Re-insurer’s

perspective with the goal of determining an expression for the Re-insurer’s value function and the optimal Safety

Loading Factor. This report will utilise the Hamilton-Jacobin-Bellman (HJB) Equation along with assuming the

dynamics of the claim process can be modelled using the Cramér–Lundberg (C-L) model, and that the Expected
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Premium Principle is valid in the representation of the predicted wealth dynamics to determine an expression

for the optimal Retention Rate and optimal Safety Loading Factor for the Principal. It is as a result of solv-

ing the HJB equation, that the value functions for both the Re-insurer’s and insurance contracts will be derived.

The choice of using the Principal-Agent framework for optimising the optimal retention value and optimal

re-insurance price parameters given the wealth dynamics of a two-party system is especially useful in this sce-

nario as it allows us to take into consideration the perceptions of both the Insurer and the Re-Insurer. This

means that the optimal solution combines the preferences of both parties which is important in this context as

the perceptions held by the Principal or Agent can change the optimal dynamics of the parameters.

Following the derivation of the optimal Safety Loading Factor and retention rate functions, and both the

Agent’s and Principal’s value functions, sensitivity analysis will be conducted to visually elucidate behaviours

that can arise within the model whilst attempting to draw conclusions from the optimal directions taken by the

Principal and Agent within the model derived.

Statement of Authorship

The workload was divided as follows:

1. Patrick Gillen. Completed mathematic formulation, derived theoretical results, wrote the report, wrote

R code.

2. Ning Wang. Proofread document, provided sources, taught concepts, assisted in the technical aspects.
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3 Model

This model is constructed within in a filtered probability space (Ω, F, (Ft∈[0,T ]), P ). In which the filtration is

produced by a Compound Poisson Process, where the dynamics of the claim process can be modelled by the

C-L model.

dCt = cdt− d

N(t)∑
i=1

Zi

Where
∑N(t)

i=1 Zi is a Compound Poisson Process that acts to display the net number of claims to a time t,

c ∈ R+ is a positive constant that represents the claim premium return, {N(t)}t∈[0,T ] is an homogeneous Poisson

process with a corresponding intensity η ∈ R+. For the Compound Poisson process it is assumed that the claim

sizes {Zi, i ≥ 0} are identically distributed and independent with a probability distribution function f(Z), a

cumulative distribution function F (Z) and a corresponding inverse cumulative distribution function/survival

function F̄ (Z) such that Zi > 0 and that the process is also independent of the homogeneous Poisson process.

It is also assumed that E[Zi] = µ.

4 Agent Problem

4.1 Wealth Equation

The model for the Agent’s wealth process is created under the assumption that in one period the Agent would

receive income from insurance premiums and income from the returns generated from a deposit account with

a fixed rate of return. In the same period the insurance company would be subject to the obligations arising

from claim’s that are still held by the insurer, and pay for make payments to the reinsurer for the contracts

reinsured. It is assumed that changes in wealth will adhere to the Expected Premium Principle. The control

variables are defined such that p, β ∈ C([0, T ] 7→ [0, 1]). The control variable p = {pt, t ∈ [0, T ]} will be defined

to be the Agent’s Risk Retention and, β = {βt, t ∈ [0, T ]} be the principal’s Safety Loading Factor, θ ∈ R+

be the Safety Loading Factor for the insurer. Since the Re-Insurance contract is of the form of an Excess-Loss

contract, the amount reinsured is defined to be the losses which exceed a certain agreed upon level this boundary

is determined by the suggested Risk Retention which can be expressed as Zi −Min[Zi, pt]. w : [0, T ] 7→ R is

defined to be the state variable of the system that denotes the wealth process. Then wt satisfies the following

equation:

dwt = [(1 + θ)ηµ− (1 + βt)ηEt [Zi −Min[Zi, pt]]] dt+ rwtdt− d

N(t)∑
i=1

Min[Zi, pt]

=

(
(θ − βt)ηµ+ η(1 + βt)Et[Min[Zi, pt]]

)
dt+ rwtdt− d

N(t)∑
i=1

Min[Zi, pt]

=

[
(θ − βt)ηµ+ η(1 + βt)

∫ pt

0

F̄ (Z)dZ + rwt

]
dt− d

N(t)∑
i=1

Min[Zi, pt]

(1)
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In this case it can be seen that c = (1+θ)ηµ−(1+βt)ηEt [Zi −Min[Zi, pt]]+rwt and the Expected Reinsurance

cost and insurance income are both a result of the expected premium principle. In this scenario HJB equation

will be constructed with the goal being trying to maximise the expected utility of the terminal value. As outlined

inn Hu et al. (2018) a function v ∈ C(1,2)([0, T ]×R 7→ R) is defined such that:

vt(t, w) + Supp∈[0,1]{L(t, w; p)} = 0

Where L : [0, T ) × R × [0, 1] 7→ R is comprised of the wealth dynamics of the the system and the Expected

change in the value following a jump, or change in the claims process.

L(t, w; p) = A(t, w; p)vw(t, w; p) +E[v(t, w − y(Zi))− v(t, w)]

dwt = A(t, w; p)dt− d

N(t)∑
i=1

y(Zi)

.

Comparing the coefficient functions of vw with Equation (1) yields:

A(t, w; p) =(θ − βt)ηµ+ η(1 + βt)

∫ pt

0

F̄ (Z)dZ + rw

y(Zi) =Min[Zi, p]

Substituting this into the HJB Equation results in the following:

vt(t, w) + Supp∈[0,1]

{[
(θ − βt)ηµ+ η(1 + βT )

∫ pt

0

F̄ (Z)dZ + rw

]
vw(t, w; p)

+ηEt[v(t, w −Min[Zi, p])− v(t, w)]

}
= 0

(2)

Letting utility function be the exponential function, results in the objective and value function being of the

form:

J(t, w) = v(t, w; p) = Supp∈[0,1]E[U(w(T ))] = Supp∈[0,1]E

[
−e−λw(T )

λ

]
With the terminal value being of the form:

U(w(T )) = v(T,w; p) = −e−λw

λ

Where λ ∈ (0, 1]0 is a measure of risk aversion. The higher the risk aversion parameter the more risk-averse the

Agent is. For v(t, w; p) such that t ∈ [0, T ). I will use the assumed value function as presented by Hu, Chen,

and Wang (2018)[4]. This value function will be of the form:

v(t, w; p) = −
exp

(
−λ(wer(T−t) + h(t))

)
λ

(3)

Where h ∈ C2([0, T ] 7→ R) is a function to be determined with the boundary condition that h(T ) = 0
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4.2 Optimising Risk Retention Factor

In this section, the supremum of the Risk Retention factor will be derived. Taking the first partial derivatives

of the assumed value function produces:

vt(t, w; p) = λ(wer(T−t) − h′(t))v

vw(t, w; p) = −λer(T−t)v

As displayed in Equation (22) in Appendix (9.1) the Expectation of the change in value following the jump in

claims process can be expressed as:

Et[v(t, w −Min[Zi, p])− v(t, w)] = v(t, w)λer(T−t)

∫ p

0

exp(λZer(T−t))F̄ (Z)dZ (4)

Substituting the result from Equation (4) into Equation (2) produces:

λ(wer(T−t) − h′(t))v + Supp∈[0,1]

{[
(θ − βt)ηµ+ η(1 + βt)

∫ p

0

F̄ (Z)dZ + rw

]
(−λer(T−t)v)

+ ηvλer(T−t)

∫ p

0

exp(λZer(T−t))F̄ (Z)dZ

}
= 0

(5)

The process of solving for the Agent’s optimal Risk Retention factor is displayed in the Appendix (9.2). It is of

the form:

p∗t =
ln(1 + βt)

λ
e−r(T−t) (6)

Analysing this equation we can make inferences about the nature of a optimised reinsurance relationship where

the Principal’s Safety Loading Factor is not optimal. If the Agent’s risk aversion parameter increases this would

result in optimal stop-loss value increases. This is in line with what is predicted as a higher risk aversion

parameter would imply that the Agent is less comfortable with higher risk. In this equation we can also see

that as time tends to maturity then optimal stop-loss point will decrease.

Assuming that Equation (5) consists of the Agent’s optimized Risk Retention factor and solving for the

Insurer’s auxiliary value function we get the following:

h′(t) = ηer(T−t)

∫ p∗
t

0

exp(λZer(T−t))F̄ (Z)dZ − (θ − βt)ηµe
r(T−t) − η(1 + βt)e

r(T−t)

∫ p∗
t

0

F̄ (Z)dZ

=⇒ h(t) = −
∫ T

t

ηer(T−α)

∫ p∗
α

0

exp(λZer(T−α))F̄ (Z)dZdα+

∫ T

t

(θ − βα)ηµe
r(T−α)dα

+

∫ T

t

η(1 + βα)e
r(T−α)

∫ p∗
α

0

F̄ (Z)dZdα

(7)

Since the Safety Loading Factor is dependent on time solving the Insurer’s auxiliary function requires an explicit

solution to the Principal’s optimal Safety Loading Factor. Since it will be shown that an explicit solution for

the principal’s optimised Safety Loading Factor cannot be found the Insurer’s auxiliary value function will be

of a semi-analytical nature requiring numerical analysis to determine approximations for the function.
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5 Principal Problem

5.1 Wealth Equation

In the same manner as what was presented in the Agent section it is assumed that Principal’s claim process can

be modelled using the C-L model. It is also assumed that in one period the reinsurance company will receive

returns from a deposit account compounding at a fixed rate r ∈ R+. The reinsurance firm will also receive

the premiums from the reinsurance contacts and pay the claims which they have re-insured. It is also assumed

the the parameters p, β, µ are defined as in the same way as in the Agent problem section. The state variable

ŵ : [0, T ] 7→ R that represents will then satisfy the following equation:

dŵt = rŵtdt+ (1 + βt)ηE[Zi −Min(Zi, pt)]dt− d

N(t)∑
i=1

[Zi −Min[Zi, pt]]

= rŵtdt+ (1 + βt)ηµdt− (1 + βt)η

∫ pt

0

F̄ (Z)dZdt− d

N(t)∑
i=1

[Zi −Min[Zi, pt]]

(8)

In the same manner as what occurred in the Agent section the Equation (8) is substituted into the HJB equation.

If it is assumed that the equation includes the optimised Risk Retention parameter it will be of the form:

v̂t(t, ŵ) + Supβ∈[0,1]

{[
rŵt + (1 + βt)ηµ− (1 + βt)η

∫ p∗
t

0

F̄ (Z)dZ

]
v̂ŵ(t, ŵ;β)

+ηEt[v̂(t, ŵ − Zi +Min[Zi, p
∗
t ])− v̂(t, ŵ)]

}
= 0

(9)

The Principal’s utility function will be assumed to be of the same form as the Agent’s being represented in the

form of an exponential function. This results in the objective and value function being of the form:

Ĵ(t, ŵ) = v̂(t, ŵ;β) = Supβ∈[0,1]E[U(ŵ(T ))] = Supβ∈[0,1]E

[
−e−γŵ(T )

γ

]
With the terminal value being of the form:

U(ŵ(T )) = v̂(T, ŵ;β) = −e−γŵ

γ

In this case γ ∈ (0, 1] is a measure of the Principal’s risk aversion. The assumed value function as presented by

Hu, Chen, and Wang (2018)[4] will again be used, this produces a value function of the form:

v̂(t, ŵ;β) = −
exp

(
−γ(ŵer(T−t) + g(t))

)
γ

(10)

Where g ∈ C2([0, T ] 7→ R) is a function to be determined with the terminal condition that g(T ) = 0

5.2 Optimising Safety Loading Factor

As displayed in the Appendix (9.3) the expected change in value of the re-insurer following a jump in the claims

process can be expressed as:

Et[v̂(t, ŵ − Zi +Min[Zi, p])− v̂(t, ŵ)] = v̂(t, ŵ)exp(−γper(T−t))

∫ ∞

p

exp(γZer(T−t))f(Z)dZ − F̄ (p)
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Assuming that the HJB equation consists of the optimised Safety Loading Factor, optimised agent Risk Re-

tention factor, and substituting the above expression and the value function and the derivatives of the value

function produces a HJB equation of the form:

γ(ŵer(T−t) − g′(t))v̂ − γer(T−t)v̂

[
rŵt + (1 + β∗

t )ηµ− (1 + β∗
t )η

∫ p∗
t

0

F̄ (Z)dZ

]

+ ηv̂exp(−γp∗t e
r(T−t))

∫ ∞

p∗
t

exp(γZer(T−t))f(Z)dZ − ηv̂F̄ (p∗t ) = 0

(11)

As displayed in Equation (29) in Appendix (9.4), the Principal’s Optimised Safety Loading Factor without

making assumptions in regard to the nature of the claim distribution is a solution to the following equation:

− γer(T−t)µ+ γer(T−t)

∫ p∗
t

0

F̄ (Z)dZ + (1 + β∗
t )γe

r(T−t)F̄ (p∗t )
∂p∗

∂β∗

− γer(T−t)exp(−γp∗t e
r(T−t))

∂p∗

∂β∗

∫ ∞

p∗
t

exp(γZer(T−t))f(Z)dZ

+ exp(−γp∗t e
r(T−t))

∂

∂β∗
t

[∫ ∞

p∗
t

exp(γZer(T−t))f(Z)dZ

]
− F̄ ′(p∗t )

∂p∗t
∂β∗

t

= 0

(12)

An explicit solution for the Principal’s Safety Loading Factor requires information in regard to the to claim size

distribution. Solving for the Re-insurer’s Auxiliary function produces an equation of the form:

g′(t) = er(T−t)(1 + βt)η

∫ p∗
t

0

F̄ (Z)dZ − er(T−t)η(1 + βt)µ

+
η

γ
exp(−γp∗t e

r(T−t))

∫ ∞

p∗
t

exp(γZer(T−t))f(Z)dZ − η

γ
F̄ (p∗t )

=⇒ g(t) =

∫ T

t

er(T−t)η(1 + βα)µdα−
∫ T

t

er(T−α)(1 + βα)η

∫ p∗
α

0

F̄ (Z)dZdα

−
∫ T

t

η

γ
exp(−γp∗αe

r(T−α))

∫ ∞

p∗
α

exp(γZer(T−α))f(Z)dZdα+

∫ T

t

η

γ
F̄ (p∗α)dα

(13)

A semi-analytical solution for the Principal’s auxiliary value function also requires knowledge about the claim

size distribution. These solutions will be found in the following section.
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6 Claim distribution assumption

In this section an explicit expression for the Insurer’s and Re-insurer’s auxiliary function and the Re-insurer’s

Safety Loading Factor will be found. To find an explicit solution for the value function of the Agent, I will

follow D. Hu, et al.(2018)[5] by will assuming that the claim sizes will follow an exponential distribution.

f(Z) = ke−kZ

F (Z) =

∫ Z

0

ke−kada = 1− e−kZ

F̄ (Z) = e−kZ

(14)

For some k ∈ R+ which represents the mean claim size.

6.1 Optimal Safety Loading Factor

As displayed in Equation (29) in Appendix (9.3), substituting the derivative of the Agent’s Risk Retention

parameter with respect to the Safety Loading Factor into Principal’s HJB Equation, and substituting the

optimised Risk Retention factor into all terms not requiring a claim assumption produces:

− γer(T−t)µ+ γer(T−t)

∫ p∗
t

0

F̄ (Z)dZ +
γ

λ
F̄ (p∗t )−

γ

λ
(1 + β)−

γ
λ−1

∫ ∞

p

exp(γZer(T−t))f(Z)dZ

+ (1 + β)−
γ
λ

d

dβ

[∫ ∞

p

exp(γZer(T−t))f(Z)dZ

]
− e−r(T−t)F̄ ′(p∗t )

(1 + β)λ
= 0

(15)

Substituting the claim distribution assumption into Equation (15) produces

− γer(T−t)µ+ γer(T−t)

∫ p∗
t

0

e−kZdZ +
γ

λ
e−kp∗

t − γk

λ
(1 + β)−

γ
λ−1

∫ ∞

p

exp(γZer(T−t))e−kZdZ

+ k(1 + β)−
γ
λ

d

dβ

[∫ ∞

p

exp(γZer(T−t))e−kZdZ

]
+

ke−r(T−t)e−kp∗
t

(1 + β)λ
= 0

− γer(T−t)µ+
γ

k
er(T−t)[1− e−kp∗

t ] +
γ

λ
e−kp∗

t +
γk

(γer(T−t) − k)λ
(1 + β)−

γ
λ−1exp(p∗t (γe

r(T−t) − k))

− k(1 + β)−
γ
λ

γer(T−t) − k

d

dβ

[
exp(p∗t (γe

r(T−t) − k))
]
+

ke−r(T−t)e−kp∗
t

(1 + β)λ
= 0

(16)

In the process of integrating the third and forth terms in Equation (16) there is an implicit assumption that

γer(T−t)−k < 0 bounding the integral. Substituting the optimised Agent’s Risk Retention factor into Equation

(16) produces:

− γer(T−t)µ+
γer(T−t)

k
[1− (1 + β)−

k
λ e−r(T−t)

] +
γ(1 + β)−

k
λ e−r(T−t)

λ

+
γk(1 + β)

−ke−r(T−t)

λ −1

(γer(T−t) − k)λ
− ke−r(T−t)(1 + β)

−ke−r(T−t)

λ −1

λ
+

e−r(T−t)k(1 + β)−
k
λ e−r(T−t)−1

λ
= 0

This results in the optimal Safety Loading Factor satisfying the following equation:

(1 + β∗)−
k
λ e−r(T−t)

[
1

λ
− er(T−t)

k

]
+

k(1 + β∗)−
k
λ e−r(T−t)−1

(γer(T−t) − k)λ
− er(T−t)µ+

er(T−t)

k
= 0

10



An expression for the optimised parameter is to be calculated using numerical methods. This will be calculated

in the following sensitivity analysis section. Analysing the equation above we see that if the Agent’s risk aversion

parameter is equal to 0 the function is not defined. This is also true if the Principal’s risk aversion parameter

is equal to 0.

Substituting the claim distribution assumption and the optimal proportion of retained claims in the second

derivative of the Principal’s HJB Equation with respect to the Safety Loading Factor produces as the following:

dL2

dβ2
(t, ŵ) = ηv̂

(
− γ

λ2
(1 + β)−

k
λ e−r(T−t)−1(ke−r(T−t) − λ)− γk(1 + β∗)−

k
λ e−r(T−t)−2

(γer(T−t) − k)λ2

(
ke−r(T−t) − λ

))

= −γηv̂

λ2
(1 + β)−

k
λ e−r(T−t)−2(ke−r(T−t) − λ)

(
1 + β +

k

γer(T−t) − k

)
To ensure that the parameter is a supremum we must place the condition that

ke−r(T−t) − λ > 0

1 + β +
k

γe−r(T−t) − k
> 0

In the process of modelling the optimal parameters it must be verified that the optimal safety loading parameter

adheres to this assumption in the sensitivity analysis section.

6.2 Agent’s Optimal Retention rate

Since the Agent’s Optimal Retention rate is dependent on the Principal’s Safety Loading Factor, and an explicit

solution to the Safety Loading Factor is dependent on assuming a form of the claims distribution. If the

Optimised Safety Loading Factor is included into the Optimal Retention rate, it will be of the form:

p∗t =
ln(1 + β∗

t )

λ
e−r(T−t) (17)

6.3 Insurer’s Auxiliary Value function

In this section a semi-analytical solution to the Insurer’s and Re-insurer’s value function. Substituting the claim

distribution assumption into the expression for the Auxiliary function produces:

h(t) = −
∫ T

t

ηer(T−α)

∫ p∗
α

0

exp(λZer(T−α))e−kZdZdα+

∫ T

t

(θ − βα)ηµe
r(T−α)dα

+

∫ T

t

η(1 + β)er(T−α)

∫ p∗
α

0

e−kZdZdα

= −
∫ T

t

ηer(T−α)exp(p∗α(λe
r(T−α) − k))

λer(T−α) − k
dα+

∫ T

t

(θ − βα)ηµe
r(T−α)dα

+

∫ T

t

η(1 + β)er(T−α)[1− e−kp∗
α]

k
dα

(18)

Since the Agent’s Risk Retention parameter is dependent on the Principal’s Safety Loading Factor which does

not have an explicit solution. Following the substitution the Agent’s optimal retention rate produces we get the

11



following:

h(t) = −
∫ T

t

ηer(T−α)(1 + β∗
α)

1− k
λ er(T−t)

λer(T−α) − k
dα+

∫ T

t

(θ − βα)ηµe
r(T−α)dα

+

∫ T

t

η(1 + β∗
α)e

r(T−α)[1− (1 + β∗
α)

−k
λ e−r(T−α)]

k
dα

To determine the nature of the Insurer’s value function the auxiliary function must be numerically estimated.

6.4 Re-insurer’s Auxiliary Value function

In Section (5) the Re-insurer’s Auxiliary function was derived. Substituting the claim distribution assumption

into Equation (13) produces:

g(t) =

∫ T

t

er(T−t)(1 + βα)µdα−
∫ T

t

er(T−α)(1 + βα)

∫ p∗
α

0

e−kZdZdα

−
∫ T

t

η

γ
exp(−γper(T−α))

∫ ∞

p∗
α

exp(γZer(T−α))ke−kZdZdα+

∫ T

t

η

γ
e−kp∗

αdα

=

∫ T

t

er(T−t)(1 + βα)µdα+

∫ T

t

er(T−α)

k
(1 + βα)(e

−kp∗
α − 1)dα

+

∫ T

t

kη

γ(γer(T−α) − k)
e−kp∗

αdα+

∫ T

t

η

γ
e−kp∗

αdα

(19)

Substituting the Agent’s Optimal Retention rate given that the Principal’s Safety Loading Factor is optimal

into Equation (19) produces the following form of the Re-insurer’s Auxiliary Function:

g(t) =

∫ T

t

er(T−α)(1 + βα)µdα+

∫ T

t

er(T−α)

k
(1 + βα)((1 + β∗

α)
− k

λ e−r(T−α)

− 1)dα

+

∫ T

t

kη

γ(γer(T−α) − k)
(1 + β∗

α)
− k

λ e−r(T−α)

dα+

∫ T

t

η

γ
(1 + β∗

α)
− k

λ e−r(T−α)

dα

(20)

Since this function is also dependent on the Principal’s Safety Loading Factor numerical methods will have to

be used to estimate the nature of the function.
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7 Sensitivity Analysis

In the previous section the claim distribution assumption led to semi-analytical solutions to the value functions

and control parameters. In this section the behaviour of the Principal and the Agent given changes in the

parameters will be observed. This will be achieved by utilisation of sensitivity analysis. This type of analysis

will highlight the effects on the Retention rate, the Reinsurance price given changes in the risk aversion param-

eters. I assume in this case the the Insurer is risk prone and the Re-insurer high a moderate level of risk aversion.

Parameters r µ γ λ t T

Values 3% 0.2 0.03 0.6 0.5 1

7.1 Optimal Reinsurance Price and Re-Insurer Safety Loading Factor functions

In the derivation of the optimal retention rate and Safety Loading Factor assumptions were made about the

nature of the the claim distribution parameter k. If is assumed that:

k = 4er(T−t)

Then the conditions specified on k will be satisfied since it is stipulated that λ, γ ≤ 1

7.1.1 Re-insurer’s Safety Loading Factor

The figure below represents the optimal Safety Loading Factor given changes in the risk aversion parameter’s

of the Principal and Agent.

Figure 1: The effects of the Re-Insurer risk

aversion on the retention rate

Figure 2: The effects of the Re-Insurer risk

aversion on the retention rate

In Figure 1 there is displayed a positive relationship between the Re-insurer’s risk aversion and the rein-

surance price. If the re-insurer is more risk-averse then they will demand a higher premium for the extra risk

13



that they will be incurring by re-insuring the Insurer’s insurance contracts. As a result of the higher premiums

charged by the re-insurer, the perceived value of the reinsurance contract diminishes resulting in a higher pro-

portion of retained claims. This complement’s the relationship displayed in Figure 2 which elucidates a positive

relationship between the Retention rate and the Re-insurer’s risk aversion.

7.1.2 Insurer’s Risk Retention

Figure 3: The effects of the Insurer risk

aversion on the retention rate

Figure 4: The effects of the Insurer risk

aversion on the Reinsurance price

Figure 3 depicts a negative relationship between the retention rate and the Insurer’s risk aversion parameter.

This intuitively makes sense since the more risk averse the insurer is, the lower number of claims they are willing

to retain due to their perception of the benefits received from the risk incurred is lower. This will result in an

increase in the demand for reinsurance ceteris paribus. The figure adjacent represents a positive relationship

between the reinsurance price and the Insurer’s risk aversion. As previously stated since the Insurer’s risk

aversion parameter is increasing the demand for reinsurance will increase. This increase in demand will lead to

a higher reinsurance premium charged by the insurer.
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8 Conclusion

In this report, I have conducted analysis within the Principal-Agent framework where the claim process is

assumed to be modelled using Cramer-Lundburg Model. Through the utilisation of the HJB equation in con-

junction with the assumption regarding the form of the Principal’s and Agent’s utility function and the claim

distribution, expressions for the optimal reinsurance price and retention rate were derived. The HJB equation

also allowed for the derivation of the value function for both the insurer and re-insurer. In the sensitivity anal-

ysis section is was displayed that an Insurer’s risk aversion parameter will result in a decrease in the optimal

Retention Rate and an increase in the Safety Loading Factor. It was also displayed that an increase in the

Re-Insurer’s Risk Aversion parameter resulted in an increase in the Retention Rate and Safety Loading Factor.
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9 Appendix

9.1 Expectation of change in Agent’s Value jump

Simplifying the Expectation as displayed in Equation (2) produces:

Et[v(t, w −Min[Zi, p])− v(t, w)]

= Et[v(t, w −Min[Zi, p])]−E[v(t, w)]

= Et

[
−

exp
(
−λ(w −Min[Z, p])er(T−t) + h(t))

)
λ

]
−E[v(t, w)]

= −
∫ ∞

0

exp
(
−λ(w −Min[Z, p])er(T−t) + h(t))

)
λ

f(Z)dZ −
∫ ∞

0

v(t, w)f(Z)dZ

= v(t, w; p)

(∫ p∗
t

0

exp
(
λZer(T−t))

)
f(Z)dZ +

∫ ∞

p∗
t

exp
(
λp∗t e

r(T−t)
)
f(Z)dZ

−
∫ ∞

0

f(Z)dZ

)

Focusing the first term of the above Equation. I define a function:

D(Z) =

∫ p∗
t

0

exp
(
λZer(T−t)

)
f(Z)dZ

Integration by parts is used to simplify to the expression. By letting:

u(Z) = exp
(
λZer(T−t)

)
vz(Z) = f(Z)

=⇒
∫ p∗

t

0

u(Z)vz(Z)dZ =
[
u(Z)v(Z)

]p∗
t

0
−
∫ p∗

t

0

uz(Z)v(Z)dZ

We can express the function in the form:∫ p∗
t

0

exp
(
λZer(T−t)

)
f(Z)dZ

=
[
exp

(
λZer(T−t)

)
F (Z)

]p∗
t

0
−
∫ p∗

t

0

λer(T−t)exp
(
λZer(T−t)

)
F (Z)dZ

= exp
(
λp∗t e

r(T−t)
)
F (p∗t )−

∫ p∗
t

0

λer(T−t)exp
(
λZer(T−t)

)
F (Z)dZ

= exp
(
λp∗t e

r(T−t)
)
− F̄ (p∗t )exp

(
λp∗t e

r(T−t)
)
−
∫ p∗

t

0

λer(T−t)exp
(
λZer(T−t)

)
dZ

+

∫ p∗
t

0

λer(T−t)exp
(
λZer(T−t)

)
F̄ (Z)dZ

= exp
(
λp∗t e

r(T−t)
)
− F̄ (p∗t )exp

(
λp∗t e

r(T−t)
)
−
[
exp

(
λZer(T−t)

)]p∗
0

+

∫ p∗
t

0

λer(T−t)exp
(
λZer(T−t)

)
F̄ (Z)dZ

= −F̄ (p∗t )exp
(
λp∗t e

r(T−t)
)
+

∫ p∗
t

0

λer(T−t)exp
(
λZer(T−t)

)
F̄ (Z)dZ + 1

(21)
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Substituting the result from Equation (21) back into the expectation term produces:

Et[v(t, w −Min[Zi, p])− v(t, w)]

= v(t, w; p)

(
− F̄ (p∗t )exp

(
λp∗t e

r(T−t)
)
+

∫ p∗
t

0

λer(T−t)exp
(
λZer(T−t)

)
F̄ (Z)dZ + 1

+ exp
(
λp∗t e

r(T−t)
)
F̄ (p∗t )− 1

)

=

∫ p∗
t

0

λer(T−t)exp
(
λZer(T−t)

)
F̄ (Z)dZ

(22)

9.2 Agent’s optimal Risk Retention factor

Setting first derivative of Equation (5) with respect to the Risk Retention parameter equal to 0 produces:

η(1 + β)F̄ (p∗)vw + ηλ er(T−t)exp(λp∗er(T−t))F̄ (p∗)v = 0

(1 + β)vw + λ er(T−t)exp(λp∗er(T−t))v = 0
(23)

Substituting the derivatives of the value function into Equation (23) yields:

(1 + β)λer(T−t)v = λ er(T−t)exp(λp∗er(T−t))v

(1 + β) = exp(λp∗er(T−t))

ln
(
1 + β

)
= λp∗er(T−t)

p∗t =
ln
(
1 + β

)
λ

e−r(T−t)

(24)

Taking the second derivative of Equation (5) with respect to the Agent’s Risk Retention factor produces:

− η(1 + β)F̄ ′(p)λer(T−t)v + ηλ er(T−t)exp(λper(T−t))F̄ ′(p)v + ηλ2e2r(T−t)exp(λper(T−t))F̄ (p)v

= ηvλer(T−t)(exp(λper(T−t))F̄ ′(p) + λer(T−t)exp(λper(T−t))F̄ (p)− (1 + β)F̄ ′(p))

= kηvλer(T−t)(−exp(p(λer(T−t) − k)) + λer(T−t)exp(p(λer(T−t) − k)) + k(1 + β)e−kp)

(25)

The final line of Equation (25) is produced by substituting the claim distribution assumption into the preceding

expression. Since the value function is less than 0 for all values of time and wealth. For this parameter to be a

supremum of the HJB Equation

−exp(p(λer(T−t) − k)) + λer(T−t)exp(p(λer(T−t) − k)) + k(1 + β)e−kp > 0
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9.3 Expectation of change in Principal’s Value jump

Et[v(t, w − Zi +Min[Zi, p])− v(t, w)]

= Et[v(t, w − Zi +Min[Zi, p])]−E[v(t, w)]

= Et[−
exp

(
−γ(w − Z +Min[Z, p])er(T−t) + h(t))

)
γ

]−E[v(t, w)]

= −
∫ ∞

0

exp
(
−γ(w − Z +Min[Z, p])er(T−t) + h(t))

)
γ

f(Z)dZ −
∫ ∞

0

v(t, w)f(Z)dZ

= v(t, w; p)]

[∫ p∗
t

0

exp
(
−γ(−Z + Z)er(T−t))

)
f(Z)dZ +

∫ ∞

p∗
t

exp
(
−γ(−Z + p∗t )e

r(T−t)
)
f(Z)dZ

−
∫ ∞

0

f(Z)dZ

]

= v(t, w; p)]

[[
F (Z)

]p
0

+ exp
(
−γpte

r(T−t)
)∫ ∞

p∗
t

exp
(
γZer(T−t)

)
f(Z)dZ − 1

]

= v(t, w; p)]

[
1− F̄ (p)− F (0) + exp

(
−γpte

r(T−t)
)∫ ∞

p∗
t

exp
(
γZer(T−t)

)
f(Z)dZ − 1

]
Applying the initial condition that F(0)=0, as a result of Z being defined for positive real numbers we have the

expression

Et[v(t, w − Zi +Min[Zi, p])− v(t, w)] = v(t, w)

[
exp(−γper(T−t))

∫ ∞

p

exp(γZer(T−t))f(Z)dZ − F̄ (p)

]

9.4 Principal’s Optimised Safety Loading Factor

Taking the first derivative of Equation (11) with respect to the Safety Loading Factor and setting it equal to 0

produces:

− γer(T−t)v̂

[
ηµ− ∂

∂βt

(
(1 + βt)η

∫ p∗
t

0

F̄ (Z)dZ

)]

+
∂

∂βt

(
ηv̂exp(−γp∗t e

r(T−t))

∫ ∞

p∗
t

exp(γZer(T−t))f(Z)dZ − ηv̂F̄ (p∗t )

)
= 0

− γer(T−t)µ+ γer(T−t)(1 + βt)
∂

∂βt

(∫ p∗
t

0

F̄ (Z)dZ

)
+ γer(T−t)µ

∫ p∗
t

0

F̄ (Z)dZ

+
∂

∂βt

(
exp(−γper(T−t))

∫ ∞

p∗
t

exp(γZer(T−t))f(Z)dZ − F̄ (p∗t )

)
= 0

Since the Agent’s Risk Retention factor is a function of the Safety Loading Factor, the Safety Loading Factor

must satisfy the following Equation:

− γer(T−t)µ+ γer(T−t)

∫ p∗
t

0

F̄ (Z)dZ + (1 + βt)γe
r(T−t)F̄ (p∗t )

∂p∗t
∂βt

− γer(T−t)exp(−γp∗t e
r(T−t))

∂p∗t
∂βt

∫ ∞

p∗
t

exp(γZer(T−t))f(Z)dZ

+ exp(−γp∗t e
r(T−t))

∂

∂βt

[∫ ∞

p∗
t

exp(γZer(T−t))f(Z)dZ

]
− F̄ ′(p∗t )

∂p∗t
∂βt

= 0

(26)
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The derivative of the Risk Retention factor with respect to the Safety Loading Factor is of the form:

∂p∗t
∂βt

=
e−r(T−t)

(1 + βt)λ
(27)

Substituting Equation (27) into Equation (26), and the optimised retention rate into all terms other than the

claim function produces:

− γer(T−t)µ+ γer(T−t)

∫ p∗
t

0

F̄ (Z)dZ +
γ

λ
F̄ (p∗t )−

γ

λ
(1 + βt)

− γ
λ−1

∫ ∞

p∗
t

exp(γZer(T−t))f(Z)dZ

+ (1 + β)−
γ
λ

∂

∂βt

[∫ ∞

p∗
t

exp(γZer(T−t))f(Z)dZ

]
− e−r(T−t)F̄ ′(p∗t )

(1 + βt)λ
= 0

(28)

To determine whether the parameter is the supremium of the function the second derivative of Equation

(11) with respect to the Principal’s Safety Loading Factor is taken, the general form of the second derivative

without taking into account the assumed claim distribution is of the form:

d2

dp2
L(t, w) =vη

(
γer(T−t)F̄ (p∗t )

dp

dβ
+ γer(T−t)F̄ (p∗t )

dp

dβ
+ (1 + βt)γe

r(T−t)F̄ ′(p∗t )

(
dp

dβ

)2

γ2e2r(T−t)exp(−γper(T−t))

(
dp

dβ

)2 ∫ ∞

p

exp(γZer(T−t))f(Z)dZ

− 2γer(T−t)exp(−γper(T−t))
dp

dβ

d

dβ

[∫ ∞

p

exp(γZer(T−t))f(Z)dZ

]

+ exp(−γper(T−t))
d2

dβ2

[∫ ∞

p

exp(γZer(T−t))f(Z)dZ

]
− F̄ ′′(p∗t )

(
dp

dβ

)2)
(29)
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9.5 Numerical Examples code

library(plotly)

lambda<-seq(from=0.01,to=0.99, by=0.01)

gamma<-seq(from=0.1,to=0.80, by=0.01)

mu<-0.2

r=0.03

t2= 1

t= 0.5

b<-seq(from=0,to=length(lambda))

k<-function(gamma,lambda){exp(r*(t2-t))}

#Functions

beta<-function(b,mu,lambda,gamma,t2,t){(1+b)^((-k(gamma,lambda)/lambda)*exp(-r*(t2-t)))*

(1/lambda-(exp(r*(t2-t))/k(gamma,lambda)))+(k(gamma,lambda)*(1+b)^(-k(gamma,lambda)/lambda

*exp(-r*(t2-t))-1))/((gamma*exp(r*(t2-t))-k(gamma,lambda))*lambda)-exp(r*(t2-t))*mu+

exp(r*(t2-t))/k(gamma,lambda)}

p<-function(lambda,gamma,Optimal_beta,r, t,t2){log(1+Optimal_beta)*exp(-r*(t2-t))/lambda}

#Optimised Beta graph

rm(v)

interval<-lambda

v<-rep(0,1)

for(i in interval){

v<-append(v,c(uniroot(beta, interval=c(0,100),tol=

0.000000000001,mu=mu,lambda=i,gamma=gamma,t2=t2,t=t)$root))}

indices <- c(1)

Optimal_beta<- v[-indices]

plot(lambda,Optimal_beta,type=’l’,xlab =’Insurer risk aversion parameter’,ylab="Reinsurance price",

main="Reinsurance price vs Insurer risk aversion" )

#Optimised Beta graph_Gamma

interval<-gamma

rm(v)

v<-rep(0,1)

for(i in interval){

v<-append(v,c(uniroot(beta, interval=c(0,100),tol=

0.000000000001,mu=mu,lambda=lambda,gamma=i,t2=t2,t=t)$root))}

indices <- c(1)

Optimal_beta<- v[-indices]
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plot(gamma,Optimal_beta, type=’l’,xlab =’Reinsurer risk aversion parameter’,ylab="Reinsurance price",

main="Reinsurance price vs Re-insurer risk aversion" )

#Optimal Retention Rate vs Gamma or Lambda

Op_Retention_r<-p(lambda,gamma,Optimal_beta,r,t,t2)

plot(lambda,Op_Retention_r,type=’l’,xlab =’Insurer risk aversion parameter’

,ylab="Optimal Retention rate", main="Retention Rate vs Insurer risk aversion")

plot(gamma,Op_Retention_r,type=’l’,xlab =’Re-Insurer risk aversion parameter’

,ylab="Optimal Retention rate", main="Retention Rate vs Re-Insurer risk aversion")

Condition_1<-function(b,k,gamma,r,t,t2){

1+b+k(gamma,lambda)/(gamma*exp(r*(t2-t))-k(gamma,lambda))

}

Condition_2<-function(p,b,r,t,t2){

exp(p*(lambda*exp(r*(t2-t))-k(gamma,lambda)))*(lambda*exp(r*(t2-t))-1)

+k(gamma,lambda)*(1+b)*exp(-k(gamma,lambda)*p)

}

for( i in 1:length(Optimal_beta)){

if(Condition_1(Optimal_beta[i],k,gamma[i],r,t,t2)<0){

stop("Not Optimal")

}}

for( i in 1:length(Optimal_beta)){

if(Condition_2(Op_Retention_r[i],Optimal_beta[i],r,t,t2)<0){

stop("Not Optimal")

}}

help(’stop’)

Condition_2(Op_Retention_r,Optimal_beta,r,t,t2)

Condition_1(Optimal_beta,k,gamma,r,t,t2)
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