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1 Abstract

The five-fold constellation (or simply the constellation) is a mutual equivalence among five combinatorial objects

with an underlying fixed group; depending on the type of group extension, a different kind of equivalence is

exhibited. One of the objects in the constellation are the coupled cocyclic generalised Hadamard. In this

work, we study coupled cocyclic generalised Hadamard matrices, and their place within the constellation via

group extensions. We observe that for the binary case (standard binary Hadamard matrices), Hadamard full

propelinear codes can be appended to the constellation.

2 Introduction

A square n × n matrix over {±1} is Hadamard if HHT = nIn, where In is the n × n identity matrix. The

order n of a Hadamard matrix must be either 1, 2 or 4k for some integer k. The converse of this statement is

known as the Hadamard conjecture, which proposes that for any positive integer k there is a Hadamard matrix

of order 4k. Currently, the Hadamard conjecture and is unresolved.

The most prolific way currently known of constructing Hadamard matrices is via cocycles (see Definition

4.3), as many classical constructions (such as Sylvester, Williamson, Ito, Paley) happen to be cocyclic as well [3].

Cocyclic Hadamard matrices could provide a uniform approach to solving the Hadamard conjecture. Perhaps

another direction of attack is through generalising Hadamard matrices and studying their properties, especially

those that are preserved when reducing generalised Hadamard matrices back to Hadamard matrices.

To this end, we have the constellation (see Theorem 5.1) which is a mutual equivalence of five combinatorial

objects, one of them being the coupled cocyclic generalised Hadamard matrices. Moreover, the objects in the

constellation can be constructed using group extensions. Depending on the type of group extension (normal,

splitting, abelian kernel, central, abelian, binary), a different equivalence is seen among the objects. Horadam

[3] presented this constellation first, though there were many partial results beforehand.

The outline of the report is as follows. Section 2 of this report sets our notation and preliminaries. Section

3 details the necessary group extension theory to display the constellation, more details can be found in the

Appendix. Section 4 introduces the five objects in the constellation: coupled cocyclic generalised Hadamard

matrices, orthogonal factor pairs, relative difference sets, divisible designs, and base sequences. Section 5 exhibits

the constellation as seen in [3]. Section 6 defines Hadamard full propelinear codes and outlines their equivalence

with the five objects in the constellation, though only under the central binary group extension case.

Most material and ideas in this report come from [3], we simply provide exposition.
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2.1 Statement of Authorship

• Peter Gill read the literature, filled in details of some proofs, and wrote this report.

• Santiago Barrera Acevedo supervised the project, read the literature, helped with details in proofs, proof-

read and provided feedback on this report.

2.2 Notation and Preliminaries

We assume standard knowledge of group theory.

If f : A → B is a map, and A′ ⊆ A then f [A′] := {f(a′) | a′ ∈ A′}. If a set A has an equivalence relation,

then [a] denotes the equivalence class containing a ∈ A.

Now let G be a group. We denote the identity element of a group G as 1 when G is multiplicatively writte,

and 0 when G is additively written. The symmetric group of bijective maps on {1, · · · , n} under composition

is denoted Sn. The identity map on a set A is denoted IdA. If α is a map whose domain is G, then gα := α(g).

If f : A→ G is a map, then f−1 denotes the map f−1 : A→ G defined by f−1(a) = (f(a))−1, unless otherwise

specified. The opposite automorphism group Aut(G)op is the group of automorphisms of G under the operation

α1α2 := α1 ◦ α2. If g ∈ G, then g ∈ Aut(G)op denotes the inner automorphism mapping x 7→ gxg−1 for all

x ∈ G. If U is a subgroup of G (written U ≤ G), then a set T containing exactly one element from each (left)

coset of U is a transversal of U in G. Additionally, if T contains the identity of G, then T is a normalised

transversal.

Throughout the rest of this report, U and G are finite groups of order u and n respectively.

3 Group Extensions and Factor Pairs

Underlying the constellation is the idea of group extensions. The objects and the kind of equivalence in the

constellation depends on the type of group extension.

Here we introduce the necessary group extension and cohomology theory for the constellation, most of which

comes from Galati [2], although we have adapted the exposition to focus on the bijective mapping between classes

of group extensions and classes of factor pairs. For details on some of these results, see the Appendix.

Definition 3.1. A group extension of U by G is a short exact sequence

U
i
↣ E

π
↠ G,

that is, i is an injective homomorphism, π is a surjective homomorphism, and kerπ = i[U ].

We denote the set of group extensions of U by G with GExt(G,U), and define a natural equivalence relation

on GExt(G,U).

Definition 3.2. Let e1 : U
i1
↣ E1

π1

↠ G and e2 : U
i2
↣ E2

π2

↠ G be group extensions of U by G. We say e1 is

equivalent to e2 via γ if there is an isomorphism γ : E1 → E2 such that the diagram
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E1

U G

E2

π1

γ

i2

i1

π2

commutes - that is, i2 = γ ◦ i1 and π1 = π2 ◦ γ. We say e1 ∼γ e2 when e1 is equivalent to e2 via γ.

There are many types of group extensions, each giving a different equivalence in the constellation, and we

exhibit a few here. Fix some group extension e : U
i
↣ E

π
↠ G of U by G. If there are no extra conditions on

e, we say e is a normal group extension. The extension e is split if there is some subgroup H ≤ E such that

E = HU := {hu : h ∈ H,u ∈ U} and H ∩ U = {1}. We say e is an abelian kernel extension if U is abelian.

We say e is a central extension if U is a central subgroup of E, meaning ue = eu for all u ∈ U and e ∈ E.

Note U must be abelian in this case. We say e is an abelian extension if E is abelian, implying U and G must

also be abelian. Finally, if U ∼= Z2 is central in E, we say e is a binary extension. This last case is of interest

as it reduces the theory down to Z2; in particular, generalised Hadamard matrices become, simply, Hadamard

matrices in the constellation.

One way of constructing group extensions is via factor pairs.

Definition 3.3. A factor pair (ψ, ϵ) of U by G is a pair of maps ψ : G×G → U and ϵ : G → Aut(U)op such

that for all x, y, z ∈ U ,

ϵ(x) ◦ ϵ(y) = ψ(x, y) ◦ ϵ(xy), (3.1)

ψ(x, y)ψ(xy, z) = ψ(y, z)ϵ(x)ψ(x, yz). (3.2)

We call ψ the factor set, and ϵ the coupling. If ψ(x, 1) = ψ(1, x) = 1, then the factor pair (ψ, ϵ) is normalised.

We denote the set of all factor pairs of U by G with F 2(G,U).

As promised, group extensions indeed can arise from factor pairs.

Definition 3.4. Let (ψ, ϵ) ∈ F 2(G,U). Then E(ψ,ϵ) is the group with underlying set U ×G and operation

(a, x)(b, y) = (abϵ(x)ψ(x, y), xy)

for all a, b ∈ U and x, y ∈ G. Moreover,

U
ι
↣ E(ψ,ϵ)

κ
↠ G

is a (canonical) group extension of U by G, where ι and κ are the canonical injection a
ι7→ (a, 1) and projection

(a, x)
κ7→ x homomorphisms respectively.

As with group extensions, there is a natural equivalence relation on F 2(G,U).
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Definition 3.5. Let (ψ1, ϵ1), (ψ2, ϵ2) ∈ F 2(G,U). We say (ψ1, ϵ1) is equivalent to (ψ2, ϵ2) via ϕ if there is some

map ϕ : G→ U with ϕ(1) = 1 such that for all x, y ∈ G,

ϵ2(x) = ϕ(x) ◦ ϵ1(x),

ψ2(x, y) = ϕ(x)ϕ(y)ϵ1(x)ψ1(x, y)ϕ
−1(xy).

Recall that in this section the main result underlying the constellation is a bijection

ξ : GExt(G,U)/ ∼ −→ F 2(G,U)/ ∼ .

This bijection is driven by transversals in group extensions.

Theorem 3.1. ([2] Proposition 3.2) Let e : U
i
↣ E

π
↠ G be a group extension of U by G,

and T = {tx ∈ E : x ∈ G, π(tx) = x} be a normalised transversal of i[U ] in E. Then (ψT , ϵT ) defined by

ϵT (x) = i−1 ◦ tx ◦ i,

ψT (x, y) = i−1(txtyt
−1
xy )

for all x, y ∈ G is a factor pair of U by G, where i−1 is the inverse map of i. Define ξ by mapping [e] 7→ [ψT , ϵT ]

(with some abuse of notation, denoting the equivalence class containing (ψT , ϵT ) by [ψT , ϵT ]). Then ξ is a

bijection.

Indeed, ξ is well-defined by the following two lemmas.

Lemma 3.1. ([2] Proposition 3.2) If T = {tx ∈ E : x ∈ G, π(tx) = x} and T ∗ = {t∗x ∈ E : x ∈ G, π(t∗x) = x}

are normalised transversals of i[U ] in E, then (ψT∗, ϵT∗) ∼ϕ (ψT , ϵT ) with ϕ defined by ϕ(x) = i−1(t∗xt
−1
x ) for

all x ∈ G.

Lemma 3.2. Let e1 : U
i1
↣ E1

π1

↠ G and e2 : U
i2
↣ E2

π2

↠ G be group extensions of U by G with e1 ∼γ e2, and

let T = {tx ∈ E1 : x ∈ G, π1(tx) = x} be a transversal of i1[U ] in E1. Then S := γ[T ] is a transversal of i2[U ]

in E2, and (ψT , ϵT ) = (ψS , ϵS) (in particular, (ψT , ϵT ) ∼ (ψS , ϵS)).

We have that ξ is injective by the following lemma.

Lemma 3.3. ([2] Proposition 3.3) Let e1 : U
i1
↣ E1

π1

↠ G and e2 : U
i2
↣ E2

π2

↠ G be group extensions of U by

G, and let T = {tx ∈ E1 : x ∈ G, π1(tx) = x} and S = {sx ∈ E2 : x ∈ G, π2(sx) = x} be transversals of i1[U ] in

E1 and of i2[U ] in E2 respectively, with (ψS , ϵS) ∼ϕ (ψT , ϵT ). Then e1 ∼γ e2, where γ is defined by

γ(i1(a)tx) = i2(aϕ
−1(x))sx

for all a ∈ U and x ∈ G.

The surjectivity of ξ follows from the next lemma.

Lemma 3.4. ([2] Proposition 3.4) Let (ψ, ϵ) ∈ F 2(G,U). Then T = {(1, x) ∈ E(ψ,ϵ) : x ∈ G} is a normalised

transversal of ι[U ] = U × {1} in E(ψ,ϵ) with (ψT , ϵT ) = (ψ, ϵ).
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In fact, every factor pair can be constructed from a transversal in any extension group E.

Lemma 3.5. ([2] Proposition 3.2) Given any factor pair (ψ, ϵ) ∈ [ψT , ϵT ] where T = {tx ∈ E : x ∈ G, π(tx) = x}

is a transversal of i[U ] in E, there is some transversal S of i[U ] in E such that (ψ, ϵ) = (ψS , ϵS).

As a consequence of the bijectivity of ξ, every group extension is equivalent to some group extension built

from a factor pair as in Definition 3.4. So factor pairs are, at least up to equivalence, a comprehensive way of

constructing group extensions.

Corollary 3.1. ([2] Corollary 3.1) Let e : U
i
↣ E

π
↠ G be a group extension and

T = {tx ∈ E1 : x ∈ G, π(tx) = x} a normalised transversal of i[U ] in E. Then e is equivalent to the canonical

extension e′ : U
ι
↣ E(ψT ,ϵT )

κ
↠ G via γ defined by

i(a)tx 7→ (a, x)

for all a ∈ U and x ∈ G. Furthermore, if (ψ, ϵ) ∼ϕ (ψT , ϵT ), then e is equivalent to the canonical extension

e′ : U
ι
↣ E(ψ,ϵ)

κ
↠ G via δ defined by

i(a)tx 7→ (aϕ−1(x), x)

for all a ∈ U and x ∈ G.

Now fix some group extension e : U
i
↣ E

π
↠ G. In the case where e is a split group extension, we have

that ξ([e]) is of the form [1, ϱ], where the coupling ϱ : G → Aut(U)op is a homomorphism and the factor set

1 : G×G → U is the trivial map that sends everything in G×G to the identity in U . We usually reserve the

symbol ϱ to indicate that a coupling of a factor pair is a homomorphism.

Corollary 3.2. ([2] Proposition 3.5) Let (ψ, ϵ), (1, ϱ) ∈ F 2(G,U).

Then E(ψ,ϵ)
∼= E(1,ϱ) if and only if (ψ, ϵ) ∼ϱ (1, ϱ). Also, E(1,ϱ) = U ⋊ϱ G.

4 Objects of the Constellation

We introduce the five objects of the constellation as seen in Horadam’s exhibition of the constellation [3]. A

common theme throughout is that the most general equivalence in the constellation is not enough to capture

the most general kinds of the objects - that is, there are some instances of these objects that cannot be reached

by the constellation. So studying these objects without the constellation can still be fruitful.

4.1 Cocyclic Generalised Hadamard Matrices

Recall that a Hadamard matrix is an n × n matrix over {±1} such that HHT = nIn. A Hadamard matrix

H = [hij ]1≤i,j≤n of order n has the row pairwise balanced property, which is that for any distinct rows with

indices 1 ≤ i, j ≤ n, the sequence {hikh−1
jk }1≤k≤n contains every element of {±1} exactly n/2 times. In fact, one

can quickly show the row pairwise balanced property characterises Hadamard matrices over all square matrices
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with entries in {±1}. This property serves as the inspiration for our definition of a generalised Hadamard

matrix.

Definition 4.1. ([3] Definition 4.9) An n× n matrix H = [hij ]1≤i,j≤n with entries in a finite group U of order

u is a generalised Hadamard matrix if, for any two distinct rows 1 ≤ i, j ≤ n, the sequence {hikh−1
jk }1≤k≤n

contains each element of U exactly n/u times. In this case, we say H is a GH(u, n/u) over U .

Note when U is the group {±1} under multiplication that this definition reduces back to a Hadamard matrix

(since the row pairwise property characterises Hadamard matrices).

There is a natural equivalence relation on the set of all n× n generalised Hadamard matrices over U .

Definition 4.2. ([3] Definition 4.12) Two n× n matrices A and B with entries in U are Hadamard equivalent

if B is obtained from A through a finite sequence of the following operations:

1. permuting the rows or columns,

2. right-multiplying a column by an element in U ,

3. left-multiplying a row by an element in U ,

4. applying a fixed automorphism of U to every entry.

We write A ∼ B when A is equivalent to B.

Importantly, the generalised Hadamard matrix property is preserved by this equivalence relation - that is, if

A ∼ B then A is a GH(u, n/u) if and only if B is a GH(u, n/u). Observe that we can always find a normalised

(meaning the initial row and column are full of 1s) representative in a class of Hadamard equivalent matrices

by using operations 2 and 3 accordingly, though normalised representatives may not be unique (simply by

permuting appropriate rows and/or columns).

Many classical constructions of Hadamard matrices (so, in the case U = {±1}) are also cocyclic [3]. Thus

cocycles are an important object of study for Hadamard matrices and could perhaps be a strong strategy to

tackle the Hadamard conjecture.

Definition 4.3. Let U be abelian. A 2-cocycle ψ, or simply a cocycle, is a map ψ : G×G→ U satisfying

ψ(x, y)ψ(xy, z) = ψ(y, z)ϵ(x)ψ(x, yz)

for all x, y, z ∈ G, where ϵ : G → Aut(U)op is some fixed homomorphism. If ψ(x, 1) = ψ(1, x) = 1, then the

cocycle is normalised.

The set of cocycles ψ : G×G→ U with a fixed homomorphism ϵ : G→ Aut(U)op is denoted Z2
ϵ (G,U).

It is quite natural to build a matrix from a cocycle.

Definition 4.4. ([3] Definition 6.3) An n × n matrix M with entries in U is G-cocyclic if there is a cocycle

ψ : G×G→ U and an ordering g1, · · · , gn of G with g1 = 1 such that M is Hadamard equivalent to

Mψ := [ψ(gi, gj)]1≤i,j≤n.
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One may notice that a factor pair (Definition 3.3) is almost a generalisation of a cocycle, the only caveats

being that ϵ : G→ Aut(U)op must be a homomorphism and U must be abelian for ψ to be a cocycle, however

ϵ can simply be a map in the definition of a factor pair. We hence define a coupled cocyclic matrix, which

is built from a factor pair in a similar way that cocyclic matrices are built from cocycles, to almost obtain a

generalisation of cocyclic matrices.

Definition 4.5. ([3] Definition 7.18) An n × n matrix M with entries in U is coupled G-cocyclic over U if

there is a factor pair (ψ, ϵ) ∈ F 2(G,U) and an ordering g1, · · · , gn of G with g1 = 1 such that M is Hadamard

equivalent to

M(ψ,ϵ) :=
[
ψ−1(gi, gj)

ϵ(gi)
−1
]
1≤i,j≤n

.

The reason behind the negative signs in the definition of M(ψ,ϵ) above is so that Theorem 10.1 in [2] reads

quickly - namely, M(ψ,ϵ) is a generalised Hadamard matrix if and only if (ψ, ϵ) is orthogonal (see Definition 4.7).

We remark the coupled G-cocyclic matrix M(ψ,ϵ) is G-cocyclic when U is abelian and ϵ = 1 is trivial, as

then the inversion map x 7→ x−1 is an automorphism on U , and so it follows that M(ψ,1) ∼Mψ.

In fact, coupled cocyclic matrices are the most general kind of generalised Hadamard matrices possibly studied

in the constellation, because they correspond with normal group extensions - the most general kind of group

extension.

There is another family of matrices over U that are special cases of coupled cocyclic matrices, but this time

constructed from maps ϕ : G → U with ϕ(1) = 1. They correspond with the splitting group extension case in

the constellation.

Definition 4.6. ([3] Definition 7.20) An n × n matrix M with entries in U is a coupled G-developed matrix

over U if there is a map ϕ : G → U with ϕ(1) = 1, a homomorphism ϱ : G → Aut(U)op, and an ordering

g1, · · · , gn of G with g1 = 1 such that

M =
[
ϕ(gigj)

ϱ(x−1
i )

]
1≤i,j≤n

.

If ϱ is trivial, then we simply say M is G-developed.

Note that coupled G-developed matrices are coupled G-cocyclic (see [3] Lemma 7.24).

Unfortunately, there do exist generalised Hadamard matrices that are not coupled cocyclic (for instance, see [3]

lemma 7.46), hence one may still benefit from studying a different aspect of Hadamard matrices without the

constellation.

4.2 Orthogonal Factor Pairs

Orthogonality is the property of factor pairs characterising the existence of the other objects in the constellation.

Galati [2] introduced the most general definition of orthogonal factor pairs to characterise factor pairs with

relative difference sets and generalised Hadamard matrices.

7



Definition 4.7. ([2] Definition 4.1) Let (ψ, ϵ) ∈ F 2(G,U) and D ⊆ G with |D| = k. We say (ψ, ϵ) is (n, u, k, λ)-

orthogonal with respect to D if for any x ∈ G \ {1} the sequence {ψ(x, y)}y∈D∩x−1D lists each element of U

exactly λ times.

If, in addition, N is abelian and ϵ maps everything to IdU ∈ Aut(U)op, then we say ψ is (n, u, k, λ)-orthogonal

with respect to D, omitting reference to ϵ.

If k = n, necessarily D = G and λ = n/u, and we then say (ψ, ϵ) is orthogonal, omitting reference to the

parameters (n, u, k, λ), since all parameters rely on the group orders n and u.

Of course, if the above two cases hold (so N is abelian, ϵ is trivial, and k = n), we say ψ is orthogonal,

omitting reference to everything but ψ.

Note ϵ does not affect whether a factor pair (ψ, ϵ) is orthogonal or not, however we keep it coupled with ψ

when discussing orthogonality of factor pairs. This proves helpful, for example, when constructing a coupled

cocyclic generalised Hadamard matrix from an orthogonal factor pair in the constellation.

The most general equivalence in the constellation (the one corresponding with a normal group extension),

requires k = n. So, sadly, the constellation does not comprehensively cover all orthogonal factor pairs.

4.3 Relative Difference Sets

Relative difference sets are primarily objects from design theory.

Definition 4.8. ([3] Definition 4.18) Let H be a group of order nu, and U a normal subgroup of H of order u. A

relative difference set R in H relative to U is a k-element subset R ⊆ H such that the sequence {r1r−1
2 }(r1,r2)∈R′

lists each element in H \ U exactly λ times, and no element in U , where R′ = {(r1, r2) ∈ R × R | r1 ̸= r2}.

In this case, we say R is a (n, u, k, λ)-RDS in H relative to U . If R contains the identity of H, then R is

normalised.

The most general equivalence in the constellation asks for k = n and λ = n/u, and the relative difference sets

that arise are termed semiregular. Semiregular relative difference sets have parameters of the form (n, u, n, n/u)

and are the maximal kind of relative difference sets possibly studied in the constellation.

4.4 Divisible Designs

Divisible designs are another object primarily from design theory. We use the definitions given by Horadam [3].

Definition 4.9. A divisible (n, u, k, λ)-design (P,B) is a pair of nu points P and b blocks B which are subsets

of P , along with a partition of P into n point classes each of size u. Let p1, p2 ∈ P . If p1 and p2 are in the

same point class, then there are no blocks containing both p1 and p2. If p1 and p2 are in distinct point classes,

then there are exactly λ blocks containing both p1 and p2. If |B| = nu = |P | then (P,B) is a square divisible

(n, u, k, λ)-design.
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Note some authors allow some fixed non-zero integer number of blocks containing distinct points in the same

point class, but we are not interested in that case. Some also refer to the point classes as groups, however we

avoid this terminology to avoid confusion with the algebraic concept of a group.

At first glance, perhaps it is unclear how to relate the information of a group extension to a divisible design.

To this end, the notion of automorphisms of a divisible designs is needed.

Definition 4.10. Let D = (P,B) be a divisible (n, u, k, λ)-design. We say a bijection α on P∪B (note P∩B = ∅

by definition of a divisible design) is an automorphism of D if α preserves the divisible design structure of D.

This means, for any p, p′ ∈ P and b ∈ B, that α(p) ∈ P , and α(b) ∈ B, and p ∈ b if and only if α(p) ∈ α(b),

and finally p and p′ are in the same point class if and only if α(p) and α(p′) are in the same point class.

The set of all automorphisms of D under composition forms a group Aut(D) called the full automorphism

group of D.

Now we can introduce the idea of regularity of divisible designs.

Definition 4.11. A square divisible (n, u, k, λ)-design is regular with respect to a group U if there is an

automorphism group U ≤ Aut(D) of the design that acts regularly on the points P , meaning that for any

p1, p2 ∈ P , there is exactly one α ∈ U such that α(p1) = p2.

Definition 4.12. A square divisible (n, u, k, λ)-design is class regular with respect to a group U if there is an

automorphism group U ≤ Aut(D) of the design that acts regularly on each point class, meaning that for any

point class Q and any p1, p2 ∈ Q, there is exactly one α ∈ U such that α(p1) = p2.

With class regular and regular divisible designs, there is enough algebraic scaffolding to connect divisible

designs to group extensions for the constellation. However, as the constellation requires k = n and λ = n/u, like

with relative difference sets, the divisible designs that arise are termed semiregular, and must have parameters

of the form (n, u, n, n/u).

4.5 Base Sequences and Perfect Nonlinear Functions

Base sequences and perfect nonlinear functions have their roots in signal processing and cryptography, as they

have ideal auto-correlation properties. We use the definitions given by Horadam [3].

Definition 4.13. ([3] Definition 7.39) Consider a list (1, 1), · · · , (νs, ηs) of representatives for the equivalence

classes in F 2(G,U). Let (ψ, ϵ) ∈ F 2(G,U). There is thus a unique representative (νi, ηi) such that (ψ, ϵ) ∼ϕ
(νi, ηi) for some ϕ : G → U with ϕ(1) = 1. If (ψ, ϵ) is orthogonal, we say ϕ (or equivalently, the list of values

(ϕ(x))x∈G) is a base sequence with respect to (νi, ηi).

In the splitting group extension case of the constellation, base sequences reduce to perfect nonlinear functions

(see [3] Theorem 7.40).
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Definition 4.14. ([3] Definition 7.34) Let u divide n, let ϕ : G → U be a map with ϕ(1) = 1, and let

ϱ : G→ Aut(U)op be a homomorphism. Set

M :=
[
ϕ(gigj)

ϱ(x−1
i )

]
1≤i,j≤n

(which is a coupled G-developed matrix). Then ϕ is perfect nonlinear relative to ϱ if M is a GH(u, n/u) over

U . If ϱ is trivial, we simply say ϕ is perfect nonlinear.

These definitions make base sequences and perfect non-linear functions trivially equivalent to orthogonal fac-

tor pairs and coupled G-developed generalised Hadamard matrices respectively. However, it is their applications

that make them desirable objects of study.

5 The Constellation

We present the constellation under the most general group extension - a normal group extension. Horadam

gathered these objects altogether first [3], however partial results towards this equivalence were known before-

hand.

Theorem 5.1. ([3] Theorem 7.29 and 7.40) Consider a group extension e : U
i
↣ E

π
↠ G of U by G and let

ξ([e]) = [φ, τ ] be the associated equivalence class of factor pairs. Then the following statements are equivalent:

1. There is a coupled G-cocyclic GH(u, n/u) over U .

2. There is an orthogonal factor pair in [φ, τ ].

3. There is a normal (n, u, n, n/u)-RDS in E relative to i[U ].

4. There is a (n, u, n, n/u)-divisible design with regular group E and class regular with respect to i[U ].

5. There is a base sequence ϕ with respect to (ψ, ϵ) ∈ [φ, τ ].

An important remark here is that the equivalence is constructive, due to the constructiveness of the partial

results Horadam collected. One of which is Theorem 5.1 in [2], which reveals an equivalence between orthogonal

factor pairs and (normal) relative difference sets.

Lemma 5.1. ([2] Theorem 5.1) Using the same terminology as in theorem 5.1 above, and letting D ⊆ E be a

size k subset, the following statements are equivalent:

1. There is a (n, u, k, λ)-RDS R in E relative to i[U ] with π[R] = D.

2. There is (ψ, ϵ) ∈ [φ, τ ] that is (n, u, k, λ)-orthogonal with respect to D.

3. There is (ψ, ϵ) ∈ [φ, τ ] such that R(ψ,ϵ) := {(1, x) : x ∈ D} is an (n, u, k, λ)-RDS in G(ψ,ϵ) relative to

U × {1} with π[R(ψ,ϵ)] = D.
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Moreover, when the above statements are true, (ψ, ϵ) can be written in the form (ψT , ϵT ) where T is a transversal

of i[U ] in G containing R′, where R′ satisfies R′ = Rb, and R′ ∩ i[U ] ∈ {∅, {1}}, and π[R′] = D.

The proof of 5.1 in [2] gives full details on the construction. For instance, constructing 1. from 3. is done by

taking a transversal T such that (ψ, ϵ) = (ψT , ϵT ) (which exists by Lemma 3.5), then defining R := γ−1[R(ψ,ϵ)]

where γ−1 : E(ψ,ϵ) → E maps (a, x) 7→ i(a)tx (see Corollary 3.1).

Observe that Lemma 5.1 characterises kinds of orthogonal factor pairs and of relative difference sets that are

more general than those found in Theorem 5.1. This generality is lost when we extend to the full equivalence

between each of the five objects in the constellation. In particular, for this case, the culprit is the equivalence

with the coupled G-cocyclic generalised Hadamard matrices, by which Horadam used Theorem 10.1 in [2].

Lemma 5.2. ([2] Theorem 10.1) Let u divide n (recall u = |U | and n = |G| are the respective orders of the

groups U and G). Let (ψ, ϵ) ∈ F 2(G,U). Then (ψ, ϵ) is orthogonal if and only if the coupled G-cocyclic matrix

M(ψ,ϵ) :=
[
ψ−1(gi, gj)

ϵ(gi)
−1
]
1≤i,j≤n

is a GH(u, n/u) over U .

For completeness, here is a constructive equivalence between relative difference sets and divisible designs.

Lemma 5.3. ([3] Theorem 4.20) Let E be a group of order nu with normal subgroup U of order u. Let R ⊆ E

be a size k subset of E. Then R is a (n, u, k, λ)-RDS in E relative to N if and only if (E, {Re : e ∈ E})

is a (n, u, k, λ)-divisible design with point class partition {Ne : e ∈ E}, regular group E acting on points by

e(h) := he and on blocks by e(Rh) := R(he) for all h, e ∈ E, and class regular with respect to U .

And of course, the characterisation of base sequences in the constellation follows from their definition.

To see the constellation under other types of group extensions, see [3, section 7.4].

6 Hadamard Full Propelinear Codes

We discuss a different object now that is equivalent to the objects in the constellation, albeit under a binary

extension. Hadamard full propelinear codes were introduced in [4] and their equivalence with Hadamard groups

is proven in [5]. We use the definitions from the latter paper [5].

For this section, we let Z2 = {0, 1} be the cyclic group of order 2 under addition mod 2, and consider Hadamard

matrices to be over Z2 rather than {±1} (the isomorphism β : {±1} → Z2 mapping 1 7→ 0 and −1 7→ 1 translates

between these two representations of Hadamard matrices). A binary code C of length m is a non-empty subset

of Zm2 , and the elements of C are called codewords. We let 0 = (0, · · · , 0) ∈ Zm2 denote the m-tuple of all 0s,

and similarly 1 ∈ Zm2 the m-tuple of all 1s.

We define what it means for a code to have propelinear structure.

Definition 6.1. ([5] Definition 1.2) A binary code C of length m containing 0 has a propelinear structure if

for each codeword x ∈ C, there is a permutation πx ∈ Sm such that for all y ∈ C:

11



1. z ∈ C,

2. πx ◦ πy = πz,

where z := x+ πx(y) and πx maps y via (y1, · · · , ym) 7→
(
yπ−1

x (1), · · · , yπ−1
x (m)

)
. In this case, we also say C is

a propelinear code.

Note the natural group operation ∗ on C arising from this definition, namely x ∗ y := x + πx(y) for all

x, y ∈ C. Furthermore, we quickly see π0 must be the identity permutation in Sm (let y = 0 in condition 2)

and π−1
1 = π1 (let x = y = 1 in condition 2).

Let H be a Hadamard matrix. A Hadamard code is a binary code where each codeword is either a row of

H or a complement (meaning interchanging 1 with 0) of a row of H.

As one may expect, a Hadamard propelinear code is a binary code that is both Hadamard and propelinear. It

remains to define the term full.

Definition 6.2. ([5] Definition 2.1) A Hadamard full propelinear code is a Hadamard propelinear code C such

that for all codewords a ∈ C \ {0,1} the permutation πa (from the definition of propelinear) does not fix any

coordinate, and π1 is the identity permutation (as well as π0). In this case, we say C is a HFP-code.

Definition 6.3. Let D be a relative (4m, 2, 4m, 2m)-difference set in a group K of order 8m relative to a normal

subgroup U ∼= Z2 of K. Then K is a Hadamard group of order 8m.

Propositions 2.4 and 2.5 from [5] establish a constructive equivalence between Hadamard full propelinear

codes and Hadamard groups. Moreover, Hadamard groups are equivalent to cocyclic Hadamard matrices in the

central binary case (see [1]), and therefore we may include these extra objects in the constellation, but only in

the central binary group extension case.

7 Discussion and Conclusion

We have presented the constellation as conjured by Horadam in [3, section 7.4]. A slight augmentation to the

constellation is given by Hadamard full propelinear codes and Hadamard groups, in the sense that these objects

only exist in the central binary extension case. This begs the question of whether there is a generalisation of

Hadamard full propelinear codes, or of Hadamard groups, that is equivalent to the objects in the constellation

under more general extensions. Searching for such an object or extending the constellation some other way are

potential directions for further study.

The constellation identifies combinatorial objects together, allowing the freedom to regard these objects in a

different light when facing applications and problems like the Hadamard conjecture. Group extensions glue the

constellation together, but the reliance on them may also be a great limitation - as discussed, there are instances

of the constellation objects that cannot be reached by the constellation. Nevertheless, the constellation is an

interesting object itself in combinatorics, and hopefully permits new discoveries in the field.
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8 Appendix

Here, our goal is to provide enough details to show that the map ξ defined in Theorem 3.1 is a bijection between

classes of group extensions of U by G and classes of factor pairs of U by G.

We present some simple auxiliary results on factor pairs.

Lemma 8.1. ([3] Lemma 7.3) Let (ψ, ϵ) ∈ F 2(G,U). Then, for all x, y ∈ G,

1. ϵ(1) = IdU ,

2. ψ−1(x−1, y)ϵ(x) = ψ(x, x−1y)ψ−1(x, x−1),

3. ψ(x, x−1) = ψ(x−1, x)ϵ(x),

4. ϵ(x)−1 = ϵ(x−1)ψ−1(x, x−1) = ψ−1(x−1, x)ϵ(x−1),

5. (1, x)(1, y)−1 =
(
ψ−1(xy−1, y)xy−1

)
in E(ψ,ϵ),

6. E(ψ,ϵ) is abelian ⇐⇒ U and G are abelian, ϵ ≡ 1 and ψ is symmetric.

Proof. 1. Plug in x = y = 1 into (3.1) and use the fact that the factor pair is normalised:

ϵ(1)ϵ(1) = ψ(1, 1)ϵ(1)

ϵ(1) = 1

ϵ(1) = IdN .

2. Note
(
ψ(x, y)ϵ(z)

)−1
=

(
ψ(x, y)−1

)ϵ(z)
because the automorphism ϵ(z) preserves inverses. In particular

we can write ψ−1(x−1, y)ϵ(x) without worrying about ambiguity. Now set y = x−1 in (3.2) and us the fact

that the factor pair is normalised:

ψ(x, x−1) = ψ(x, x−1)ψ(1, z) = ψ(x−1, z)ϵ(x)ψ(x, x−1z) (8.1)

which gives the claim.

3. Set z = x in (8.1) and use the fact that the factor pair is normalised.

4. Plugging y = x−1 into (3.1), it follows from 1. that

ϵ(x)ϵ(x−1) = ψ(x, x−1)ϵ(1) = ψ(x, x−1).

Since that a−1 = ā−1 in Aut(N) (which follows from the fact that a−1axa−1a = aa−1xaa−1 = x for all

x), we have

ϵ(x)ϵ(x−1)ψ−1(x, x−1) = IdU ,

which implies ϵ(x)−1 = ϵ(x−1)ψ−1(x, x−1) (since Aut(U) is a group). Similarly, plugging x = y−1 into

(3.1), it follows from 1. that

ϵ(y−1)ϵ(y) = ψ(y−1, y)ϵ(1) = ψ(y−1, y).

With a similar argument as above, this implies ϵ(y)−1 = ψ−1(y−1, y)ϵ(y−1).
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5. We compute

(1, x)(1, y)−1 = (1, x)
(
ψ−1(y−1, y)(1−1)ϵ(y

−1), y−1
)

= (1, x)
(
ψ−1(y−1, y), y−1

)
=

(
1
(
ψ−1(y−1, y)

)ϵ(x)
ψ(x, y−1), xy−1

)
.

It remains to show (
ψ−1(y−1, y)

)ϵ(x)
ψ(x, y−1) = ψ−1(xy−1, y)

in N . As ϵ(x) is a homomorphism, (3.2) and the fact that (ψ, ϵ) is normalised give,(
ψ−1(y−1, y)

)ϵ(x)
ψ(x, y−1)ψ(xy−1, y) =

(
ψ−1(y−1, y)

)ϵ(x)
ψ(y−1, y)ϵ(x)ψ(x, y−1y)

=
(
ψ−1(y−1, y)ψ(y−1, y)

)ϵ(x)
ψ(x, 1)

= 1ϵ(x)1

= 1.

Thus the claim follows.

6. Suppose E(ψ,ϵ) is abelian. Thus for all x, y ∈ G,

(ψ(x, y), xy) = (1, x)(1, y) = (1, y)(1, x) = (ψ(y, x), yx)

which forces ψ(x, y) = ψ(y, x) and xy = yx, that is, ψ is symmetric and G is abelian. Furthermore, for

all x ∈ G and b ∈ U ,

(bϵ(x), x) = (1bϵ(x)ψ(x, 1), x) = (1, x)(b, 1) = (b, 1)(1, x) = (b1ϵ(1)ψ(1, x), x) = (b, x)

which implies bϵ(x) = b, and thus ϵ(x) = 1 for all x ∈ G.

Similarly, for all a, b ∈ U ,

(ab, 1) = (abϵ(1)ψ(1, 1), 1) = (a, 1)(b, 1) = (b, 1)(a, 1) = (baϵ(1)ψ(1, 1), 1) = (ba, 1)

meaning U is abelian. Conversely, if all these necessary conditions are met, then E(ψ,ϵ) is clearly abelian

by comparing

(a, x)(b, y) = (abϵ(x)ψ(x, y), xy),

(b, y)(a, x) = (baϵ(y)ψ(y, x), yx).

We prove that E(ψ,ϵ) in Definition 3.4 is indeed a group.

Proof. Let a, b ∈ U and x, y ∈ G be arbitrary.

Identity: Clearly

(1, 1)(b, y) =
(
1bϵ(1)ψ(1, y), 1y

)
=

(
bϵ(1), y

)
15



thus for (1, 1) to be the identity, we need bϵ(1) = b, which is true by Lemma 8.1-1. Similarly, since ϵ(x) is an

automorphism and thus preserves the identity,

(a, x)(1, 1) =
(
a1ϵ(x)ψ(x, 1), x1

)
= (a, x) .

Associativity: We have

((a, x)(b, y)) (c, z) =
(
abϵ(x)ψ(x, y), xy

)
(c, z)

=
(
abϵ(x)ψ(x, y)cϵ(xy)ψ(xy, z), xyz

)
and

(a, x) ((b, y)(c, z)) = (a, x)
(
bcϵ(y)ψ(y, z), yz

)
=

(
a
(
bcϵ(y)ψ(y, z)

)ϵ(x)
ψ(x, yz), xyz

)
=

(
abϵ(x)cϵ(x)ϵ(y)ψ(y, z)ϵ(x)ψ(x, yz), xyz

)
.

So E(ψ,ϵ) is associative if and only if

ψ(x, y)cϵ(xy)ψ(xy, z) = cϵ(x)ϵ(y)ψ(y, z)ϵ(x)ψ(x, yz)

which by (3.2) is equivalent to

ψ(x, y)cϵ(xy)ψ(xy, z) = cϵ(x)ϵ(y)ψ(x, y)ψ(xy, z)

ψ(x, y)cϵ(xy) = cϵ(x)ϵ(y)ψ(x, y).

Using (3.1),

cϵ(x)ϵ(y)ψ(x, y) = cψ(x,y)ϵ(xy)ψ(x, y)

= ψ(x, y)cϵ(xy)ψ(x, y)−1ψ(x, y)

= ψ(x, y)cϵ(xy)

as required.

Inverses: If (a, x) ∈ E(ψ,ϵ), then since ϵ(x) preserves inverses (it is an automorphism), and by (3.1), Lemma

8.1-1 and 8.1-3, we have

(a, x)
(
ψ−1(x−1, x)(a−1)ϵ(x

−1), x−1
)
=

(
a
(
ψ−1(x−1, x)(a−1)ϵ(x

−1)
)ϵ(x)

ψ(x, x−1), xx−1

)
=

(
a
(
ψ−1(x−1, x)

)ϵ(x)
(a−1)ϵ(x)ϵ(x

−1)ψ(x, x−1), 1
)

=

(
a
(
ψ(x−1, x)ϵ(x)

)−1

(a−1)ψ(x,x
−1)ϵ(xx−1)ψ(x, x−1), 1

)
=

(
aψ(x, x−1)−1ψ(x, x−1)(a−1)ϵ(1)ψ(x, x−1)−1ψ(x, x−1), 1

)
= (1, 1)
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as required. Likewise, as ϵ(x−1) is an automorphism,(
ψ−1(x−1, x)(a−1)ϵ(x

−1), x−1
)
(a, x) =

(
ψ−1(x−1, x)(a−1)ϵ(x

−1)aϵ(x
−1)ψ(x−1, x), x−1x

)
=

(
ψ−1(x−1, x)(a−1a)ϵ(x

−1)ψ(x−1, x), 1
)

= (1, 1)

as required. Hence E(ψ,ϵ) is a group.

We check that the relation defined in Definition 3.5 is indeed an equivalence relation on F 2(G,U).

Proof. Reflexivity: Consider the trivial map 1 : G→ U with g 7→ 1 (for all g ∈ G). Then ϵ(x) = 1(x)ϵ(x) and

ψ(x, y) = 1(x)1(y)ϵ(x)ψ(x, y)1(xy)−1 since ϵ(x) is an automorphism.

Symmetry: Suppose (ψ2, ϵ2) ∽ϕ (ψ1, ϵ1), meaning

ϵ2(x) = ϕ(x)ϵ1(x), (8.2)

ψ2(x, y) = ϕ(x)ϕ(y)ϵ1(x)ψ1(x, y)ϕ(xy)
−1. (8.3)

Since the inverse mapping of ā is a−1 in Aut(U), from (8.2) we immediately see

ϵ1(x) = ϕ−1(x)ϵ2(x). (8.4)

Also, from (8.3) and (8.4) and as the automorphism ϵ1(x) preserves inverses,

ψ1(x, y) =
(
ϕ(y)ϵ1(x)

)−1

ϕ(x)−1ψ2(x, y)ϕ(xy)

= ϕ−1(y)ϕ
−1(x)ϵ2(x)ϕ−1(x)ψ2(x, y)ϕ(xy)

= ϕ−1(x)ϕ−1(y)ϵ2(x)ϕ(x)ϕ−1(x)ψ2(x, y)ϕ(xy)

= ϕ−1(x)ϕ−1(y)ϵ2(x)ψ2(x, y)ϕ(xy)

which means (ψ1, ϵ1) ∽ϕ−1 (ψ2, ϵ2).

Transitivity: Suppose (ψ3, ϵ3) ∽ϕ32
(ψ2, ϵ2) and (ψ2, ϵ2) ∽ϕ21

(ψ1, ϵ1), hence

ϵ2(x) = ϕ21(x)ϵ1(x), (8.5)

ϵ3(x) = ϕ32(x)ϵ2(x), (8.6)

ψ2(x, y) = ϕ21(x)ϕ21(y)
ϵ1(x)ψ1(x, y)ϕ

−1
21 (xy), (8.7)

ψ3(x, y) = ϕ32(x)ϕ32(y)
ϵ2(x)ψ2(x, y)ϕ

−1
32 (xy). (8.8)

We claim (ψ3, ϵ3) ∽ϕ32ϕ21
(ψ1, ϵ1). Because ϕ32(x) ◦ϕ21(x) = ϕ32(x)ϕ21(x) = ϕ32ϕ21(x) (by definition), subbing

(8.5) into (8.6) we get

ϵ3(x) = ϕ32ϕ21(x)ϵ1(x).

Also, by subbing (8.7) into (8.8),

ψ3(x, y) = ϕ32(x)ϕ32(y)
ϵ2(x)ϕ21(x)ϕ21(y)

ϵ1(x)ψ1(x, y)ϕ
−1
21 (xy)ϕ

−1
32 (xy).
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Since ϕ−1
21 (xy)ϕ

−1
32 (xy) = (ϕ32ϕ21)

−1(xy) by definition, it remains to show

ϕ32(x)ϕ32(y)
ϵ2(x)ϕ21(x)ϕ21(y)

ϵ1(x) = (ϕ32ϕ21)(x)(ϕ32ϕ21)(y)
ϵ1(x)

which is equivalent to

ϕ32(y)
ϵ2(x)ϕ21(x) = ϕ21(x)ϕ32(y)

ϵ1(x).

Using (8.5), we have

ϕ32(y)
ϵ2(x)ϕ21(x) = ϕ32(y)

ϕ21(x)ϵ1(x)ϕ21(x)

= ϕ21(x)ϕ32(y)
ϵ1(x)ϕ21(x)

−1ϕ21(x)

= ϕ32(x)ϕ32(y)
ϵ1(x)

as required.

We prove Theorem 3.1, but omit the proof of the bijectivity of ξ as it follows from the other lemmas in the

section.

Proof. First, we must show ϵT and ψT are well-defined, and that ϵT (x) is an automorphism on U for any x ∈ G.

The key to seeing that ϵT is well-defined is to observe that the inner automorphism tx of E is an automorphism

on the subgroup i[U ] of E (this is a basic fact about inner automorphisms), and also that i−1 : i[U ] → U exists

as i is injective (and here i−1 denotes the inverse map of i). Now, for any x ∈ G, ϵT (x) is a homomorphism

since it is a composition of homomorphisms. The inverse function is (ϵT (x))
−1 := i−1 ◦ tx

−1 ◦ i; indeed

ϵT (x) (ϵT (x))
−1

= i−1 ◦ tx ◦ i ◦ i−1 ◦ tx
−1 ◦ i = IdU ,

and similarly (ϵT (x))
−1
ϵ(x) = IdU as required. Hence ϵT (x) is bijective, which shows ϵT (x) is an isomorphism.

For ψT to be well-defined, we need txtyt
−1
xy ∈ i[U ] for all x, y ∈ G. Indeed, since i[U ] = kerπ by the exactness

of e, it is enough to show π(txtyt
−1
xy ) = 1. Since π is a homomorphism,

π(txtyt
−1
xy ) = π(tx)π(ty)π(t

−1
xy ) = xy(xy)−1 = 1

as required. Now we show (ψT , ϵT ) is a factor pair. For (3.1), let a ∈ U and x, y ∈ G, and see that because i−1

is a homomorphism,

aψT (x,y)ϵT (xy) = ψT (x, y)a
i−1◦txy◦iψT (x, y)

−1

= ψT (x, y)i
−1

(
txyi(a)t

−1
xy

)
ψT (x, y)

−1

= i−1
(
txtyt

−1
xy

)
i−1

(
txyi(a)t

−1
xy

)
i−1

(
txtyt

−1
xy

)−1

= i−1
(
txtyi(a)t

−1
xy

)
i−1

(
txyt

−1
y t−1

x

)
= i−1

(
txtyi(a)t

−1
y t−1

x

)
= ai

−1◦tx◦ty◦i

= ai
−1◦tx◦i◦i−1◦ty◦i

= aϵT (x)ϵT (y)
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as required.

For (3.2), let x, y, z ∈ G, then we have

ψT (y, z)
ϵT (x)ψT (x, yz) = i−1

(
tytzt

−1
yz

)i−1◦tx◦i
i−1

(
txtyzt

−1
xyz

)
= i−1

(
txtytzt

−1
yz t

−1
x

)
i−1

(
txtyzt

−1
xyz

)
= i−1

(
txtytzt

−1
xyz

)
= i−1

(
txtyt

−1
xy

)
i−1

(
txytzt

−1
xyz

)
= ψT (x, y)ψT (xy, z)

as required.

For (7.3), clearly ψT (1, x) = i−1
(
t1txt

−1
1x

)
= i−1(t1) = 1 is equivalent to t1 = i(1) = 1 since i is injective.

Similarly, ψT (x, 1) = i−1
(
txt1t

−1
x1

)
= 1 is equivalent to txt1t

−1
x = i(1) = 1, which is equivalent to t1 = 1. Of

course t1 = 1 is true since T is normalised.

We prove lemma 3.1.

Proof. First note that ϕ is well-defined, because π(t∗xt
−1
x ) = π(t∗x)π(t

−1
x ) = xx−1 = 1 as π is a homomorphism,

and that e is exact. We also require ϕ(1) = 1, which is equivalent to i(ϕ(1)) = t∗1t
−1
1 = 1 as i is injective. This

is immediate since T and T ∗ are normalised.

For (7.8), since i−1 is a homomorphism, we have that for any a ∈ U ,

aϕ(x)ϵT (x) = i−1
(
t∗xt

−1
x

)
ai

−1◦tx◦i
(
i−1

(
t∗xt

−1
x

))−1

= i−1
(
t∗xt

−1
x

)
i−1

(
txi(a)t

−1
x

)
i−1

(
txt

∗
x
−1

)
= i−1

(
t∗xi(a)t

∗
x
−1

)
= ai

−1◦t∗x◦i

= aϵT∗ (x)

as required. Similarly, observe that for any x, y ∈ G,

ϕ(x)ϕ(y)ϵT (x)ψT (x, y)ϕ
−1(xy) = i−1

(
t∗xt

−1
x

) (
i−1

(
t∗yt

−1
y

))i−1◦tx◦i
i−1

(
txtyt

−1
xy

) (
i−1

(
t∗xyt

−1
xy

))−1

= i−1
(
t∗xt

−1
x

)
i−1

(
txt

∗
yt

−1
y t−1

x

)
i−1

(
txtyt

−1
xy

)
i−1

(
txyt

∗−1
xy

)
= i−1

(
t∗xt

∗
yt

∗−1
xy

)
= ψT∗(x, y)

as required.

We prove lemma 3.2.

Proof. To show S = γ[T ] is a transversal of U in E2, consider tx ∈ T and the coset txU . Then γ(tx)U = sxU is a

coset of U in E2 with representative sx = γ(tx). If sy = γ(ty) is another representative, then γ(ty)γ(tx)
−1 ∈ U ,
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giving γ(tyt
−1
x ) ∈ U . The exactness of e2 and that π1 = π2 ◦ γ imply π1(tyt

−1
x ) = π2(γ(tyt

−1
x )) = 1. But then

tyt
−1
x ∈ U by exactness of e1, and as T is a transversal, it follows that x = y. Therefore S is a transversal of U

in E2.

For any x ∈ G and a ∈ U , note ϵS(x) = i−1
2 ◦ sx ◦ i2 = i−1

2 ◦ γ(tx) ◦ i2, so as i2 = γ ◦ i1,

aϵS(x) = i−1
2

(
γ(tx)i2(a)γ(tx)

−1
)

= i−1
1

(
γ−1

(
γ(tx)γ(i1(a))γ(tx)

−1
))

= i−1
1

(
γ−1

(
γ(txi1(a))t

−1
x

))
= i−1

1

(
txi1(a)t

−1
x

)
= aϵT (x)

meaning ϵS(x) = ϵT (x), and

ψS(x, y) = i−1
2

(
sxsys

−1
xy

)
= i−1

2

(
γ(tx)γ(ty)γ(txy)

−1
)

= i−1
2

(
γ
(
txtyt

−1
xy

))
= i−1

1

(
txtyt

−1
xy

)
= ψT (x, y)

as required.

We present another lemma.

Lemma 8.2. If (ψ, ϵ) ∼ϕ (ψ′, ϵ′) are factor pairs of U by G, then θ : E(ψ,ϵ) → E(ψ′,ϵ′) defined by (a, x) 7→

(aϕ(x), x) is an isomorphism. Moreover, the canonical extensions e : U
ι
↣ E(ψ,ϵ)

κ
↠ G and e′ : U

ι
↣ E(ψ′,ϵ′)

κ
↠

G are equivalent via θ.

Proof. Suppose (ψ, ϵ) ∼ϕ (ψ′, ϵ′). The map (a, x)
θ−1

7→ (aϕ(x)−1, x) is obviously the inverse map to θ. Hence θ is

a bijection. To see that θ is a homomorphism, for any a, b ∈ U and x, y ∈ G, we note

θ(a, x)θ(b, y) = (aϕ(x), x)(bϕ(y), y) =
(
aϕ(x) (bϕ(y))

ϵ′(x)
ψ′(x, y), xy

)
and

θ ((a, x)(b, y)) = θ
(
abϵ(x)ψ(x, y), xy

)
=

(
abϵ(x)ψ(x, y)ϕ(xy), xy

)
.

Thus it remains to check

bϵ(x)ψ(x, y)ϕ(xy) = ϕ(x) (bϕ(y))
ϵ′(x)

ψ′(x, y).

Indeed, because (ψ, ϵ) ∼ϕ (ψ′, ϵ′),

bϵ(x)ψ(x, y)ϕ(xy) = bϕ(x)ϵ
′(x)ϕ(x)ϕ(y)ϵ

′(x)ψ′(x, y)ϕ(xy)−1ϕ(xy)

= ϕ(x)bϵ
′(x)ϕ(x)−1ϕ(x)ϕ(y)ϵ

′(x)ψ′(x, y)

= ϕ(x) (bϕ(y))
ϵ′(x)

ψ′(x, y)
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as required.

Now to show e ∼θ e′, we verify that the relevant diagram commutes. Indeed, for ι = θι,

θ(ι(a)) = θ(a, 1) =
(
aϕ(1)−1, 1

)
= (a, 1) = ι(a)

and for κ = κθ,

κ(θ(a, x)) = κ(aϕ(x)−1, x) = x = κ(a, x)

as required.

To prove Lemma 3.3, we actually prove Corollary 3.1 first as the isomorphism there is easier to work with.

There is no worry of a circular argument here though, as the corollary aspect of the result captures the fact

that every group extension is equivalent to some canonical group extension built from a factor pair; the actual

isomorphism inducing this equivalence is not easily found.

Proof. First, we show the mapping γ : E → E(ψT ,ϵT ) with i(a)tx 7→ (a, x) is well-defined (that is, every element

f ∈ E is written in the form f = i(a)tx for some unique a ∈ U and x ∈ G). Let f ∈ E and set H := i[U ].

As T is a transversal, let tx be the unique element in T that is in Hf (note the right coset). Then ft−1
x ∈ H,

and so there is a ∈ N such that ft−1
x = i(a), which gives us f = i(a)tx. Moreover, this a is unique because i is

injective as needed.

Now we show γ is an isomorphism. It is a bijection since (a, x) 7→ i(a)tx is clearly the inverse mapping. It is a

homomorphism since for any a, b ∈ U and x, y ∈ G,

γ(i(a)tx)γ(i(b)ty) = (a, x)(b, y)

=
(
abϵT (x)ψT (x, y), xy

)
= γ

[
i
(
abϵT (x)ψT (x, y)

)
txy

]
= γ

[
i(a)i(bi

−1◦tx◦i)i
(
i−1(txtyt

−1
xy )

)
txy

]
= γ

[
i(a)txi(b)t

−1
x txtyt

−1
xy txy

]
= γ [i(a)txi(b)ty]

as required.

Now we show γ makes the appropriate diagram commute. For γ ◦ i = ι, we have for any u ∈ U .

γ(i(u)) = γ(i(u)t1) = (u, 1) = ι(u).

For κ ◦ γ = π, we have for any i(a)tx ∈ E,

κ(γ(i(a)tx)) = κ(a, x) = x = π(i(a))π(tx) = π(i(a)tx).

This is enough to make the diagram commute (since πi = κγi = κι).

Consider the canonical extensions eT : U
ι
↣ E(ψT ,ϵT )

κ
↠ G and e′ : U

ι
↣ E(ψ,ϵ)

κ
↠ G (note ι and κ are functions
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U → U ×G and U ×G→ G respectively, hence we can use the same labels for both extensions eT and eS). We

demonstrate that if (ψ, ϵ) ∈ F 2(G,U) with (ψ, ϵ) ∼ϕ (ψT , ϵT ), then δ : E → E(ψ,ϵ) defined by

i(a)tx 7→ (aϕ−1(x), x)

is an isomorphism, and that e ∼δ e′. From the above work, γ : E → E(ψT ,ϵT ) defined by

i(a)tx 7→ (a, x)

is an isomorphism, and e ∼γ eT . Furthermore, from Lemma 8.2, θ−1 : E(ψT ,ϵT ) → E(ψ,ϵ) defined by

(a, x) 7→ (aϕ−1(x), x)

is an isomorphism, and eT ∼θ−1 e′. Note δ is the composition δ = θ−1 ◦ γ, hence δ is indeed an isomorphism,

and e ∼δ e′.

Now we can prove 3.3.

Proof. Consider the canonical extensions eT : U
ι
↣ E(ψT ,ϵT )

κ
↠ G and eS : U

ι
↣ E(ψS ,ϵS)

κ
↠ G. By Corollary

3.1, e1 is equivalent to eT via the isomorphism γT : E1 → E(ψT ,ϵT ) defined by

i1(a)tx 7→ (a, x).

Also, similarly, eS is equivalent to e2 via the isomorphism γ−1
S : E(ψS ,ϵS) → E2 defined by

(a, x) 7→ i2(a)sx.

Finally, by Lemma 8.2, if (ψ, ϵ) ∈ F 2(G,U) is some factor pair with (ψ, ϵ) ∼ϕ (ψT , ϵT ), then eT is equivalent to

eS via the isomorphism θ−1 : E(ψT ,ϵT ) → E(ψ,ϵ) defined by

(a, x) 7→ (aϕ(x)−1, x),

and the special case (ψ, ϵ) = (ψS , ϵS) allows us to put all the above together to get that e1 is equivalent to e2

via the composition γ−1
S ◦ θ−1 ◦ γT .

Finally, we prove Lemma 3.4 to complete the proof that ξ is bijective.

Proof. We first check that T is a transversal of U := U ×{1} in E(ψ,ϵ). If (1, x) ∈ T , then obviously (1, x)Ū is a

coset of Ū in E(ψ,ϵ). If (1, x)Ū = (1, y)Ū , then (1, x)(1, y)−1 ∈ Ū and so (1, x)(1, y)−1 = (a, 1) for some a ∈ U .

By Lemma 8.1-5,

(a, 1) = (1, x)(1, y)−1 =
(
ψ−1(xy−1, y), xy−1

)
so x = y by comparing the second component, meaning (1, x) = (1, y).
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Now we verify (ψT , ϵT ) = (ψ, ϵ). Here, ι : U → E(ψ,ϵ) is the natural injection a 7→ (a, 1). For any x ∈ G and

a ∈ U (here ι−1 denotes the inverse map (a, 1) 7→ a),

aϵT (x) = aι
−1◦(1,x)◦ι

= ι−1
[
(1, x)(a, 1)(1, x)−1

]
= ι−1

[(
1aϵ(x)ψ(x, 1), x1

)(
ψ(x−1, x)−11ϵ(x

−1), x−1
)]

= ι−1
[
(aϵ(x), x)(ψ(x−1, x)−1, x−1)

]
= ι−1

[(
aϵ(x)

(
ψ(x−1, x)−1

)ϵ(x)
ψ(x, x−1), 1

)]
= aϵ(x)

(
ψ(x−1, x)−1

)ϵ(x)
ψ(x, x−1)

It remains to show (
ψ(x−1, x)−1

)ϵ(x)
ψ(x, x−1) = 1 (8.9)

Well, using Lemma 8.1-3,

(
ψ(x−1, x)−1

)ϵ(x)
ψ(x, x−1) =

(
ψ(x−1, x)ϵ(x)

)−1

ψ(x, x−1)

= ψ(x, x−1)−1ψ(x, x−1)

= 1

as required. We also have

ψT (x, y) = ι−1
[
(1, x)(1, y)(1, xy)−1

]
= ι−1

[(
1ϵ(x)ψ(x, y), xy

)(
ψ
(
(xy)−1, xy

)−1
1ϵ((xy)

−1), (xy)−1
)]

= ι−1

[(
ψ(x, y)

(
ψ
(
(xy)−1, xy

)−1
)ϵ(xy)

ψ(xy, (xy)−1), 1

)]
= ψ(x, y)

(
ψ
(
(xy)−1, xy

)−1
)ϵ(xy)

ψ(xy, (xy)−1)

and observe that if we set x := xy for (8.9) (and (8.9) is indeed true by our above work), we obtain ψT (x, y) =

ψ(x, y) as required.
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