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Abstract

Group C∗-algebras have a variety of applications in many different areas of mathematics, such

as representation theory, topology and differential geometry. In this report, we will offer an

introduction to the theory of group C∗-algebras by considering the case of discrete groups.

In particular, we will be partially focusing on a representation-theoretic approach, as these

algebras encode all of the information regarding the unitary representations of the groups. We

then give a brief overview of amenability, including some of its various characterisations; for

instance, Følner’s characterisation, Reiter’s characterisation, and some characterisations that

follow from these.
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Statement of Authorship

No new results are included in this report, and indeed the theory presented is quite standard in

the literature. In particular, Putnam’s excellent notes [18] are central to the first few chapters on

the initial theory of C∗-algebras, with Kazhdan’s Property (T) [1] guiding most of the remaining

chapters on amenability. Various other books and papers have also been cited to supplement

the theory presented by those sources.

Instead of providing any new results, we aim to offer our own distinct, example-driven treatment

of the topics from the aforementioned sources. We attempt to give more detailed proofs given

where space permits, as well as an explanation of the intuition behind the concepts involved.
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1 Introduction

The study of group C∗-algebras originated from the work of Murray and von Neumann in the

late 1930s [12][13][16][14]. Soon after these influential series of papers on rings of operators,

which laid the groundwork for the study of C∗-algebras, Gelfand and Rykov extended the

theory to locally compact groups [6]. We typically continue to define group C∗-algebras on

locally compact groups – a general collection of groups that contains discrete groups. Much

of the basic theory is, however, very similar between these two cases, with the discrete case

simply admitting a more approachable treatment. As a result, understanding the theory of

discrete group C∗-algebras is often quite illuminating with respect to the locally compact case,

and hence well worth studying.

Very relevant to the study of group C∗-algebras is the topic of amenability. Amenability was

originally proposed by von Neumann in 1929 to explain the Banach-Tarski paradox [15]; since

then, it has found applications in many areas of mathematics, such as ergodic theory, group

theory and operator algebras. What makes the amenability so rich as a concept is how it admits

a multitude of equivalent characterisations, that often appear far removed from one another at

first glance. One such characterisation is that the reduced and universal group C∗-algebras of

amenable groups can, in some sense, be seen as equal – quite a remarkable result indeed!

We will begin the report by introducing the concept of unitary representations, their implications

for discrete groups and discrete group algebras, and how C∗-algebras can be defined on these

group algebras. We will then move towards a discussion of amenability and a selection of its

various characterisations.
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2 Group Representations

Definition 2.1 (Topological Group). A topological group (G, ·, τ) is a group (G, ·) endowed

with some topology τ , under which the group binary operation · : (g, h) 7→ gh and inversion

map g 7→ g−1 are both continuous, for all g, h ∈ G.

Perhaps the simplest topology we can think about on a group G is the discrete topology. Under

this topology, every subset of G is open, and hence it naturally endows G with a topological

group structure. A group with the discrete topology is referred to as a discrete group. Discrete

groups have many nice topological properties. In particular, a discrete group is automatically a

locally compact Hausdorff space; furthermore, every function on a discrete group is continuous.

A consequence of this is that we can easily study continuous representations.

Definition 2.2 (Unitary Representation). A representation of a discrete group G on a Hilbert

space H, sometimes written (u,H), is a group homomorphism u : G→ B(H). A representation

is said to be unitary if it maps into U(H) ⊂ B(H). We often let ug denote the map u(g), the

image of g under u. Two unitary representations (u,Hu) and (v,Hv) are said to be unitarily

equivalent if there exists another unitary operator w : Hu → Hv such that w ◦ ug ◦ w−1 = vg,

for all g ∈ G. We denote this by u ∼w v, or simply u ∼ v.

In the more general locally compact case, we tend to require that our representations be strongly

continuous; however, this is of course automatically satisfied if G is discrete. Moreover, if u

is a unitary representation, then it follows from the properties of group homomorphisms that

ug−1 = u−1g = u∗g, for all g ∈ G.

Due to a theorem of Gelfand and Rykov, a locally compact group is completely determined

by its unitary representations [6][19]. As a result, we can restrict our study to strictly unitary

representations of the underlying group.

Our notion of unitary representations is still somewhat abstract; as a result, it may be helpful

to see some examples. Of course, we can always define the trivial representation, 1G : g 7→ idH ,

where idH is the identity operator in U(H). A more interesting and useful representation is the

left regular representation. We define this on the Hilbert space `2(G), from definition A.1.
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Theorem-Definition 2.3 (Left Regular Representation). Suppose we define an action of a

discrete group G on `2(G) by (g · ξ)(x) := ξ(g−1x), for all ξ ∈ `2(G) and all g, x ∈ G. Then

the left regular representation of G is the unitary representation λG : G→ U(`2(G)) : g 7→ λg,

where λg : `2(G)→ `2(G) is the the unitary convolution map on `2(G), defined by λg : ξ 7→ g ·ξ.

Proof. Consider the canonical basis {δa}a∈G for `2(G); we note that 〈λg(δa), λg(δb)〉 = 〈δa, δb〉.

This holds for all δa, δb in our basis, so by linearity and density it must hold for all elements of

`2(G), and hence λg is an isometry. It is also invertible; in particular, λ−1g : ξ(g−1x) 7→ ξ(x),

whence it follows that λ−1g = λg−1 . Hence λg is unitary, as it is invertible and isometric. Because

λG is a group homomorphism, the result follows. This completes the proof. �

Something we should observe is that we have λg ◦ δh = δgh, for δh given in definition A.1.

Example 2.4. A simple example that we can use to illustrate the concepts we have introduced

is that of the cyclic groups, Zn := Z/nZ. The left regular representation sends an integer p ∈ Zn
to the unitary map λp : ξ(q+nZ) 7→ ξ(q− p+nZ). In other words, it behaves as a translation!

Definition 2.5 (Irreducible Representation). Let (u,H) be a unitary representation of a

discrete group G. A closed subspace N ⊆ H is said to be an invariant subspace of u if

ug(N) ⊆ N , for all g ∈ G. We say that the representation is irreducible if its only invariant

subspaces are the trivially invariant subspaces {0H} and H; otherwise, it is said to be reducible.

We generally let Ĝ denote the set of unitary equivalence classes of irreducible representations.

Note that we require invariant subspaces be closed, ensuring that they are Hilbert subspaces.

This allows us to decompose unitary representations in terms of irreducible representations.

Furthermore, it is worth thinking for a moment about Ĝ. Its definition is actually quite subtle,

as the collection of all unitary representations of G does not necessarily form a set! However,

it turns out that the equivalence classes of irreducible representations do form a set, so the

definition is fine as long as we restrict our attention to these.

Definition 2.6. Let {(ui, Hi)}i∈I be a collection of unitary representations of a discrete group

G. Their direct sum, denoted by (⊕i∈Iui,⊕i∈IHi), is the unitary representation defined by(⊕
i∈I ui

)
g

=
⊕

i∈I(ui)g, for all g ∈ G.
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Lemma 2.7. Let G be a discrete group, and N ⊂ H an invariant subspace of the unitary

representation (u,H). Then its orthogonal complement, N⊥, is also invariant. Moreover, u is

unitarily equivalent to the orthogonal direct sum N |u ⊕ N⊥|u, the direct sum of the restrictions

of the form K |u : G
u−→ U(H)

|K−→ U(K) for the Hilbert subspace K ∈ {N,N⊥}.

Proof. Suppose we let ξ1 ∈ N⊥. We would first like to show that ug(ξ1) ∈ N⊥. We will

proceed by showing that ug(ξ1) is perpendicular to every ξ2 ∈ N . But to see this, we simply

recall that u∗g = u−1g , whence 〈ug(ξ1), ξ2〉 = 〈ξ1, u∗g(ξ2)〉 = 〈ξ1, u−1g (ξ2)〉 = 0 for all ξ2 ∈ N and

g ∈ G, as the invariance of N ensures that u−1g (ξ2) ∈ N . Thus N⊥ is invariant under u. All

that remains is to show that u is unitarily equivalent to N |u⊕ N⊥|u. That is, we wish to find a

unitary representation w : H → N ⊕N⊥ such that w ◦ ug ◦w−1 = ug|N ⊕ ug|N⊥ , for all g ∈ G.

But this is as simple as setting w(ξ) := projN(ξ)⊕ projN⊥(ξ) and w−1(ξ1⊕ ξ2) := ξ1 + ξ2 where

projK is the projection onto the subspace K. Note that by a corollary of the Hilbert space

projection theorem, the closure of N ensures that H ∼= N ⊕N⊥, which is required in order for

w to be bijective. Thus the result follows. This completes the proof. �

The above lemma can be applied in the following simplified restatement of the classical Peter-

Weyl theorem, which essentially states that the unitary representations of G are completely

characterised by the irreducible representations alone [4].

Theorem 2.8 (Peter-Weyl). Let (u,H) be a unitary representation of a discrete group G.

Then it is unitarily equivalent to an orthogonal direct sum of irreducible representations of G.

Proof. This proof essentially follows from transfinite induction on the result of lemma 2.7. �

Proposition-Definition 2.9 (Universal Representation). Let G be a discrete group, and

suppose we choose a representative u for each [u] ∈ Ĝ. The direct sum of all such unitarily

distinct representations is called the universal representation of G, and denoted (U,HU). For

any unitary representation u of G, we have that ‖u(g)‖ ≤ ‖U(g)‖, for all g ∈ G.

Proof. By definition of the operator norm, the norm of an element g ∈ G under U is given by

‖U(g)‖ = sup{‖u(g)‖ : [u] ∈ Ĝ}.
That this holds for any arbitrary unitary representation, rather than specifically the irreducible

representations, is just an application of the Peter-Weyl theorem. This completes the proof. �
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3 Group Algebras

Definition 3.1 (Complex Group Algebra). The (complex) group algebra of a group G, denoted

CG, is the set of all complex linear combinations of finitely many elements of G. That is,

CG :=

{∑
g∈G

agg : ag ∈ C, where ag = 0 for all but finitely many g ∈ G

}
. (3.1.1)

We can make CG into a complex ∗-algebra by defining

(3.1.2). scalar multiplication: c
∑
g∈G

agg :=
∑
g∈G

(cag)g, for c ∈ F;

(3.1.3). vector addition:
∑
g∈G

agg +
∑
g∈G

bgg :=
∑
g∈G

(ag + bg)g;

(3.1.4). vector multiplication:

(∑
g∈G

agg

)(∑
h∈G

bhh

)
:=
∑
g,h∈G

(agbh)gh;

(3.1.5). ∗-operation:

(∑
g∈G

agg

)∗
:=
∑
g∈G

agg
−1.

It’s easy to see that CG is Abelian if and only if G is; furthermore, denoting 1g = g for all g ∈ G,

we may essentially say that G ⊂ CG. We know from Gelfand and Rykov that a discrete group

is completely determined by its unitary representations [6][19]. Happily, there is a bijective

correspondence between these unitary representations and the unital ∗-representations of CG.

Theorem 3.2 (Universal Property). Let u : G → U(H) be a unitary representation of a

discrete group G on the Hilbert space H. There exists a bijection from u to the extension πu:

a unital ∗-representation of CG on H given by

πu :
∑
g∈G

agg 7→
∑
g∈G

agug. (3.2.1)

The inverse is given by restricting the unital ∗-representation π : CG → B(H) to G. Finally,

this bijection preserves irreducibility; that is, u is irreducible if and only if πu is irreducible.

The main implication of this theorem is that we only really need to care about the unital

∗-representations of CG; indeed, these representations happen to completely characterise the

group algebra, just as G is fully characterised by its unitary representations. Finally, it is worth

considering what happens to the left regular representation in CG.

Proposition 3.3. The left regular representation πλG of CG is injective.
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4 Discrete Group C∗-Algebras

We are now ready to define a C∗-algebra for discrete groups. We begin by introducing the

reduced group C∗-algebra. Some partial intuition for this definition comes from the Gelfand-

Naimark representation theorem (see A.20), which tells us that every C∗-algebra is embedded

in B(H), for some Hilbert space H. Thus, to build a C∗-algebra from CG, it makes sense to

try and map it into B(H). The simplest way of doing this is to use πλG , which we already know

is injective by proposition 3.3. It turns out that this does give us a C∗-algebra!

Proposition-Definition 4.1 (Reduced Group C∗-Algebra). Let G be a discrete group. We

define the reduced norm on CG by

‖a‖r = ‖πλG(a)‖, (4.1.1)

for each a ∈ CG, where πλG denotes the left regular representation. The completion of CG with

respect to this norm is a referred to as the reduced group C∗-algebra of G, and denoted C∗r (G).

Note that we can also define a C∗-algebra C∗π(G) := π(CG) for any other injective, unital

∗-representation π, not just πλG . Later, however, we will see why the left regular representation

specifically is important. Finally, note that if G is finite, we can simply say C∗π(G) ∼= π(CG).

We now introduce one more kind of completion of CG, that also turns it into a C∗-algebra.

Proposition-Definition 4.2 (Universal Group C∗-Algebra). Let G be a discrete group. We

define the universal norm on CG by

‖a‖U := sup{‖πu(a)‖ : u is a unitary representation of G}, (4.2.1)

for each a ∈ CG, is a well-defined norm on CG. The completion of CG with respect to this

norm is a referred to as the universal group C∗-algebra of G, and denoted C∗(G). In particular,

C∗(G) is a C∗-algebra containing CG as a dense ∗-subalgebra.

Note that we have a canonical surjective ∗-homomorphism from C∗(G) into C∗π(G), which just

extends the map CG π−→ C∗π(G); however, this will not necessarily give an inclusion of C∗π(G) in

C∗(G)! Before we take (4.2.1) for granted, it is worth pausing for a moment to consider whether

or not the supremum exists, or is well-defined. As we noted in our remark to definition 2.5, the

set of unitary representations do not form a set. However, because we are taking an operator
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norm, we can essentially map them down to a manageable subset of R. That the supremum

actually exists is maybe a bit more subtle; we will need to introduce one more completion of CG.

Definition 4.3. Let G be a discrete group. We define the `1-norm on CG by∥∥∥∥∥∑
g∈G

agg

∥∥∥∥∥
1

:=
∑
g∈G

|ag|. (4.3.1)

This definition can actually be made consistent with definition A.1 by associating with each

element of CG a functional a ∈ `1(G) of the form a(g) = ag.

In light of this definition, we actually find that the completion of CG with respect to this norm

is isomorphic to `1(G)! Furthermore, we can even extend our bijective correspondence between

the unitary representations of G and the unital ∗-representations of CG [18].

Theorem 4.4. Let G be a discrete group. There are bijective correspondences between the

unitary representations of G, the unital ∗-representations of CG and the unital ∗-representations

of `1(G). Furthermore, these bijective correspondences preserve irreducibility. Finally, every

unital ∗-representation of `1(G) is a contraction.

Essentially, because each unitary representation u of G extends bijectively to a contraction

on `1(G), we can say that ‖πu(a)‖ ≤ ‖a‖1, for each corresponding unital ∗-representation πu

of CG. Thus ‖πu(a)‖ is bounded, and hence the universal norm (4.2.1) is, happily, well-defined!

Proposition 4.5. Let G be a discrete group. Then

‖a‖U = sup{‖πu(a)‖ : u is an irreducible representation of G} = ‖πU(a)‖, (4.5.1)

for each a ∈ CG, where πU is the ∗-representation of CG corresponding to the universal

representation of G.

Because the group is described completely by not just its unitary representations, but its

irreducible unitary representations, it should not be too surprising that we can write the

universal norm in this way. Indeed, it follows as a direct corollary of proposition 2.9.

Finally, we have the following extension to theorem 4.4; a wonderful result indeed!

Proposition 4.6. Let G be a discrete group. Then there is a bijective correspondence between

the unital ∗-representations of `1(G) and the unital ∗-representations of C∗(G).
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5 Pontryagin Duality

We have already remarked that finite group C∗-algebras can just be seen as the image of CG

under πλG , with no completion argument required. It is also worth exploring what happens in

the case of Abelian groups. To this end, we introduce the notion of Pontryagin duals.

Definition 5.1 (Pontryagin Dual). Let G be a group. The Pontryagin dual of G, denoted

Ĝ, is the set of all continuous group homomorphisms from G to the circle group T, where

(χ1χ2)(g) = χ1(g)χ2(g) for all χ1, χ2 ∈ Ĝ and g ∈ G.

Theorem 5.2. Let G be a discrete, Abelian group. The corresponding dual group Ĝ is nothing

but the set of irreducible representations of G over the Hilbert space C.

Proof. Suppose we have some irreducible representation π : G→ U(C). Because we have the

correlation U(C) ∼= U(1) ∼= T, the composition of π with this isomorphism naturally results

in a homomorphism π′ : G → T. Conversely, suppose we have some group homomorphism

π′ : G → T. As before, we note that T ∼= U(C). Furthermore, because C is one-dimensional

as a complex Hilbert space, so too is U(C). Thus the representation is irreducible, as every

subspace of a one-dimensional space is trivial. This completes the proof. �

The main result of this chapter is the following: the group C∗-algebras of Abelian groups are

given by the “topological dual” of their Pontryagin dual [18].

Theorem 5.3. Let G be a discrete, Abelian group. Then the corresponding group C∗-algebra,

C∗(G), is isomorphic to C(Ĝ), the space of continuous functionals on Ĝ. Furthermore, this

isomorphism takes a group element g ∈ CG ⊂ C∗(G) to the function ĝ : χ 7→ χ(g).

Example 5.4. The Pontryagin dual of the cyclic group Zn is isomorphic to Zn, for all n > 0.

Hence C∗(Zn) is isomorphic to Z∗n, the topological dual of Zn! In particular, the evaluation

map Ẑn → Zn : χ 7→ χ(1) is a group isomorphism, as the image of every possible χ is just the

nth roots of unity in T ⊂ C2. Furthermore, this generalizes beautifully to the infinite cyclic

group, Z; the same evaluation map gives a group isomorphism Ẑ→ T. In fact, this statement

is even stronger: because the Pontryagin dual is compact (actually, it is also Hausdorff), it is

not terribly difficult to show that this map is homeomorphic as well.
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6 Introduction to Amenability

Definition 6.1 (Mean on a Group). A mean on a group G is a finitely additive measure on

the space `∞(G) of `∞-bounded functionals on G; that is, a linear functional m : `∞(G) → C

satisfying the following properties:

(6.1.1). m(χG) = 1 (normalization);

(6.1.2). m(f) ≥ 0, for all f ∈ `∞(G) with f(g) ≥ 0 for all g ∈ G (non-negativity).

Suppose we now define a group action on `∞(G) by left translation, similarly to what we did

for the left regular representation. A mean is then said to be G-invariant if it further satisfies

(6.1.3). m(g · f) = m(f), for all g ∈ G and f ∈ `∞(G) (left-invariance).

Definition 6.2 (Amenable Group). A group G is said to be amenable if it admits a G-invariant

mean.

While this definition may be slightly abstract, in many cases we really can think of this mean

as nothing but an averaging operator. For instance, consider the following example.

Example 6.3. All finite groups are amenable. In fact, given a finite group G, it is easy to

verify that the averaging operator defined by

f 7→ 1

|G|
∑
g∈G

f(g),

for all f ∈ `∞(G), is a G-invariant mean on `∞(G).

With this example in mind, it makes sense to ask about the amenability of Abelian groups,

just as we sought to understand their C∗-algebras earlier.

Theorem-Definition 6.4 (Fixed Point Property). A group G is said to satisfy the fixed point

property if any continuous, affine action of G on a non-empty, compact, convex subset X of

a locally convex topological vector space has a fixed point. Moreover, a group is amenable if it

satisfies this property.

Theorem 6.5 (Markov-Kakutani Fixed Point Theorem). Let G be a discrete, Abelian group.

Then any continuous, affine action of G on a non-empty, compact, convex subset X of a locally

convex topological vector space V has a fixed point. In other words, G satisfies the fixed point

property, and is hence amenable.
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The proofs for these two results are actually quite approachable, though slightly long; as a

result, they have been deferred to A.2 and A.3 in the appendix.

We have now seen two broad classes of groups that are amenable: finite groups and Abelian

groups. At this point, it is natural to wonder what a non-amenable group might look like. A

particularly influential example of a non-amenable group is the free group of rank 2. Please

refer to definition A.4 in the appendix for an explanation of the free group.

Theorem 6.6. The free group on two generators, F2, is not amenable.

Proof. To show this, we will proceed by contradiction. Suppose that F2 is amenable, with some

invariant mean m. Furthermore, let {a, b} be a generating set for F2, and consider a set A ⊂ F2

consisting of words that start with a non-trivial power of a. It is straightforward to observe that

A ∪ (a−1A) = F2.

Suppose we consider χF2 = χA∪a−1A, where χ denotes the indicator function. Because A and

a−1A are not disjoint, there will be some overlap when we sum their corresponding indicator

functions χA and χa−1A, whence it follows from linearity that

1 = m(χF2) = m(χA∪a−1A) ≤ m(χA + χa−1A)

= m(χA) +m(χa−1A)

= m(χA) +m(λa(χA))

= 2m(χA);

thus m(χA) ≥ 1/2. However, suppose we instead consider the disjoint sets A, bA and b2A,

which do not cover the entirety of F2; then

1 = m(χF2) ≥ m(χA∪bA∪b2A) = m(χA + χbA + χb2A)

= m(χA) +m(χbA) +m(χb2A)

= m(χA) +m(λb(χA)) +m(λb2(χA))

= 3m(χA).

But this is a contradiction; thus F2 cannot be amenable. This completes the proof. �
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To understand why this particular example is so important, we consider the following results.

Proposition 6.7. Amenable groups satisfy the following inheritance properties.

(6.7.1). Subgroups of amenable groups are amenable.

(6.7.2). Homomorphic images of amenable groups are amenable.

(6.7.3). Let G, N and Q be groups, with G an extension of Q by N . That is, we have

a sequence {e} −→ N
ι−→ G

π−→ Q −→ {e} of group homomorphisms, where

ι is injective and π is surjective, and where the image of each homomorphism

is equal to the kernel of the next in the sequence. Then G is amenable if and

only if both N and Q are amenable.

(6.7.4). Let (Gi)i∈I be a directed set of amenable subgroups of a group G, such that

Gi ⊆ Gj for i ≤ j and G =
⋃
i∈I Gi. Then G is amenable.

Proof. (6.7.1). Let G be an amenable group with a left-invariant mean m, and let H ⊂ G be

a subgroup. Furthermore, let R ⊂ G be a set of representatives for H\G, the quotient group

consisting of right cosets of H in G. That is, choose R such that for every element Hg ∈ H\G,

there is exactly one r ∈ R such that Hr = Hg. Finally, let s : G → H be the map with

g ∈ s(g)R, for all g ∈ G. This map certainly exists, as {Hr}r∈R = {Hg}g∈G covers G. Then

the map m̃ : `∞(H)→ C, defined by m̃(f) := m(f ◦ s), is a left-invariant mean on H.

(6.7.2). Let G be an amenable group with a left-invariant mean m, and let π : G → Q be a

surjective group homomorphism. Then f 7→ m(f ◦ π) is a left-invariant mean on Q.

(6.7.3). Suppose G is amenable; the first direction is implied directly by (6.7.1) as follows.

Restricting the codomain of ι such that it becomes surjective, we see that N is isomorphic to a

subgroup of G, and similarly by restricting the domain of π we require that Q is also isomorphic

to a subgroup of G. Conversely, suppose N and Q are amenable, with left-invariant means mN

and mQ respectively. Without loss of generality, we may assume N ⊂ G by our prior reasoning,

and Q = G/N by the first isomorphism theorem. Then f 7→ mQ(g ·N 7→ mN(n 7→ f(g · n))) is

a well-defined, left-invariant mean on G.

(6.7.4). For each i ∈ I, let mi be a left-invariant mean on Gi. Furthermore, suppose we consider

the maps m̃i : `∞(G) → C of the form f 7→ mi(f |Gi
). By the Banach-Alaoglu theorem, there

is a subnet of (m̃i)i∈I that converges to a functional m : `∞(G) → C. In fact, this limit is a

left-invariant mean on G as desired. �
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As it turns out, many non-amenable groups seem to have free subgroups. If we are able to find

some such free subgroup of a group G, for instance using the ping-pong lemma, then it is a

trivial consequence of theorem 6.6 and (6.7.1) that G is not amenable! Note that the converse to

this remark – that every non-amenable group has a free subgroup of rank 2 – actually does not

hold. This converse was known as the von Neumann problem; it was disproven by Olshansky,

who constructed the Tarski monster groups as a counterexample [17].

We conclude the chapter with a brief example using theorem A.6, the ping-pong lemma. For

those unfamiliar with braid groups, a description is given across definitions A.7, A.8 and A.11.

Theorem 6.8. The braid group on n strands is amenable if and only if n ∈ {1, 2}.

Proof. By proposition A.12, we know that B1
∼= {e} and B2

∼= F1
∼= Z, which are both

amenable by theorem 6.3 and theorem 6.5, respectively. Observe now that Bn is a proper

subgroup of Bn+1, for all n ∈ Z+; thus if we are able to show that B3 is not amenable, any

higher order braid groups must also not be amenable by the first result of proposition 6.7. Well,

let G be the subgroup of B3 generated by σ2
1 and σ2

2, and consider the group homomorphism

ϕ : B3 →Mn(R) defined by

ϕ(σ1) =

1 1

0 1

 , ϕ(σ2) =

 1 0

−1 1

 .

Note that ϕ(σ1) and ϕ(σ2) both, as matrices, satisfy the relation demanded by (A.12.1). We

can therefore define a group action of G on R2 by f · v := ϕ(f)v. Suppose we now define two

subsets A,B ⊂ R2 as follows:

A :=


x
y

 ∈ R2 : |x| > |y|

 , B :=


x
y

 ∈ R2 : |x| < |y|

 .

Given v = (x, y)T ∈ B, we see that

σ2n
1 · v =

1 2n

0 1

x
y

 =

x+ 2ny

y

 .

But it follows from the definition of B that

|x+ 2ny| ≥ |2ny| − |x| > 2|y| − |y| = |y|,
hence σ2n

1 ·B ⊂ A. A similar process yields σ2n
2 ·A ⊂ B. Thus G ∼= F2 by the ping-pong lemma

given in A.6, whence the result follows from proposition 6.7. This completes the proof. �
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7 Følner’s Characterisation of Amenability

In this chapter, we give an overview of Følner’s condition. It is recommended to first read

definitions A.13, A.14 and A.15. A good reference for this material is the book of Löh [10].

Definition 7.1 (Følner Sequence). Let (X, d) be a UDBG space; that is, a metric space that

is uniformly discrete and of bounded geometry. If F ⊂ X and r ∈ N, we define the r-boundary

of F in X by

δXr F := {x ∈ X\F : d(x, f) ≤ r, for some f ∈ F}. (7.1.1)

A Følner sequence for X is then a sequence (Fn)n∈N of finite subsets of X satisfying

lim
n→∞

∣∣δXr Fn∣∣
|Fn|

= 0, (7.1.2)

for all r ∈ N. These subsets are sometimes referred to as Følner sets.

Note that finite subsets of discrete spaces are naturally compact; thus in the case of subsets of

discrete (or, in fact, UDBG) spaces, we can use the terms interchangeably.

Figure 7.2: Illustration of the r-boundary.

Example 7.3. Let S := {e1, . . . , en} be the standard generating set of the group Zn, for n ∈ N.

Then the set of all balls in Zn centered at the origin, ({−k, . . . , k}n)k∈N, is a Følner sequence

for (Zn, dS).

Proposition 7.4 (Følner’s Property). A UDBG space X admits a Følner sequence if and only

if, for every r ∈ N and all ε > 0, there exists a finite subset F ⊂ X satisfying∣∣δXr F ∣∣
|F |

< ε. (7.4.1)

In this case, it is said to satisfy Følner’s property.
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Theorem 7.5 (Amenability via Følner’s Property). A finitely-generated group G is amenable

if and only if (G, dS) satisfies Følner’s property, where dS is the word metric given by A.15.1.

As we can see in figure 7.2, the r-boundary is actually exactly what the name implies, as it

gives an “outline” of width r around the space F . The existence of a Følner sequence can thus

be thought of as a statement regarding the geometric “efficiency” of the space; that is, the

space admits subsets with small boundaries but relatively large volumes.

Theorem 7.6 (Amenability via Growth). Let X be a UDBG space with subexponential growth;

that is, γX . (n 7→ 2n) with γX 6∼ (n 7→ 2n), for growth function γX given in definition A.16.

Furthermore, choose any x ∈ X, and define Fn := BX(x, n). Then (Fn)n∈N contains a Følner

subsequence for X, and is hence amenable.

Proof. Let γX be a growth function for X with respect to the element x ∈ X, exhibiting

subexponential growth. Then there exists, for all j,K ∈ N and ε > 0, some n ≥ K such that

γX(n+ j)

γX(n)
< 1 + ε.

Suppose K = nj−1 + 1 and ε = 1/j. Then there is a strictly increasing sequence (nj)j∈N with

γX(nj + j)

γX(nj)
< 1 +

1

j

is satisfied for all j ∈ N. We claim that (Fnj
)j∈N is a Følner sequence for X. Let r ∈ N. Then by

definition of the r-boundary, it follows that δXr Fn ⊂ BX(x, n+r)\BX(x, n) for all n ∈ N, whence∣∣δXr Fn∣∣ ≤ |BX(x, n+ r)\BX(x, n)| = γX(n+ r)− γX(n).

Therefore, for all j ≥ r, we obtain∣∣δXr Fnj

∣∣∣∣Fnj

∣∣ ≤ γX(nj + r)− γX(nj)

γX(nj)
=
γX(nj + r)

γX(nj)
− 1 ≤ γX(nj + j)

γX(nj)
≤ 1 +

1

j
− 1 =

1

j
.

This clearly tends to 0 as j tends to infinity; hence (Fnj
)j∈N is a Følner sequence for X as

desired. This completes the proof. �

Example 7.7. The infinite dihedral group, D∞ = 〈x, y | x2 = y2 = e〉, has a linear growth

rate. In particular, γSG(n) = 2n + 1, for S := {x, y}. This is actually quite easy to see, as

any x2 or y2 term will reduce to identity; hence all minimum-length words must have terms

alternating between x and y. There are only two distinct words of length n that satisfy this

condition; one beginning with x, and the other beginning with y.
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8 Reiter’s Characterisation of Amenability

We now look over the characterisation of amenability that we are primarily interested in;

namely, the condition of Hulanicki-Reiter. It is worth becoming familiar with the concept of

weak containment; more information on this is provided across definition A.18 and theorem

A.19 from the appendix.

Definition 8.1 (Reiter’s Property (P2)). Let G be a discrete group, and suppose we define

`2(G)1,+ := {s ∈ `2(G) : s ≥ 0, ‖s‖2 = 1}. Then G is said to satisfy Reiter’s property (P2) if,

for every finite subset Q ⊂ G and all ε > 0, there exists some s ∈ `2(G)1,+ such that

‖[λG(q)](s)− s‖2 < ε, (8.1.1)

for all q ∈ Q, where λG is the left regular representation on `2(G).

Theorem 8.2 (Amenability via Reiter’s Property). A discrete group G is amenable if and only

if it satisfies Reiter’s property.

The following result essentially follows from Reiter’s characterisation of amenability. We once

again defer the proofs to Kazhdan’s Property (T) [1], where equivalent statements have been

given in theorems G.3.1 and G.3.2, respectively.

Theorem 8.3 (Hulanicki-Reiter). Let G be a discrete group and λG its corresponding left

regular representation on `2(G). Then the following conditions are equivalent:

(8.3.1). G is amenable;

(8.3.2). 1G ≺ λG;

(8.3.3). u ≺ λG, for every unitary representation u of G.

Corollary 8.4. Let G be a discrete group. Then G is amenable if and only if C∗(G) = C∗r (G).

Proof. This is a direct consequence of Hulanicki-Reiter, theorem 4.4 and theorem A.19. �

Note that we have written “C∗(G) = C∗r (G)” in the theorem above; when G is amenable, the

two group C∗-algebras are not only isomorphic, but refer to the exact same completion of CG.

In other words, the identity map on CG itself extends to an isomorphism from the universal

group C∗-algebra to the reduced group C∗-algebra!

16



9 Further Study

The most natural direction for further study is towards the more general theory of locally

compact groups.

Definition 9.1 (Locally Compact Group). A locally compact space is a topological space such

that that every element belongs to a compact neighbourhood. A locally compact group is a

topological group for which the underlying topological space is locally compact.

Many of the results presented in this paper actually do hold in some form in the locally compact

case, albeit with some important differences. One such difference is the introduction of the

Lebesgue spaces, Lp(G).

In the discrete case, we have the nice situation where Lp(G) ∼= `p(G). However, this does

not hold in general for locally compact groups; as a consequence, most of the theory must be

modified to use the Lebesgue spaces instead. In particular, the group C∗-algebras must be

given as the completion of the full convolution algebra L1(G), rather than of the group algebra.

This is where the more general case becomes slightly more technical than the discrete case, as

it essentially necessitates a treatment of measure theory. Every locally compact group admits

a unique Haar measure, which is central to constructing the convolution algebra L1(G).

Some good resources regarding the group C∗-algebras of locally compact groups are Kazhdan’s

Property (T) [1] and the classical C∗-Algebras [5]. Fortunately, as we mentioned before, much

of the theory of locally compact groups still ends up being very similar to the theory of discrete

groups; thus understanding the discrete case well translates to a good understanding of the

locally compact case.

More recently, there has also been some work by Hendrik Grundling on extending the concept

of group C∗-algebras beyond the locally compact case [8].

Other areas of interest that follow from our investigation of amenability would be the study

of Haagerup property and Kahzdan’s property (T); two more group properties that can each

respectively be seen as an “extension” to and an “opposite” of amenability.
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A Appendix

Definition A.1 (Sequence spaces). Let `p(X) be the space of `p-bounded, complex-valued

functionals on X, defined by

`p(X) :=


{
ξ : X → C :

∑
x∈X

|ξ(x)|p <∞

}
, for 1 ≤ p <∞;

{ξ : X → C : sup{|ξ(x)| : x ∈ X} <∞} , for p =∞.

(A.1.1)

These spaces form groups under function composition. They also become Banach spaces under

pointwise operations when endowed with their respective `p-norm, defined by

‖ξ‖p :=


(∑
x∈X

|ξ(x)|p
)1/p

, for 1 ≤ p <∞;

sup{|ξ(x)| : x ∈ X}, for p =∞,

(A.1.2)

for all ξ ∈ `p(X). If A is a subset of X, we let χA ∈ `∞(X) be the indicator function

χA(x) :=

1, if x ∈ A;

0, if x /∈ A.

We let δa ∈ `p(X), for a ∈ X, be the delta function

δa(x) :=

1, if x = a;

0, if x 6= a.

The set {δx}x∈X forms an orthonormal linear basis for `p(X).

The space `2(X) will be of particular interest to us. It is unique in that it can made into a

Hilbert space by endowing it with the inner product 〈ξ1, ξ2〉2 :=
∑

x∈X ξ1(x)ξ2(x). We will often

find it natural to let `2(G) be the Hilbert space for representations of our discrete group G.

Theorem-Definition A.2 (Fixed Point Property). A group G is said to satisfy the fixed point

property if any continuous, affine action of G on a non-empty, compact, convex subset X of

a locally convex topological vector space has a fixed point. Moreover, a group is amenable if it

satisfies this property.
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Proof. Assume that G satisfies the fixed point property, and denote by L the topological dual

space of `∞(G) with respect to the weak∗-topology. Consider the set M(G) of all means on

`∞(G); this set is certainly non-empty, as the identity evaluation f 7→ f(e) is a mean on `∞(G).

Furthermore, because it is a weak∗-closed subset of L, by the Banach-Alaoglu theorem it is a

compact, convex subset of the unit ball in L. Thus by hypothesis, the continuous, affine action

m 7→ g ·m of G on M(G), given by (g ·m)(f) = m(λg(f)) for all g ∈ G and f ∈ `∞(G), has a

fixed point. This fixed point is precisely our left-invariant mean. This completes the proof. �

It turns out that the converse to the above theorem is also true; that is, amenable groups

automatically satisfy the fixed point property. However, this direction takes a bit more effort

to prove, and is slightly more technical. For a full proof of both directions, the book Kazhdan’s

Property (T) is an excellent resource [1].

A wonderful application of this fixed point property is as follows.

Theorem-Definition A.3 (Markov-Kakutani Fixed Point Theorem). Let G be a discrete,

Abelian group. Then any continuous, affine action of G on a non-empty, compact, convex

subset X of a locally convex topological vector space V has a fixed point. In other words, G

satisfies the fixed point property, and is hence amenable.

Proof. Suppose we define a map An(g) : X → X by

[An(g)](x) =
1

n+ 1

n∑
i=0

gi · x,

for n ∈ N and g ∈ G. Then An(g) is a continuous, affine transformation of X. Let A

denote the Abelian semigroup of continuous, affine transformations of X generated by the set

{An(g) : n ∈ N, g ∈ G}. Because X is compact, α(X) is a closed subset of X, for all α ∈ A.

We would first like to show that the set ⋂
α∈A

α(X)

is non-empty. Because X is compact, it is covered by finitely many sets of the form αi(X). It

is therefore sufficient to show that α1(X) ∩ · · · ∩ αm(X) is non-empty for any α1, . . . , αm ∈ A.

Suppose we let α = α1 ◦ · · · ◦ αm ∈ A. Because A is Abelian, α(X) ⊂ αi(X) for each
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1 ≤ i ≤ m. Hence α(X) ⊆ α1(X) ∩ · · · ∩ αm(X) and is this non-empty. Our final claim is that

this intersection is a fixed point set for G; that is, for any

x0 ∈
⋂
α∈A

α(X),

we have that g · x0 = x0 under any continuous, affine group action. Well, we know that for

every n ≥ 0 and g ∈ G, there exists an x ∈ X such that x0 = [An(g)](x). Thus for every

ϕ ∈ V ∗ and g ∈ G, we have the inequality

|ϕ(x0 − g · x0)| = |ϕ([An(g)](x)− g · [An(g)](x))|

=
1

n+ 1

∣∣ϕ(x)− ϕ(gn+1 · x)
∣∣

≤ 2

n+ 1
sup{|ϕ(y)| : y ∈ X},

where this supremum exists due to the compactness of X. Because this inequality must hold

for all n ∈ N, it follows that ϕ(x0) = ϕ(g ·x0), for every ϕ ∈ V ∗, and so x0 = g ·x0 for all g ∈ G

as required. This completes the proof. �

Definition A.4 (Free Group). The free group with free generating set S, denoted FS, is the

group consisting of all words in S. A word in S is defined to be any finite product of elements

and formal inverses of elements in S, where the equality of two words follows strictly from the

group axioms. The identity element e corresponds to the empty word with no symbols. A group

G is said to be free if it is isomorphic to FS, for some S ⊆ G.

Lemma A.5 (Universal Property). Let G be a group and FS the group that is freely generated

by S. Then for any function ϕ : S → G, there exists a unique group homomorphism ϕ : FS → G

such that ϕ|S = ϕ.

Proof. Suppose we have some function ϕ : S → G, and any word w = sk00 · · · sknn in FS, where

si ∈ S and ki ∈ {−1, 1} for all 0 ≤ i ≤ n. We define an extended map ϕ : FS → G by

ϕ(w) = ϕ(sk00 · · · sknn ) := ϕ(s0)
k0 · · ·ϕ(sn)kn .

This map is certainly a well-defined homomorphism by construction, and furthermore it is

unique. This completes the proof. �
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We will mainly be looking at the free group on two generators, sometimes also referred to as

the free group of rank 2. This is simply the free group F2, with generating set {a, b}.

Theorem A.6 (Ping-Pong Lemma). Let G be a group generated by elements α and β, and let

(X, ·) be a G-set. Furthermore, suppose there exist non-empty, disjoint subsets A,B ⊂ X, with

αn ·B ⊂ A and βn · A ⊂ B, (A.6.1)

for all n ∈ Z\{0}. Then G is a free group on two generators; that is, G ∼= F2.

Proof. Let a and b be the generators of the free group F2. We wish to find an isomorphism

between F2 and G mapping {a, b} to {α, β}. By the universal property of the free group, we

know that a map ϕ : F2 → G preserving the group generators exists. Furthermore, because G

is generated by {α, β}, this map is certainly surjective. We need only show that it is injective,

and we will be done.

In order to show that ϕ is injective, we will proceed by contradiction. Assume to this end that ϕ

is not injective; then there must be some non-identity word w ∈ FS\{e} with ϕ(w) = ε, where

ε is the identity element of G. Suppose we write w = an0bm1an1 · · · bmkank , where we allow

n0, nk ∈ Z but require n1, . . . , nk−1,m1, . . . ,mk ∈ Z\{0}. Then letting r ∈ Z\{0,−n0, nk},

B = ε ·B = ϕ(ar)εϕ(a−r) ·B = ϕ(arwa−r) ·B

= αn0+rβm1αn1 · · ·αnk−1βmkαnk−r ·B

⊂ αn0+rβm1αn1 · · ·αnk−1βmk · A

⊂ αn0+rβm1αn1 · · ·αnk−1 ·B

⊂ · · ·

⊂ αn0+r ·B

⊂ A.

This is a contradiction, as we have B 6⊂ A by hypothesis. The reason for choosing r as above

is so that αn0+r and αnk−r do not reduce to trivial powers of α (that is, identity); the latter

ensures that we can make the first jump from B to A, while the former ensures that we will

eventually land in A. This is actually where the lemma gets its name, as this process of jumping

between A and B mimics a game of table tennis! Thus ϕ is an isomorphism, and hence G ∼= F2.

This completes the proof. �
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Definition A.7 (Homotopy). Let X and Y be topological spaces, and consider two continuous

maps f, g : X → Y . These maps are said to be homotopic if there exists a continuous function

H : X × [0, 1]→ Y such that H(t, 0) = f(t) and H(t, 1) = g(t). Such a function is referred to

as a homotopy from f to g.

Proposition-Definition A.8 (Geometric Braid on n Strands). Let n ∈ Z+, and fix n distinct

points z1, . . . , zn ∈ R2. We define a (geometric) braid on n strands to be an n-tuple (f1, . . . , fn)

of continuous maps of the form fi : [0, 1] → R2, such that fi(0) = zi and fi(1) = zs(i) are

satisfied for some permutation s : {1, . . . , n} → {1, . . . , n}, as well as fi(t) 6= fj(t) for all i 6= j.

Two such braids on n strands (f1, . . . , fn) and (g1, . . . , gn) are said to be equivalent if, for each

i ∈ {1, . . . , n}, there exists a homotopy Hi from fi to gi such that {Hi(t, r)}ni=1 is a braid for

all fixed values of r ∈ [0, 1]. This, in fact, defines an equivalence relation on braids.

Before we continue, it’s a good idea to pause and think about what this all means. To this end,

consider the following figure of some braid on three strands, f := (f1, f2, f3).

Figure A.9: Geometric interpretation of a braid on 3 strands. This is essentially a slight

abstraction of the definition, formed by plotting the three paths {(fi(t), t)}3i=1, for t ∈ [0, 1].

This figure represents an abstraction given by plotting the paths individually as {(fi(t), t)}3i=1.

Although our braids are formally defined as n-tuples of functions mapping to R2, we can think

of them as collections of intertwining strands in R3. To see that these are equivalent, we simply

view the former as living in the xy-plane, while the latter extends to the z = t plane.

In a moment, we will show that these braids form a group under concatenation. Note that the

layering of the braids does actually matter here; for instance, consider now the following braid.
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Figure A.10: Concatenation of the braid from figure A.9 with its inverse.

By joining the braids f and f−1 as shown in figure A.10 and then pulling the ends taught,

we end up with the identity braid, composed of three straight, horizontal strands; this would

not occur if we instead continued to twist the first two strands around each other. This act of

“pulling tightly on the ends” is essentially what our homotopic equivalence relation encodes.

Proposition-Definition A.11 (Geometric Braid Group on n Strands). Let f := (f1, . . . , fn)

and g := (g1, . . . , gn) be two n-strand braids, where f has the associated permutation sf .

Defining a concatenating product on braids by

(f · g)i(t) :=

fi(2t), t ∈ [0, 1/2];

gsf (i)(2t− 1), t ∈ [1/2, 1],

(A.11.1)

we can make the set of equivalence classes of braids into a group. This group is referred to as

the (geometric) braid group on n strands, and denoted Bn.

Proof. Fix n distinct points z1, . . . , zn ∈ R2. Consider three braids on n strands f, g, h ∈ Bn,

with associated permutations sf , sg and sh, respectively. We see that

((f · g) · h)i(t) :=


fi(4t), t ∈ [0, 1/4];

gsf (i)(4t− 1), t ∈ [1/4, 1/2];

hsg(sf (i))(2t− 1), t ∈ [1/2, 1];

(f · (g · h))i(t) :=


fi(2t), t ∈ [0, 1/2];

gsf (i)(4t− 2), t ∈ [1/2, 3/4];

hsg(sf (i))(4t− 3), t ∈ [3/4, 1],

whence it is clear that ((f ·g)·h) is equivalent to (f ·(g ·h)), and so associativity is satisfied. The

identity braid is simply the braid e := (e1, . . . , en) where we define ei(t) := zi, for all t ∈ [0, 1].

Finally, we construct an inverse to each f ∈ Bn by taking f−1i (t) := fs−1
f (i)(1− t), for each i. �
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With this topological interpretation of the braid groups now understood, we can move towards

a more abstract, algebraic characterisation. This will prove more useful for our purposes.

Proposition A.12. The braid group on n strands admits the presentation

Bn = 〈σ1, . . . , σn−1 | σiσjσi = σjσiσj, σiσj = σjσi〉, (A.12.1)

where the first relation must hold for all |i− j| = 1, while the second must hold for all |i− j| > 1.

The formal proofs for this result are typically rather long. Consequently, we will instead

just take this more abstract characterisation as the definition, and defer the proof that it is

equivalent to the geometric characterisation [7]. To see intuitively that they are equivalent, we

can identify each so-called Artin generator σi := (σi,1, . . . , σi,n) ∈ Bn with the braid given by

σi,i(t) := zi + t(zi+1− zi) and σi,i+1(t) := zi+1 + t(zi− zi+1), where σi,j(t) := ej for all remaining

strands. As an example, figure A.9 actually illustrates the first Artin generator σ1 of B3. By

drawing the remaining generators as typical braid diagrams, it is easy to observe that they

form a generating set for Bn, and furthermore satisfy the properties of (A.12.1).

Now that we have reviewed some of the groups cited in the report, we will go over the basics

of a group’s growth rate; a concept with wide applications in geometric group theory.

Definition A.13 (Uniform Discreteness). A metric space (X, d) is said to be uniformly discrete

if inf{d(x, x′) : x, x′ ∈ X, x 6= x′} > 0.

Definition A.14 (Bounded Geometry). A metric space (X, d) is said to be of bounded

geometry if, for all r ∈ R+, there exists some Kr ∈ N such that |B(x, r)| ≤ Kr, for all

x ∈ X. That is, every ball in (X, d) of radius r contains no more than Kr points.

Definition A.15 (Word Metric). Let (G, ◦) be a group with finite generating set S, where we

take S to be closed under inverses. We define the word metric on G with respect to S by

dS(g, h) := min{n ∈ N : ∃x1, . . . , xn ∈ G for which g ◦ x1 ◦ · · · ◦ xn = h}, (A.15.1)

for all g, h ∈ G. That is, dS(g, h) is the smallest number of elements needed to multiply by

g to get h. We refer to dS(e, g) as the word length of g ∈ G with respect to the finite generating

set S.
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Definition A.16 (Growth Rate). Let X be a UDBG space, and let x ∈ X. Consider the closed

ball of radius n ∈ N centered at x, Fn := BX(x, n). We can then define a growth function of X

by γX : n 7→ |BX(x, n)|. Moreover, because UDBG spaces have bounded geometry, the growth

functions corresponding to any two elements of X will be asymptotically equivalent; hence it

makes sense to define the growth rate of X to be the asymptotic behaviour of any such growth

function γX .

For a group G with a finite generating set S, the ball BS
G(e, n) of radius n ∈ N is just the set

of all elements in G that can be expressed as a product of no more than n generators. We can

therefore naturally define a growth function γSG, that describes precisely how the group grows

with respect to S. However, we should note that the word length of a particular element will

not necessarily be the same with respect to every generating set. As a result, it is sensible

to wonder if this growth rate is a good description of a group in general. This leads to the

following proposition.

Proposition A.17. Let G be a group with finite generating sets S and S ′. Then the word

metrics dS and dS′ are bi-Lipschitz equivalent; that is, there exists some constant C > 0 such

that

1

C
dS(g, h) ≤ dS′(g, h) ≤ CdS(g, h), (A.17.1)

for any g, h ∈ G. In particular, γSG and γS
′

G are asymptotically equivalent, and hence the growth

rate of G is independent of the choice of generating set.

Proof. Let S = {s1, . . . , sm} and S ′ = {s′1, . . . , s′n} be finite generating sets for G. Suppose we

define, for instance,

C1 := max{dS′(e, si) : 1 ≤ i ≤ m},

C2 := max{dS(e, s′i) : 1 ≤ i ≤ n}.

In other words, every generator in S has a representation in S ′ composed of no more than C1

elements. Therefore, by simply substituting generators in S with their shortest representations

in S ′, we obtain an upper bound for dS′(g, h); in particular, dS′(g, h) ≤ C1dS(g, h). By

symmetry, we also obtain 1
C2
dS(g, h) ≤ dS′(g, h). Setting C := C1 + C2, the result follows.

This completes the proof. �
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Finally, we include some brief comments on weak containment. First, a definition.

Definition A.18 (Weak Containment). Let G be a group with two unitary representations

u : G → U(H) and v : G → U(K). The representation u is said to be weakly contained in v,

denoted u ≺ v, if for every ξ ∈ H, every compact Q ⊂ G and all ε > 0, there exists n ∈ Z+

and η1, . . . , ηn ∈ K such that ∣∣∣∣∣〈ξ, ug(ξ)〉 −
n∑
i=1

〈ηi, vg(ηi)〉

∣∣∣∣∣ < ε, (A.18.1)

for all g ∈ Q. This definition extends to the unital ∗-representations of the group C∗-algebra in

the natural way.

Weak containment has some rather nice implications in the context of our group C∗-algebras.

In particular, we have the following restriction on the norms of the images. As the proof for this

result is rather involved, we will defer it to theorem 7 of On simplicity of reduced C∗-algebras

of groups [9].

Theorem A.19. Let G be a discrete group with unitary representations u and v, corresponding

to the non-degenerate ∗-representations πu and πv of C∗(G). Then the following conditions are

equivalent:

(A.19.1). u ≺ v;

(A.19.2). ker(πu) ⊂ ker(πv);

(A.19.3). ‖πu(a)‖ ≤ ‖πv(a)‖, for all a ∈ C∗(G).

A deep understanding of C∗-algebras past the most basic, abstract definition is not essential

for this report. For the curious, some good resources on the general theory of C∗-algebras

are C∗-Algebras and Operator Theory [11], C∗-Algebras by Example [3] and C∗-Algebras and

Finite-Dimensional Approximations [2]. We will, however, include one major result here, as it

is arguably important for much of the intuition behind forming group C∗-algebras.

Theorem A.20 (Gelfand-Naimark Representation Theorem). For every C∗-algebra A, there

exists a Hilbert space H and a norm-closed ∗-subalgebra B ⊆ B(H) such that A is isometrically

∗-isomorphic to B.

This concludes the appendix. Thank you for reading!
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