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Abstract: We consider the problem of finding and classifying Einstein metrics on n spheres that are

invariant under certain cohomogeneity one group action. Using the Böhm-Wilking rounding theorem,

we show that a class of these invariant metrics, called doubly warped, must be round to be Einstein.

1 Introduction:

Einstein manifolds constitute solutions of the Einstein field equations for a gravitational field in the

special case that there is no matter. They also have applications in many other areas of mathematical

physics [1]. Moreover, these objects are also interesting in a geometric sense. Constructing, classifying

and studying Einstein manifolds is thereby a crucial part of Riemannian geometry.

Many examples of Einstein metrics have been constructed on Sn. Firstly, there are the well known

round metrics induced from the pullback of the Euclidean metric on Rn+1 and scalar multiples of it.

In 1973, Jensen was able to find more Einstein metrics on S4m+3 for m > 1 [11]. The most notable

development since, is Böhms construction of infinite sequences of non-isometric Einstein metrics over S5,

S6, S7, S8 and S9 in 1998 [3]. Boyer, Calicki and Kollár also found many non-isometric families of Einstein

metrics on odd dimentional spheres [4] and there have been many other results on this topic. However,

uniqueness results are relatively uncommon and far from comprehensive. Most have been predominantly

obtained under assumptions of homogeneous symmetry or curvature positivity.

In this document we aim to use the Böhm-Wilking rounding theorem to show that extensions of

particular doubly warped product metrics on n spheres must be isometric to a round metric.
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2 Riemannian geometry

In this section we cover most definitions and standard results required for the main research. Firstly we

introduce some Riemannian geometry as in [13]. An introduction to necessary information of smooth

manifolds and some notation is presented in Appendix 1.

As smooth manifolds alone only give a smooth structure of manifolds, we introduce an inner product
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over the tangent space to get notions of distances and angles and thereby geometry. The inner product

chosen is called a metric.

Definition 2.1. A metric g on M defines an inner product gp : TpM × TpM → R on the tangent

space for any p ∈ M . A metric g is smooth if for any smooth vector fields X,Y ∈ X(M), the map

p→ gp(Xp, Yp) is smooth on M . A Riemannian manifold is then defined as a pair (M, g), where M is a

smooth manifold and g is a smooth metric on M .

Remark. As the tangent space is a vector space we can consider the metric as a symmetric matrix. Given

coordinate maps (x1, ..., xn) we can assign components, gij
∣∣
p
:= gp

(
∂xi

∣∣
p
, ∂xj

∣∣
p

)
. Moreover using the

tensor product one can write the metric in terms of this basis as

g = gij dx
i ⊗ dxj ,

where dxi is the corresponding element of the dual basis in the cotangent bundle. There is a brief

introduction to tensors and tensor products in Appendix 2. For use below we give slightly different

notation as we will denote (dxi)2 := dxi⊗ dxi. Note that above and for the rest of the document we will

also use the Einstein summation convention, see Appendix 1 for more details.

Example 2.1. Rn with its natural structure is a simple example of a Riemannian manifold where the

metric is simply the dot product. That is, over the canonical basis for the tangent plane, (e1, ..., en),

gij = δij =

1 i = j

0 i ̸= j

or equivalently g = (dei)2.

Example 2.2. As Sn ⊂ Rn+1, the tangent plane on the n sphere is contained in the corresponding

tangent plane in n+1 euclidean space. Then we can use the metric in Example 2.1 on Rn+1 and restrict

it to Sn. Formally, this is the metric on Sn defined via pullback of the Euclidean metric on Rn+1. We

call this a round metric. We also call positive scalar multiples of such a metric, round.

A standard approach to measure the geometry of a Riemannian manifold is to measure its curvature.

Before we can define notions of curvature we first need to define some preliminary objects, first of which

is the Lie bracket, an operator that measures the non commutativity of composition of vector fields.

Definition 2.2. The Lie bracket, [·, ·] : X(M)× X(M) → X(M) is defined as

[X,Y ](f) := X(Y (f))− Y (X(f))

for all f ∈ C∞(M).

Remark. We note that the Lie bracket does indeed define a vector field as it is a linear operator and

satisfies the Leibniz rule. For a calculation see Appendix 3.

We now define the covariant derivative which is able to measure the change of one vector field along

another. It is a very important concept used here for introducing curvature.
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Definition 2.3. Fix a Riemannian manifold (M, g). The Levi-Civita connection, also known as the

covariant derivative, is a map ∇ : X(M) × X(M) → X(M), denoted by (X,Y ) 7→ ∇XY , satisfying the

following properties:

1. ∇X(Y + Z) = ∇XY +∇XZ;

2. ∇(fX+gY )Z = f∇XZ + g∇Y Z;

3. ∇X(fY ) = X(f)Y + f∇XY ;

4. [X,Y ] = ∇XY −∇YX; and

5. X(g(Y,Z)) = g(∇XY, Z) + g(Y,∇XZ).

Remark. The fundamental theorem of Riemannian geometry states that such a connection exists and is

unique. In fact it shows that the Levi-Civita connection is uniquely determined by the Koszul formula

as below:

2g(∇XY,Z) = X(g(Y,Z)) + Y (g(X,Z))− Z(g(X,Y )) + g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z], X).

Finally we can introduce some curvature forms, firstly the Riemannian curvature tensor from which

other forms are built.

Definition 2.4. Fix a Riemannian manifold (M, g). The (1,3) Riemannian curvature tensor is the map

R : X(M)× X(M)× X(M) → X(M) defined by,

R(X,Y )Z := ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

Similarly, the (0,4) Riemannian curvature tensor is defined by lowering the indices of the (1,3) Riemannian

curvature tensor as below:

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

Remark. We note that indeed the (1, 3) and consequently the (0, 4) Riemannian curvature are tensorial,

that is for any f ∈ C∞(M), R(fX, Y )Z = R(X, fY )Z = R(X,Y )fZ = fR(X,Y )Z. See Appendix 3

for calculations.

We also introduce important symmetries on the Riemannian curvature tensors as in [13] as they will

be used throughout this document.

Proposition 2.1. The Riemannian curvature tensor R(X,Y, Z,W ) satisfies the following properties:

1. R(X,Y, Z,W ) = −R(Y,X,Z,W ) = R(X,Y,W,Z); and

2. R(X,Y, Z,W ) = R(Z,W,X, Y ).

As the tensor is antisymmetric within its first and last two components, we can consider it acting

over bivectors instead. In fact, we are able to introduce the curvature operator, an operator acting

over bivectors that describes the (0,4) Riemannian curvature tensor. Note that there is a definition of

bivectors in Appendix 2.
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Definition 2.5. Fix a Riemannian manifold (M, g). The curvature operator R : Λ2M → Λ2M is the

linear operator defined to satisfy the following equation:

g(R(X ∧ Y ), U ∧ V ) := R(X ∧ Y,U ∧ V ) := R(X,Y, V, U).

Remark. We note that as the (0, 4) Riemanian curvature tensor is indeed tensorial in all components

and skew symmetric in its first two and last two components, the curvature operator is indeed a well

defined linear operator over Λ2M . Moreover by condition 2 from Proposition 2.1, R is symmetric.

Lastly we define Ricci curvature by contracting the (1,3) Riemannian curvature tensor.

Definition 2.6. Fix a Riemannian manifold (M, g). The Ricci curvature tensor, Ric : X(M)×X(M) →

C∞(M), is the (0,2) tensor defined by

Ric(X,Y ) := tr{Z 7→ R(Z,X)Y }.

Remark. Note that locally we can find an orthonormal basis (ei)
n
i=1 of vector fields about any chart. That

is, there exists functions fi ∈ C∞(M) such that locally every vector field can be written as X = fiei.

Then we can compute the Ricci curvature tensor by

Ric(X,Y ) = g(R(ei, X)Y, ei) = R(ei, X, Y, ei).

We note Proposition 2.1 shows that the the Ricci curvature tensor is symmetric. As both the Ricci

curvature and metric are symmetric (0,2) tensors, it makes sense to compare them and we can give the

following definition.

Definition 2.7. A Riemannian manifold (M, g) is called an Einstein manifold if

Ric(X,Y ) = λg(X,Y )

for all X,Y ∈ X(M) and a constant λ ∈ R.

2.1 Ricci flow

We now introduce Ricci flow, a powerful tool used to yield many results in geometry and topology. It is

a way to evolve the metric of a manifold such that the Ricci curvature becomes more uniform. In 2002,

Perelman was able to show how Ricci flow could be used to prove the Poincaré Conjecture (one of the

renowned millennium problems).

Definition 2.8. Given a smooth manifold M with initial metric g0 and open interval (0, l), the Ricci

flow assigns each t ∈ (0, l) a metric gt on M such that for all X,Y ∈ X(M),

∂t gt(X,Y ) = −2Ricgt(X,Y ).
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Example 2.3. Consider an Einstein manifold (M, g0) with Einstein constant λ. Then gt = (1− 2λt)g0

is a Ricci flow on M over the interval (0, λ2 ). Indeed,

∂t gt = ∂t (1− 2λt)g0 = −2λg0 = −2Ricg0 = −2Ricgt .

For an explanation of the final step see Appendix 3.

We now introduce normalised Ricci flow, which gives a way to evolve the metric according to Ricci

flow but rescales to maintain constant volume.

Definition 2.9. Given a smooth compact manifold M with initial metric g0 and open interval (0, l),

the normalised Ricci flow assigns each t ∈ (0, l) a metric gt on M such that for all X,Y ∈ X(M)

∂t gt(X,Y ) = −2Ricgt(X,Y ) +
2

n

´
M
S dVg(t)´

M
dVg(t)

gt(X,Y ).

Here, we further contract the curvature to get the scalar curvature, S := trg(Ric), the trace of the Ricci

curvature with respect to the metric.

Remark. From Example 2.3 we expect that the metrics of Einstein manifolds are themselves solutions

of normalised Ricci flow because the Ricci flow only rescales their metrics. Indeed we find that Einstein

manifolds are fixed point solutions of the normalised Ricci flow as the scalar curvature simplifies to nλ.

3 Invariance of doubly warped metrics

3.1 Lie groups

In order to later investigate Einstein manifolds that are invariant under a group action, we first introduce

Lie groups and more specifically SO(n).

Definition 3.1. A Lie group (M, ·) is a group such that M is a smooth manifold and the map (x, y) 7→

x−1 · y is smooth.

Example 3.1. The well know Lie group, SO(n + 1) is the group of matrix multiplication over the set

of n + 1 dimensional square orthogonal matrices with determinant 1. The carrier space of SO(n + 1)

is Rn+1, that is, the group elements act over Rn+1. Moreover, as these matrices are orthogonal, they

preserve norm. Hence, for all A ∈ SO(n + 1), A(Sn) = Sn. Then, as their determinant is 1, SO(n + 1)

is simply the set of rotations of Sn.

Example 3.2. We can construct a subgroup SO(2) × SO(n − 1) of SO(n + 1) as the group of matrix

multiplication over the set of n+ 1 dimensional square matrices of the form: S2 02 (n−1)

0(n−1) 2 Sn−1


where S2 ∈ SO(2), Sn−1 ∈ SO(n − 1) and 0i j is a i × j matrix of 0s. Some simple calculations show

that SO(2) × SO(n − 1) is indeed a subgroup and a sub-manifold of SO(n + 1) and hence a Lie group

itself.
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We note that we can have a manifold with the action of a Lie group. For example Sn can be acted

on via SO(2)× SO(n− 1). This now begs the question of investigating manifolds with actions of a Lie

group similar to the manifold itself.

Definition 3.2. A cohomogeneity one manifold M is a manifold with actions of a compact Lie group

(N, ·) whose quotient M/N is one dimensional.

We say that a Riemannian manifold is invariant under a Lie group if all actions in the group preserve

the manifold. For example we see that Sn with a round metric is invariant under SO(n + 1). In fact a

metric on Sn must be round to be invariant under SO(n+ 1).

3.2 Construction of a doubly warped metric

We aim to find all Einstein metrics on Sn, for n ≥ 4, that are invariant under the group action SO(2)×

SO(n− 1). We note that this action is well defined on Sn ⊂ Rn+1 as SO(2)× SO(n− 1) ⊂ SO(n+ 1)

by Example 3.1 and 3.2. We also note that the principal orbits of SO(2)× SO(n− 1) are diffeomorphic

to S1 × Sn−2 and hence the action is of cohomogeneity one.

We will only investigate a specific class of invariant metrics, although any invariant metric is isometric

to one we give below. To easily define this class we first construct a product manifold,M := I×S1×Sn−2

where I = (0, T ) ⊂ R an open interval. Then SO(2) × SO(n − 1) is also a group action on M , where

SO(2) acts on S1 and SO(n − 1) acts on Sn−2 by rotations as in Example 3.1. Moreover, the group

action is cohomogeneity one again as the principal orbits are diffeomorphic to S1 × Sn−2. We define the

metric on I × S1 × Sn−2 as doubly warped,

g = dt2 + f1(t)
2dθ2 + f2(t)

2ds2, (1)

where ds2 is the round metric on Sn−2 of Ricci curvature n− 3, dθ2 is the canonical metric on S1 which

gives it length 2π and f1(t), f2(t) > 0 for all t ∈ (0, T ). We note that indeed (M, g) is invariant under

SO(2) × SO(n − 1) as for fixed t, (S1, f1(t)2dθ2) and (Sn−1, f2(t)
2ds2) are invariant under SO(2) and

SO(n− 1) respectively.

Lastly, we note that M is diffeomorphic to Sn \ P , where P = ({0}2 × Sn−2) ∪ (S1 × {0}n−1) are

singular orbits of dimension n− 2 and 1. The diffeomorphism is given by

Φ(t, θ, s) =

(
cos

(
πt

2T

)
θ, sin

(
πt

2T

)
s

)
(2)

for t ∈ I, θ = (θ1, θ2) ∈ S1 and s = (s1, ..., sn−1) ∈ Sn−2. We verify Φ is a diffeomorphism in Appendix

4. To intuitively see why we get singular orbits we use notation as in Example 3.2. We note that

as t → 0, Sn−1 vanishes and we get a one dimensional orbit corresponding to elements of the form(
S2 02 (n−1)

0(n−1) 2 0(n−1) (n−1)

)
. Similarly as t→ T , S2 vanishes and we get a n−2 dimensional orbit corresponding

to elements of the form
(

02 2 02 (n−1)

0(n−1) 2 Sn−1

)
.

If we define a metric g̃ on Sn−1 such that

g̃(X,Y ) = g(dΦ(X), dΦ(Y )), (3)
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then Φ is an isometric embedding. Thus we get a natural identification of I×S1×Sn−2 in Sn. Moreover

as SO(2) acts on the first 2 coordinates, θ, and SO(n− 1) acts on the last n− 1 coordinates, s, we see

that (Sn, g̃) will also be invariant under SO(2) × SO(n − 1). Informally we are able to think of M as

a subset covering most of Sn, and we use this to get an invariant metric on Sn as the group action is

preserved on the diffeomorphism.

4 Boundary conditions and curvature operator

In this section we give a lemma detailing sufficient conditions of the metric in equation (3), on the

singular orbits {0}2 × Sn−2 and S1 × {0}n−1, such that it is a smooth metric on Sn. We then calculate

the curvature operator of the metric.

Note that if we take t = 0 and t = T in the diffeomorphism in equation (2) we exactly get the

missing singular orbits. However, in these cases, then Sn−2 and S1 will vanish respectively. Moreover,

without constraints on f1 and f2, the geometry does not make sense on these boundaries. Thus in order

to preserve the structure of g̃ on Sn as t → 0 and t → T , f2 and f1 respectively must vanish. Now,

by imposing these conditions we are able to get important higher order conditions on f1 and f2 on the

boundaries. We will soon give Lemma 3.1 which details this, but first we show two useful propositions

from [13].

Proposition 4.1. For a doubly warped product g = dt2 + ϕ(t)2ds2p + ψ(t)2ds2q on (0, b) × Sp × Sq, if

ϕ : (0, b) → (0,∞) is smooth and ϕ(0) = 0, then we get a smooth metric at t = 0 with local topology

Rp+1 × Sq, if and only if

ϕ is odd about 0 , ϕ′(0) = 1

and

ψ is even about 0 , ψ(0) > 0.

Proposition 4.2. For a doubly warped product g = dt2 + ϕ(t)2ds2p + ψ(t)2ds2q on (0, b) × Sp × Sq, if

ϕ : (0, b) → (0,∞) is smooth and ϕ(b) = 0, then we get a smooth metric at t = b with local topology

Rp+1 × Sq, if and only if

ϕ is odd about b , ϕ′(b) = −1

and

ψ is even about b , ψ(b) > 0.

We can now introduce the lemma we will use.

Lemma 4.1. A Riemannian metric, g, as in equation (1) on I ×S1×Sn−2 can be extended to a smooth

Riemannian metric on Sn by equation (3) if f1 and f2 are smoothly extendable to functions on [0, T ]
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such that:

f1 is even about 0 and f1(0) > 0;

f1 is odd about T and f ′1(T ) = −1;

f2 is odd about 0 and f ′2(0) = 1; and

f2 is even about T and f2(T ) > 0.

Remark. It is possible to give a more general forms such that we get an if and only if assertion. In fact

such conditions would be sufficient for Section 6. However, we do not give these forms as the proof is

too complicated to be included.

Proof. We cannot immediately extend g to Sn via equation (3) as g is only defined on M , an embedding

which does not cover Sn. Moreover, we then only have smoothness on the image of Φ. Thus we need to

ensure smoothness at t = 0 and t = T as this covers the missing singular orbits. We noted earlier that

as t → 0, f2 vanishes and thus by Proposition 4.1, we get the conditions at 0. Similarly, as t → T , f1

vanishes and using Proposition 4.2 we get the conditions at T . Hence we have smoothness at 0 and T ,

so the extension g̃ will also be smooth.

Lemma 3.1 immediately gives some second order terms for the functions f1 and f2, in fact, for almost

all of the results below only second or lower order terms are needed. All second or lower order terms of

f1 and f2 from Lemma 3.1 are listed below:

f1(0) > 0, f1(T ) = 0, f ′1(0) = 0, f ′1(T ) = −1, f ′′1 (T ) = 0,

f2(0) = 0, f2(T ) > 0, f ′2(0) = 1, f ′2(T ) = 0 and f ′′2 (0) = 0.

Let (ei)
n−1
i=1 be vector fields that form an orthogonal basis for the tangent planes of S1×Sn−1 on some

chart under the product metric dθ2 + ds2. We can construct it such that e1 is tangent to S1 and ej is

tangent to Sn−2 for j > 1. It is easy to then ensure (ei)
n−1
i=1 will form an orthonormal basis locally in the

tangent spaces of S1×Sn−2 under the metric f1(t)
2dθ2+f2(t)

2ds2 for fixed t ∈ (0, T ). Note that formally

we should define a collection of these to cover each t0 × S1 × Sn−2, then M and later Sn. However, we

will only need to use them locally so we do not need to be cautious about using them globally. We

note that then ei extends smoothly over a neighbourhood of M as t varies and so (∂t, e1, e2, ...) forms a

local orthonormal basis for (M, g). Thus (∂t ∧ e1, ..., ∂t ∧ en−1, e1 ∧ e2, e1 ∧ e3, ..., en−2 ∧ en−1) forms an

orthonormal basis in Λ2M which we claim diagonalises the curvature operator. Recall that we defined

the metric on bivectors in Appendix 2.

We will now compute the curvature operator. In order to do so we first need to do many calculations

and use several propositions from [13]. This lengthy calculation is all in Appendix 5 and we find:

R(∂t ∧ e1) = −f
′′
1 (t)

f1(t)
∂t ∧ e1; (4)

R(∂t ∧ ei) = −f
′′
2 (t)

f2(t)
∂t ∧ ei; (5)

R(e1 ∧ ei) = −f
′
1(t)f

′
2(t)

f1(t)f2(t)
e1 ∧ ei; and (6)
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R(ej ∧ ek) =
1− f ′2(t)

2

f2(t)2
ej ∧ ek. (7)

Therefore equations (4), (5), (6) and (7) show the curvature operator is indeed diagonalised and its

eigenvalues are:

1. − f ′′
1 (t)
f1(t)

with multiplicity 1;

2. − f ′′
2 (t)
f2(t)

with multiplicity n− 2;

3. − f ′
1(t)f

′
2(t)

f1(t)f2(t)
with multiplicity n− 2; and

4.
1−f ′

2(t)
2

f2(t)2
with multiplicity

(
n−2
2

)
.

5 The Einstein equations

We will now construct a system of ODEs which are necassary and sufficient conditions for (M, g) to be

an Einstein manifold. We note that as (∂t, e1, e2, ..., en−1) is an orthonormal basis at any point and the

Ricci curvature is a tensor it is sufficient to have,

Ric(∂t, ∂t) = λ,

Ric(e1, e1) = λ, and

Ric(ei, ei) = λ for i ≥ 2,

as the off diagonal terms are indeed 0 by Appendix 5. Using antisymmetry of the Riemannian curvature

tensor we find R(X,X,X,X) = 0 for all X ∈ X(M) and thus,

λ = Ric(∂t, ∂t) = R(∂t, ∂t, ∂t, ∂t) +R(∂t, e1, e1, ∂t) +R(∂t, ej , ej , ∂t)

= g(R(∂t ∧ e1), ∂t ∧ e1) + g(R(∂t ∧ ej), ∂t ∧ ej)

= −f
′′
1 (t)

f1(t)
− (n− 2)

f ′′2 (t)

f2(t)
.

Similarly,

λ = Ric(e1, e1) = g(R(∂t ∧ e1), ∂t ∧ e1) + g(R(e1 ∧ ej), e1 ∧ ej)

= −f
′′
1 (t)

f1(t)
− (n− 2)

f ′1(t)f
′
2(t)

f1(t)f2(t)
.

Lastly, for i ≥ 2,

λ = Ric(ei, ei) = g(R(∂t ∧ ei)∂t ∧ ei) + g(R(e1 ∧ ei), e1 ∧ ei) + g(R(ej ∧ ei), ej ∧ ei)

= −f
′′
2 (t)

f2(t)
− f ′1(t)f

′
2(t)

f1(t)f2(t)
+ (n− 3)

1− f ′2(t)
2

f2(t)2
.

Therefore the manifold M = I × S1 × Sn−2 with metric as in equation (1) is Einstein if and only if the

following system of ODEs is satisfied:

−f
′′
1 (t)

f1(t)
− (n− 2)

f ′′2 (t)

f2(t)
= λ; (8)

−f
′′
1 (t)

f1(t)
− (n− 2)

f ′1(t)f
′
2(t)

f1(t)f2(t)
= λ; and (9)

−f
′′
2 (t)

f2(t)
− f ′1(t)f

′
2(t)

f1(t)f2(t)
+ (n− 3)

1− f ′2(t)
2

f2(t)2
= λ. (10)
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6 Curvature operator is positive

In order to later use the Böhm-Wilking rounding theorem, we need to show that at any point the sum

of the two smallest eigenvalues is positive. In fact we are able to show they are all positive on M which

we recall we can identify with Sn. That is, we claim the eigenvalues are positive for all t ∈ (0, T ), t = 0

and t = T .

Firstly, we make use of Theorem 1.84 in [1] which is a result of the Bochner theorem. We use it to

ensure positivity of λ.

Theorem 6.1. Let (M, g) be a compact Riemannian manifold and its Ricci curvature is nonpositive,

then any Killing vector fields are parallel and the connected component of the isometry group is a torus.

As Sn is compact, suppose it has nonpositive Ricci curvature. As Sn is invariant under our group

actions of SO(2)× SO(n− 1), the isometry group contains SO(2)× SO(n− 1). Moreover, as SO(2)×

SO(n−1) has a sub manifold diffeomorphic to the connected manifold S1×Sn−1 and n ≥ 4, the connected

component of the isometry group is not a torus. Thus (M, g) and hence (Sn, g̃) must have positive Ricci

curvature and thus if they are Einstein then λ > 0.

As λ > 0 we can begin to analyse equations (8), (9) and (10) to show positivity of the curvature

operator, but first we construct a lemma for use below.

Lemma 6.1. Choose L > 0, and let f : [0, L] → R, h : [0, L) → R be smooth functions with f(0) > 0. If

df

dt
= h(t)f(t) for all t ∈ [0, L)

then f is positive on [0, L). Similarly if h is smooth on [0, L] and the ODE is satisfied on [0, L] then f

is positive on all [0, L].

Proof. Suppose for sake of contradiction there exists a point where f is non positive, then by intermediate

value theorem there exists a c ∈ (0, L) such that f(c) = 0. Using separability the well known solution is

f(t) = Ae
´ t
0
h(τ) dτ

where A ∈ R a fixed constant. By setting t = 0, we find A = f(0) > 0. Note that as h is smooth on [0, c]

it is integrable and bounded here. Thus, set β = inf
t∈[0,c]

h(t), then

0 = f(c) ≥ Aecβ > 0

a contradiction. The same argument holds for c = L if h is smooth on [0, L].

To show the eigenvalue of multiplicity 1 is positive on [0, L], we first give a variable transformation.

Set Li =
f ′
i

fi
, Ri =

1
fi

and ξ = L1 + (n− 2)L2, then equations (8), (9) and (10) become,

ξ′ = −L2
1 − (n− 2)L2

2 − λ; (11)

L′
1 = −ξL1 − λ; (12)
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L′
2 = −ξL2 + (n− 3)R2

2 − λ; and (13)

R′
2 = −L2R2. (14)

See Appendix 6 for details. We now have a proposition, which resembles Proposition 1 from [6], regarding

the eigenvalue of multiplicity 1.

Proposition 6.1. −f
′′
1

f1
is positive on [0, T ].

Proof. Define K := − f ′′
1

f1
. We investigate the smoothness of K, L1 and L2 for use later. We note that

as fi is smooth and positive on (0, T ), all these transformed variables are smooth on (0, T ). Moreover,

as f1 can be smoothly extended to [0, T ], we only need to show existence and compatibility of limits of

transformed variables at 0 and T to show smoothness.

K is smooth at 0 as f1(0) > 0. At T , we use L’Hôpitals rule to show limt→T K(t) = −f ′′′1 (T ), which

must exist as f1 is smooth and hence K is smooth at T .

L1 is also smooth at 0 as f1(0) > 0, moreover L1(0) = 0 as f ′(0) = 0. Also as f1(T ) = 0, f ′1(T ) = −1

and f1 > 0 on (0, T ), L1(t) → −∞ as t → T . Thus L1 smooth on [0, T ) and similarly, we find L2 is

smooth on (0, T ], where instead L2(t) → ∞ as t→ 0.

We now use boundary conditions to find the value of K(0) and we can then show K > 0 for all

t ∈ (0, T ]. In the following calculations, we denote Oj(t) as series expansions with only terms of degree

2 and above. We will calculate L′
1(0) in order to find K(0), and we require the behaviour of ξ near 0.

For small t we find

ξ(t) = (n− 2)
f ′2(t)

f2(t)
+ L1(t) =

n− 2 +O3(t)

t+O2(t)
+ L′

1(t)t+O1(t),

as L1(0) = 0, f2(0) = 0, f ′2(0) = 1 and f ′′2 (0) = 0. Thus, by equation (12),

L′
1(0) = lim

t→0
−ξ(t)L1(t)− λ

= −λ− lim
t→0

((
n− 2 +O3(t)

t+O2(t)
+ L′

1(t)t+O1(t)

)
· (L′

1(t)t+O1(t))

)
= −λ− lim

t→0
L′
1(t)

n− 2 +O3(t)

1 + O2(t)
t

= −λ− (n− 2)L′
1(0)

L′
1(0) =

−λ
n− 1

.

Thus, by smoothness L1(t) < 0 on (0, ε) for some ε ∈ (0, T ]. Note that, by simple calculation,

L′
1 = −K − L2

1 (15)

and hence, K(0) = −L′
1(0)−L1(0)

2 = λ
n−1 > 0. Before we can analyse the sign of K and L1 on (0, T ) we

need to develop an expression for K ′. First, note that by using equation (11), equation (15) is equivalent

to K = ξL1 + λ− L2
1. Now, differentiating K = ξL1 + λ− L2

1 using equation (11) and (15) gives

K ′ = −(n− 2)KL2 − (n− 2)L1L
2
2. (16)
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We now claim that K is positive on (0, T ), moreover we claim that L1 is negative on (0, T ). We will also

show K is positive at T .

Suppose for sake of contradiction, there exists a non positive point of −L1 or K on [0, T ). Note that

as −L1(0) = K(0) > 0 and L1 and K are smooth on this interval, then by intermediate value theorem

at least one of L1 and K must vanish on (0, T ). We consider 2 cases, L1 does not vanish before K or L1

vanishes before K.

Suppose that L1 vanishes before K, that is c1 is the first point such that L1(c1) = 0 and K > 0 on

[0, c1]. But then by equation (15), L′
1(c1) = −K(c1) < 0, so c1 is not the first vanishing point of L1.

Indeed, L1(c1−ε0) > 0 for some small ε0 and by intermediate value theorem there exists a c2 ∈ (0, c1−ε0)

such that L1(c2) = 0.

Instead suppose L1 does not vanish before K, then set c0 as the first point such that K(c0) = 0

which exists by intermediate value theorem. Hence, by assumption, L1 < 0,K > 0 on [0, c0), so letting

α ∈ (0, c0), K(α) > 0. As L1 ≤ 0 on [0, c0], by equation (16), K ′ ≥ −(n− 2)L2K. Let γ be the solution

to the IVP γ′ = −(n − 2)L2γ on the interval [α, T ] where γ(α) = K(α) > 0. Then clearly, K ≥ γ on

[α, T ]. However, by Lemma 6.1 as L2 is smooth on [α, T ], K(c0) ≥ γ(c0) > 0.

Moreover, the same argument shows that K(T ) ≥ γ(T ) > 0.

We can now use the above result to obtain a proposition about the eigenvalues of multiplicity n− 2.

Proposition 6.2. Both −f
′′
2

f2
and

f ′1f
′
2

f1f2
are positive on [0, T ].

Proof. We note that by equation (8) and (9),

−f
′′
2

f2
= −f

′
1f

′
2

f1f2
(17)

f ′′2 = L1f
′
2.

So it suffices to show positivity for only one of these eigenvalues at any point. We first show positivity

on the interior of the interval. Note that we showed L1 is smooth on [0, T ) and negative on (0, T ) in

Proposition 6.1. Thus, as f ′2(0) = 1 > 0 by the boundary conditions, Lemma 6.1 hence shows f ′2 > 0 on

[0, T ). Therefore, as f2 > 0 and L1 < 0 on (0, T ),

−f
′
1f

′
2

f1f2
= −L1

f ′2
f2

> 0 on (0, T ).

We now check the boundaries. At 0 as f ′1(0) = 0 and f2(0) = 0 and f1, f2, f
′
1, f

′
2 are smooth on [0, T ]

we can use L’Hôpitals rule,

lim
t→0

−f
′
1(t)f

′
2(t)

f1(t)f2(t)
= lim

t→0
−f

′′
1 (t)f

′
2(t) + f ′1(t)f

′′
2 (t)

f ′1(t)f2(t) + f1(t)f ′2(t)

= lim
t→0

−f
′′
1 (t)f

′
2(t)

f1(t)f ′2(t)
= lim

t→0
K(t) =

λ

n− 1
> 0

as per Proposition 6.1. To show the eigenvalues are positive at T we note that by boundary conditions

f2(T ) > 0, so is suffices to show f ′′2 (T ) < 0. As we have shown f ′′2 (t) < 0 on (0, T ), by smoothness

12



f ′′2 (T ) ≤ 0. Moreover, combining (17) and (10) and rearranging we get an ODE,

f ′′2 (t) = (n− 3)
1− f ′2(t)

2

2f2(t)
− λ

f2(t)

2
.

As f2(T ) > 0, by uniqueness and existence of 2nd order ODEs, for fixed α := f2(T ) > 0, there exists a

unique solution on a neighbourhood about T . Suppose f ′′2 (T ) = 0, then f2(t) = α =
√

n−3
λ solves this

equation. However, then f ′2(t) = 0 near T , but as above f ′2(t) > 0 for all t ∈ (0, T ), a contradiction, and

thus f ′′2 (T ) < 0.

We now can use Proposition 6.1 and 6.2 to show a third proposition which is closely follows Proposition

2 from [6], to show the final eigenvalue is positive.

Proposition 6.3.
1− f ′22
f22

is positive on [0, T ].

Proof. For t ∈ (0, T ], it suffices to show that f ′2 ∈ (−1, 1) on (0, T ] as f2 > 0 here. In fact at T , f ′2(T ) = 0

so we only need to investigate the open interval and later 0. We first note that by Proposition 6.2, f ′2 > 0

on [0, T ) so we only need to show f ′2 < 1. Note by equation (9),

−λf ′2(t) = (n− 2)
f ′′2 (t)f

′
2(t)

f2(t)
+
f ′′1 (t)f

′
2(t)

f1(t)
.

If we multiply equation (10) by f2, and differentiate it, using the expression above for −λf ′2(t) we find

0 = −f ′′′2 (t)− f ′1(t)f
′′
2 (t)

f1(t)
+
f ′1(t)

2f ′2(t)

f1(t)2
+ (n− 4)

−f ′2(t)f ′′2 (t)
f2(t)

+ (n− 3)
f ′2(t)(f

′
2(t)

2 − 1)

f2(t)2
.

Suppose for sake of contradiction f ′2(c0) ≥ 1 for some c0 ∈ (0, T ). As f ′2(0) = 1, f ′2(T ) = 0 and f ′2 is

smooth on [0, T ] it is bounded and has a maximum at t0 ∈ (0, T ) where f ′2(t0) ≥ f ′2(c0) ≥ 1, f ′′2 (t0) = 0

and f ′′′2 (t0) ≤ 0. Thus substituting in these inequalities we find

0 = −f ′′′2 (t0)−
f ′1(t0)f

′′
2 (t0)

f1(t0)
+
f ′1(t0)

2f ′2(t0)

f1(t0)2
+ (n− 4)

−f ′2(t0)f ′′2 (t0)
f2(t0)

+ (n− 3)
f ′2(t0)(f

′
2(t0)

2 − 1)

f2(t0)2

≥
(
f ′1(t0)

f1(t0)

)2

> 0

as L1(t0)
2 > 0 by Proposition 6.1. Thus, we found a contradiction and hence, f ′2 ∈ (0, 1) on (0, T ).

Consequently the eigenvalue is positive on (0, T ).

Lastly at 0, as f ′2(0) = 1 and f2(0) = 0 we use L’Hôpitals rule

lim
t→0

1− f ′2(t)
2

f2(t)2
= lim

t→0

−2f ′2(t)f
′′
2 (t)

2f2(t)f ′2(t)
= lim

t→0
−f

′′
2 (t)

f2(t)
> 0

by Proposition 6.2.

Together, Propositions 6.1, 6.2 and 6.3 show that the curvature operator is positive and hence 2-

positive. Consequently, we can use the Böhm-Wilking rounding theorem [2] stated below.

Theorem 6.2 (Böhm-Wilking rounding theorem). On a compact manifold the normalised Ricci flow

evolves a Riemannian metric with 2-positive curvature operator to a limit metric with constant sectional

curvature.
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We recall that the extension of g to Sn was g̃ as in equation (3) and Lemma 4.1. Note that using the

diffeomorphism, (Sn, g̃) also has a positive curvature operator. As stated in Section 2, Einstein manifolds

are fixed point solutions to the normalised Ricci flow. Thus, as (Sn, g̃) is Einstein, by the Böhm-Wilking

rounding theorem, it must have constant sectional curvature.

It is well know that any compact, simply-connected smooth manifold of dimension n with constant

positive sectional curvature is isometric to a round metric on Sn. Therefore, as n ≥ 4 ≥ 2, Sn is a

compact, simply-connected smooth manifold and thus g̃ must be round. We note that the round metric

of Ricci curvature n− 1 on Sn can be achieved by setting T = π
2 , f1(t) = cos(t) and f2(t) = sin(t). It is

easy to see that the conditions of Lemma 4.1 and equations (8), (9) and (10) are satisfied as expected.

7 Discussion and conclusion

In this report we introduced the relevant notions of manifolds and Riemannian geometry, constructed a

cohomogenity one group action and a class of invariant metrics. We then gave constraints such that the

manifold was Einstein and showed that it must be round for n ≥ 4. The Lie group we investigated was

SO(2) × SO(n − 1) and we studied the class of doubly warped metrics on I × S1 × Sn−2 that can be

extended to Sn.

It is interesting to note that Böhm was able to find infinitely many Einstein metrics on Sm for

5 ≤ m ≤ 9 that were invariant under any cohomogenity one action of the form SO(l) × SO(k) where

l, k ≥ 3. The work done above cannot be extended to such a group action as the Einstein equations

include a fifth eigenvalue of the curvature operator which allows for non-positive eigenvalues.

Possible further research may include loosening the constraints of Einstein to a Ricci soliton, similar

to [6]. Other possible areas of research may include investigating other classes of metrics over spheres or

trying to apply the Böhm-Wilking rounding theorem to other 4 dimensional compact manifolds such as

CP2#CP2.
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9 Appendix

9.1 Appendix 1: Smooth Manifolds

In this appendix we present smooth manifolds as in [12].

Definition 9.1. We define a smooth manifold of dimension n (sometimes denoted Mn) as a second

countable Hausdorff set M and a collection of injective maps φα : Ωα → Rn, Ωα ⊆M open for all α ∈ I

an indexing set, which satisfies the following properties:

1.
⋃
α∈I

Ωα =M ;

2. if Ωα ∩ Ωβ ̸= ∅ then φα ◦ φ−1
β : φβ(Ωα ∩ Ωβ) → φα(Ωα ∩ Ωβ) is smooth; and

3. {(φα,Ωα)} is maximal.

For terminology, a pair (φα,Ωα) is called a chart and a collection {(φα,Ωα) : α ∈ Λ} for indexing set

Λ ⊆ I such that the collection covers M is called an atlas.

Remark. Any atlas satisfying the first two conditions of Definition 9.1 can be extended to be maximal,

that is, such that the collection {(φα,Ωα)} is not contained in a larger atlas.

Example 9.1. A trivial example of a smooth manifold of dimension n is simply Rn, where the charts

are all of the form (Id, U), where Id is the identity and U ⊆ Rn is an open set.

Example 9.2. Another example of an smooth manifold is Sn := {x ∈ Rn+1 : ||x|| = 1}. There are many

ways to develop charts for Sn, but for this example we use stereographic projection to find an atlas for

S2.

Let (x1, x2, x3) ∈ S2, ΩN := {(x1, x2, x3) ∈ S2 : x3 < 1}, ΩS := {(x1, x2, x3) ∈ S2 : x3 > −1} and

φN (x1, x2, x3) =

(
x1

1− x3
,

x2
1− x3

)
and φS(x1, x2, x3) =

(
x1

1 + x3
,

x2
1 + x3

)
,

then indeed {(φN ,ΩN ), (φS ,ΩS)} is an atlas and it will satisfy conditions 1 and 2 from Definition 2.1

when checked. For example φS ◦ φ−1
N (x, y) = ( x

x2+y2 ,
y

x2+y2 ) is smooth on φS(ΩN ∩ ΩS) = R2 \ {(0, 0)}.

Using charts and their inverses can allow functions on manifolds to be given locally as maps between

Euclidean spaces. As differentiability of functions, f : Rm → Rn, is well known, the notion of a

differentiability on smooth manifolds is then given ensuring differentiability of the analogous function in

Euclidean space.

Definition 9.2. A function f :M → N from a smooth manifoldMm to another Nn is smooth at p ∈M

if for all charts (φα,Ωα), (φβ ,Ωβ) such that p ∈ Ωα, f(p) ∈ Ωβ , the function

φβ ◦ f ◦ φ−1
α : φα(Ωα) → Rn

φα(Ωα) ⊆ Rm, is smooth at φα(p). The function f is said to be smooth if it is smooth at q for all q ∈M .

The set of all smooth functions from M to R is denoted by C∞(M).
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Remark. The function f is smooth at p if such conditions hold in Definition 9.2 for one such chart of M

and N as transition maps are smooth by condition 2 of Definition 2.1.

Definition 9.3. Let Mn be a smooth manifold. A tangent vector to M at p ∈ M is a linear map

v : C∞(M) → R that satisfies the Leibniz rule, that is for all a, b ∈ R, f, g ∈ C∞(M) we have:

1. v(af + bg) = av(f) + bv(g); and

2. v(fg)(p) = v(f)(p) · g(p) + f(p) · v(g)(p).

We denote the set of all tangent vectors to M at p as TpM . The set of tangent vectors is called the

tangent bundle denoted TM := {(v, p) : p ∈M, v ∈ TpM}.

Remark. One can show that for given a given tangent vector v at p, v(f) = v(g) if f = g locally about

p. Thus, this definition only requires smoothness on a neighbourhood of p.

Remark. Let M be a smooth manifold, ε > 0 and α : (−ε, ε) → M a smooth function such that

α(0) = p ∈M . Then consider the tangent vector v = α′(0), which acts on functions f ∈ C∞(M) by

α′(0)f :=
d(f ◦ α)
dt

∣∣∣∣
t=0

.

Moreover all tangent vectors can be generated this way. Intuitively, this is the extension of directional

derivative to manifolds. That is, the vector α′(0) = v ∈ TpM acts on smooth functions by taking their

derivative along α at p.

Remark. We can define addition and scalar multiplication as standard: for tangent vectors v1, v2 ∈ TpM ,

a ∈ R and f ∈ C∞(M), (v1 + v2)(f) := v1(f) + v2(f) and (a · v1)(f) = a · v1(f). Then it is clear that

the tangent plane TpM is a vector space. Moreover, for a fixed chart containing p, φ = (x1, ..., xn), the

collection
{
(∂xi)p

}n

i=1
forms a basis of the tangent plane at p, where the coordinate maps act as vectors

via the previous remark. It is standard notation to denote ∂xi = ∂
∂xi and this will be used below too.

Moreover we will use the Einstein summation convention, whereby we implicitly sum over indexed terms

in an equation.

In order to analyse tangent vectors over the entire manifold, we define vector fields.

Definition 9.4. A vector field X in M , a smooth manifold, is a map X : M → TM such that Xp :=

X(p) ∈ TpM . A vector field is smooth if the map X :M → TM is smooth and the set of smooth vector

fields is denoted as X(M).

9.2 Appendix 2:

In this appendix we introduce the tensor product and bivectors. Tensors are used widely and the tensor

product is very natural operator. Bivectors are needed to define the curvature operator.

Firstly, we recall the definition of a tensor.
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Definition 9.5. Given a smooth manifoldM , a (p,q) tensor, T , is a multilinear map which maps p vectors

and q covectors to R at each tangent plane. That is for all x ∈M , then Tx : (TxM)q × (T ∗
xM)p → R.

We now introduce the tensor product which takes two tensors of order (p,q) and (l,k) and gives a

tensor of order (p+ l,q + k).

Definition 9.6. Given a smooth manifold M , a (p,q) tensor, T1, and a (l,k) tensor, T2, then the tensor

product is the (p+ l,q + k) tensor T1 ⊗ T2 defined by:

T1 ⊗ T2(v1, ..., vq+k, w1, ..., wp+l) = T1(v1, ..., vq, w1, ..., wp)T2(vq+1, ..., vq+k, wp+1, ..., wp+l)

where vi ∈ TxM , wj ∈ T ∗
xM .

We now introduce bivectors, a common tool used to describe planes. There are many different

definitions, but we define them as equivalence classes of tensor products.

Definition 9.7. As vectors naturally are (1, 0) tensors, we consider the subset of tensors Sp = {(u⊗v) :

u, v ∈ TpM}. Then we define bivectors as the equivalence classes of Sp, that is, u∧v := [u⊗v] under the

equivalence relation u⊗ v ∼ x⊗ y if x⊗ y = −y⊗ x. The second exterior power of TpM , denoted Λ2
pM ,

is the vector field obtained by extending the set of bivectors via addition. We also define the extension

of the metric to bivectors as

g(X ∧ Y, U ∧ V ) := g(X,U)g(Y, V )− g(X,V )g(Y, V ).

Similarly, Λ2M is then defined over smooth vector fields.

Remark. Although one can still interpret bivectors as maps, it is more convenient to consider them as

bilinear skew symmetric representations of planes. We note that we get bilinearity via the tensor product.

Remark. As the wedge product is a bilinear and antisymmetric map, Λ2
pM is spanned by (xi ∧ xj)i<j

where (xi)
n
i=1 is a basis of TpM . Moreover, if (ei)

n
i=1 is a local orthonormal basis of X(M) then (ei∧ej)i<j

will form a local orthonormal basis for Λ2M .

9.3 Appendix 3:

Here we collate calculations from Section 2 referenced for definitions. First we show that indeed the Lie

bracket is a vector field. It is clearly linear, so we show the Leibniz rule. Let f, g ∈ C∞(M), u = Xp and

v = Yp for p ∈M then

[u, v](fg)(p) = u(v(fg))(p)− v(u(fg))(p)

= u(v(f) · g + f · v(g))(p)− v(u(f) · g + f · u(g))(p)

= u(v(f))(p) · g(p) + u(v(g))(p) · f(p)− v(u(f))(p) · g(p)− v(u(g))(p) · f(p)

= [u, v](f)(p) · g(p) + f(p) · [u, v](g)(p).
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We now show that the (1,3) Riemannian curvature tensor is indeed tensorial in all its components.

Firstly we note that, by definition of the Levi-Civita connection, [fX, Y ] = f∇XY − f∇YX − Y (f)X=

f [X,Y ]− Y (f)X. Hence,

R(fX, Y )Z = ∇fX∇Y Z −∇Y ∇fXZ −∇[fX,Y ]Z

= f∇X∇Y Z − f∇Y ∇XZ − Y (f)∇XZ − f∇[X,Y ]Z + Y (f)∇XZ

= fR(X,Y )Z.

Similarly we find R(X, fY )Z = fR(X,Y )Z. Lastly,

R(X,Y )fZ = ∇X∇Y fZ −∇Y ∇XfZ −∇[X,Y ]fZ

= ∇Xf∇Y Z +∇XY (f)Z −∇YX(f)Z −∇Y f∇XZ − f∇[X,Y ]Z − [X,Y ](f)Z

= f∇X∇Y Z +X(f)∇Y Z + Y (f)∇XZ +X(Y (f))Z − Y (X(f))Z −X(f)∇Y Z

−Y (f)∇XZ − f∇Y ∇XZ − f∇[X,Y ]Z − [X,Y ](f)Z

= fR(X,Y )Z.

Lastly, we show that Ricg0 = Ricgt for Example 2.3. That is, the Ricci curvature does not change

under a positive scaling of the metric. Firstly, by scaling the metric, ĝ = cg for c > 0, the Levi-

Civita connection ∇̂XY = ∇XY is unchanged by the Koszul formula. Hence, R̂(X,Y )Z = R(X,Y )Z,

R̂(X,Y, Z,W ) = cR(X,Y, Z,W ). Given a local orthonormal basis (ei)
n
i=1 of smooth vector fields, in g,

then (êi)
n
i=1 is a local orthonormal basis in ĝ where êi =

ei√
c
, and so

R̂ic(X,Y ) = R̂(X, êi, êi, Y ) = R(X, ei, ei, Y ) = Ric(X,Y ).

9.4 Appendix 4:

In this appendix we show that the diffeomorphism given at the end of Section 3 is indeed a diffeomor-

phism. Recall it was given by,

Φ(t, θ, s) =

(
cos

(
πt

2T

)
θ, sin

(
πt

2T

)
s

)

=

(
cos

(
πt

2T

)
θ1, cos

(
πt

2T

)
θ2, sin

(
πt

2T

)
s1, ..., sin

(
πt

2T

)
sn−1

)
for t ∈ (0, T ), θ = (θ1, θ2) ∈ S1, s = (s1, ..., sn−1) ∈ Sn−2. Note that |Φ(t, θ, s)|2 = cos2

(
πt
2T

)
|θ| +

sin2
(
πt
2T

)
|s| = 1, so Φ(I × S1 × Sn−2) ⊆ Sn and indeed we find Φ(I × S1 × Sn−2) = Sn \ P , where

P = ({0}2 × Sn−2) ∪ (S1 × {0}n−1).

We now claim that the inverse is given by,

Φ−1(z1, z2, ...zn+1) =

(
2T

π
arccos(|θ|), θ

|θ|
,
s

|s|

)
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=

2T

π
arccos(

√
z21 + z22),

z1√
z21 + z22

,
z2√
z21 + z22

,
z3√

z23 + ...+ z2n+1

, ...,
zn+1√

z23 + ...+ z2n+1


for (z1, z2, ..., zn+1) ∈ Sn \ P and θ = (z1, z2), s = (z3, ..., zn+1). Note that as we remove the poles from

Sn, 0 < |θ|, |s| < 1 and arccos is well defined and smooth on this interval. Clearly
θ

|θ|
∈ S1,

s

|s|
∈ Sn−2

and indeed we find that the image, Im(Φ−1) = I × S1 × Sn−2 covers M . We do check that it is indeed

an inverse map,

Φ−1(Φ(t, θ, s)) = Φ−1

(
cos

(
πt

2T

)
θ, sin

(
πt

2T

)
s

)
= (t, θ, s).

Lastly when we consider the natural structure on I ×S1×Sn−2 and Sn then we find that Φ and Φ−1 are

differentiable.

9.5 Appendix 5:

In this appendix we detail some necessary but long calculations to ultimately find the curvature operator

in Section 4. We will require definitions not given in Section 2 about the Hessian and distance functions

from [13].

Definition 9.8. Let (M, g) be a Riemannian manifold and r ∈ C∞(M) a function. The Hessian of r is

a symmetric (0,2) tensor defined by

Hess r(X,Y ) = g(S(X), Y ) = g(∇X∇r, Y )

where ∇r is the gradient vector field of r, defined by the vector field such that g(Z,∇r) = Z(r) for all

Z ∈ X(M). The operator S : X(M) → X(M) is called the shape operator.

Remark. The gradient vector field of a coordinate function xi for a given chart is ∇xi
= ∂xi

.

Definition 9.9. Given a Riemannian manifold (M, g), a function r ∈ C∞(M) is a distance function on

M if g(∇r,∇r) = 1 identically. The level sets of such a function are defined asMr := {x ∈M : r(x) = r}

and its induced metric is denoted gr.

For convenience in sections below we will adopt the notation gS1 := dθ2, gSn−2 := ds2, g1 := f1(t)
2dθ2,

g2 := f2(t)
2ds2 and gt = g1 + g2 for fixed t ∈ (0, T ). We also note that t : M → I ⊂ R is a distance

function, as ∇t = ∂t and g(∂t, ∂t) = 1. We then find that gt is indeed the induced metric over the level

sets of Mt.

Before we can do any calculations, we introduce a lemma, which is analogous to an exercise in [8].

Lemma 9.1. Let (M1, g1) and (M2, g2) be Riemannian manifolds with Levi-Civita connections ∇1 and

∇2 respectively. Then, the Levi-Civita connection on (M1 ×M2, g1 + g2) for any vector fields X1, Y1 ∈

X(M1 × M2) tangent to and only dependant on M1 and X2, Y2 ∈ X(M1 × M2) tangent to and only

dependant on M2 is

∇Y1+Y2
(X1 +X2) = ∇1

Y1
X1 +∇2

Y2
X2.
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Remark. We define a vector v ∈ Tp(M1 ×M2) as tangent to M1, if v(f) = 0 for all functions which

only depend on M2. Note that we can extend tangent vectors of M1 to tangent vectors of M1 ×M2

tangent to M1 as below. Let X ∈ TpM1, then we can define X̃ ∈ Tp(M1 ×M2) by X̃(f) = X(f̃), where

f̃ ∈ C∞(M1) is f̃(x) = f(x, p2) and p = (p1, p2). Note that we implicitly used this when constructing

the local orthonormal basis in Section 4.

We now can compute the Hessian of t and its covariant derivative as they are in many curvature

formulas and will then help in calculations below. We note ∂t vanishes the shape operator and hence for

X = ∂t or Y = ∂t, the Hessian vanishes. Indeed we calculate

Hess t(∂t, Y ) = g(∇∂t
∇t, Y ) = g(∇Y ∇t, ∂t) = g(∇Y ∂t, ∂t)

=
1

2
(Y (g(∂t, ∂t)) + ∂t(g(∂t, Y ))− ∂t(g(∂t, Y )) + g([Y, ∂t], ∂t)− g([Y, ∂t], ∂t)− g([∂t, ∂t], Y ))

=
1

2
Y (1)− 1

2
g(0, Y ) = 0

by the Koszul formula. Thus as the Hessian is a tensor we only need to consider the Hessian for vector

fields without a ∂t component (i.e. g(X, ∂t) = 0). Moreover, we only need to consider a basis for

vectors tangent to S1 or Sn−2. Set ê1 = e1
f1(t)

and êi = ei
f2(t)

for all i ≥ 2. Then (êi)
n−1
i=1 is a local

orthonormal basis for (S1 × Sn−2, gS1 + gSn−2) and hence not dependant on t. Thus, we create the

functions hXi , h
Y
i ∈ C∞(M) such that X =

∑n−1
i=1 h

X
i êi and Y =

∑n−1
i=1 h

Y
i êi locally. Then, remembering

we adopt the Einstein summation convention,

Hess t(X,Y ) = hXi h
Y
j Hess t(êi, êj) = hXi h

Y
j g(∇êi∂t, êj)

= hXi h
Y
j

1

2
(êi(g(∂t, êj)) + ∂t(g(êi, êj))− êj(g(êi, ∂t)) + g([êi, ∂t], êj)− g([∂t, êj ], êi)− g([êi, êj ], ∂t))

= hXi h
Y
j

(
1

2
∂t(g(êi, êj))−

1

2
g([∂t, êi], êj)−

1

2
g([∂t, êj ], êi)

)
= hXi h

Y
j

1

2
∂t(g(êi, êj))

= hXi h
Y
j

1

2
∂t(f1(t)

2gS1(êi, êj) + f2(t)
2gSn−2(êi, êj))

= hXi h
Y
j (f

′
1(t)f1(t)gS1(êi, êj) + f ′2(t)f2(t)gSn−1(êi, êj))

= hXi h
Y
j

(
f ′1(t)

f1(t)
g1(êi, êj) +

f ′2(t)

f2(t)
g2(êi, êj)

)
= f ′1(t)f1(t)g1(X,Y ) + f ′2(t)f2(t)g2(X,Y )

as gS1 and gSn−2 are not dependant on t and g([êi, êj ], ∂t)) = 0 as [êi, êj ] = ∇êi êj−∇êi êj must be tangent

to S1 × Sn−2 by Lemma 9.1. Similarly, by Lemma 9.1, [∂t, êj ] = ∇∂t
êj −∇êi∂t = 0.

Thus we see that the shape operator is defined by S(∂t) = 0, S(e1) =
f ′
1(t)

f1(t)
e1 and S(ej) =

f ′
1(t)

f1(t)
ej

for j ≥ 2. Therefore Hess2 t(·, ·) = g(S(·), S(·)) =
(

f ′
1(t)

f1(t)

)2

g1(·, ·) +
(

f ′
2(t)

f2(t)

)2

g2(·, ·). This is another

important term that appears in curvature equations.
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The last term that is important to calculate is the covariant derivative of the Hessian. In order to do

this we first note that the covariant derivative acts on tensors by,

∇XT (Y1, ..., Yp, Z1, ..., Zq) =

X(T (Y1, ..., Yp, Z1, ..., Zq))− T (∇XY1, ..., Yp, Z1, ..., Zq))− ...− T (Y1, ..., Yp, Z1, ...,∇XZq))

Where Yi are vector fields, and Zi are dual vector fields. Thus, by property 5 in Definition 2.3,

∇Xg(Y, Z) = Xg(Y, Z) − g(∇XY,Z) − g(Y,∇XZ) = 0. With this information, we can continue to

calculate the covariant derivative of the Hessian,

∇∂tHess t = ∇∂t

(
f ′(t)

f1(t)
g1 +

f ′2(t)

f2(t)
g2

)

= ∂t

(
f ′1(t)

f1(t)

)
g1 +

f ′1(t)

f1(t)
∇∂t

g1 + ∂t

(
f ′2(t)

f2(t)

)
g2 +

f ′2(t)

f2(t)
∇∂t

g2

=
f ′′1 (t)

f1(t)
g1 −

f ′1(t)
2

f1(t)2
g1 +

f ′′2 (t)

f2(t)
g1 −

f ′2(t)
2

f2(t)2
g2

= −Hess2 t+
f ′′1 (t)

f1(t)
g1 +

f ′′2 (t)

f2(t)
g2.

We can finally state and use some propositions from [13].

Proposition 9.1. If r is a distance function then, (∇∂r
Hess r)(X,Y )+Hess2 r(X,Y ) = −R(X, ∂r, ∂r, Y ).

Rearranging Proposition 9.1 and using our calculation for the covariant derivative of the Hessian we

find,

R(X, ∂t, ∂t, Y ) = −(∇∂tHess t)(X,Y )−Hess2 t(X,Y )

R(X, ∂t, ∂t, Y ) = −f
′′
1 (t)

f1(t)
g1(X,Y )− f ′′2 (t)

f2(t)
g2(X,Y ). (18)

We use another proposition from [13] called the mixed and tangential curvature equations.

Proposition 9.2. If r is a distance function, gr is the induced metric and Rr is the Riemannian

curvature over level sets then :

1. g(R(X,Y )V,W ) = gr(R
r(X,Y )V,W )−Π(Y, V )Π(X,W ) + Π(X,V )Π(Y,W ); and

2. g(R(X,Y )Z, ∂r) = −(∇XΠ(Y,Z)) + (∇Y Π(X,Z)).

where X,Y, Z are vector fields tangent to the level sets Mr.

In our case r = t, Π = Hess t and gr = g1 + g2. Moreover, X,Y, Z are any vector fields without ∂t

components. We find that the mixed curvature ∇XΠ vanishes and we can then use Proposition 9.1 and

9.2 to yield equations (4), (5), (6) and (7). Indeed, for any X ∈ X(M) tangent to Mt for any fixed t ∈ I,

∇XΠ = ∇XHess t

= ∇X

(
f ′1(t)

f1(t)
g1 +

f ′2(t)

f2(t)
g2

)
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= X

(
f ′1(t)

f1(t)

)
g1 +

f ′1(t)

f1(t)
∇Xg1 +X

(
f ′2(t)

f2(t)

)
g2 +

f ′2(t)

f2(t)
∇Xg2 = 0.

Note that for the remainder of this appendix the index i will always be in the range 2 ≤ i ≤ n− 1. It is

important not to confuse it with the Einstein summation convention. We will now use equation (18) to

start calculating the terms of the curvature operator. We immediately find,

R(e1, ∂t, ∂t, e1) = −f
′′
1 (t)

f1(t)
g1(e1, e1) = −f

′′
1 (t)

f1(t)
,

R(ei, ∂t, ∂t, ei) = −f
′′
2 (t)

f2(t)
g2(ei, ei) = −f

′′
2 (t)

f2(t)
, and

R(e1, ∂t, ∂t, ei) = 0 = R(ei, ∂t, ∂t, e1).

Thus,

g(R(∂t ∧ e1), ∂t ∧ e1) = R(∂t, e1, e1, ∂t) = R(e1, ∂t, ∂t, e1) = −f
′′
1 (t)

f1(t)
.

Similarly,

g(R(∂t ∧ ei), ∂t ∧ ei) = −f
′′
2 (t)

f2(t)

and

g(R(∂t ∧ ei), ∂t ∧ e1) = 0 = g(R(∂t ∧ ei), ∂t ∧ e1).

Now, using Equation 2 in Proposition 9.2, for 1 ≤ l < m ≤ n− 1 and 1 ≤ j ≤ n− 1,

g(R(∂t ∧ ej), el ∧ em) = −R(em, el, ej , ∂t) = ∇emΠ(el, ej)−∇elΠ(em, ej) = 0.

Combining this with previous calculations we achieve equation (4) and (5)

R(∂t ∧ e1) = −f
′′
1 (t)

f1(t)
∂t ∧ e1 and R(∂t ∧ ei) = −f

′′
2 (t)

f2(t)
∂t ∧ ei.

We continue by using Equation 1 from Proposition 3.4 and our calculation for the Hessian,

g(R(e1 ∧ ei), e1 ∧ ei) = R(e1, ei, ei, e1)

= gt(R
t(e1, ei)ei, e1)−Π(ei, ei)Π(e1, e1) + Π(e1, ei)Π(ei, e1)

= −
(
−f

′
2(t)

f2(t)
g2(ei, ei) · −

f ′1(t)

f1(t)
g1(e1, e1)

)
= −f

′
1(t)f

′
2(t)

f1(t)f2(t)

as Rt(e1, ei)ei must be tangent to Sn−2. Indeed, as t is fixed and gt = g1 + g2, we can apply Lemma 9.1

and find

Rr(e1, ei)ei = ∇e1∇eiei −∇ei∇e1ei −∇[e1,ei]ei = −∇g([e1,ei],ej)ejei = X

where X is tangent to Sn−2. Similarly, we use Equation 1 from Proposition 3.4 for the off diagonal terms.

That is, for 2 ≤ j < k ≤ n− 1,

g(R(e1 ∧ ei), ej ∧ ek) = gt(R
t(e1, ei)ek, ej)−Π(ei, ek)Π(e1, ej) + Π(e1, ek)Π(ei, ej)
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= −gt(Rt(ek, ej)ei, e1) = 0

where Rt(ek, ej)ei must also be tangent to Sn−2 by Lemma 9.1.

Thus as there are no contributing ∂t ∧ ej terms as per above calculations, we have achieved equation

(6),

R(e1 ∧ ei) = −f
′
1(t)f

′
2(t)

f1(t)f2(t)
e1 ∧ ei.

Lastly, as g2 is the metric of curvature 1
f2(t)2

on Sn−2 and (êi)
n−1
i=2 defined above is an orthonormal basis

of (Sn−2, gSn−2), for 2 ≤ j < k ≤ n− 1, since the curvature operator is the identity on (Sn−2, gSn−2),

g(R(ej ∧ ek), ej ∧ ek) = gt(R
t(ej , ek)ek, ej)−Π(ek, ek)Π(ej , ej) + Π(ej , ek)Π(ek, ej)

= f2(t)
2gSn−2(RSn−2

(ej , ek)ek, ej)−
(
f ′2(t)

f2(t)
g2(ek, ek) ·

f ′2(t)

f2(t)
g2(ei, ei)

)
=

1

f2(t)2
gSn−2(êj ∧ êk, êj ∧ êk)−

f ′2(t)
2

f2(t)2
=

1− f ′2(t)
2

f2(t)2
.

Also, for 2 ≤ j < k ≤ n− 1, 2 ≤ l < m ≤ n− 1 and l ̸= j or m ̸= k,

g(R(ej ∧ ek), el ∧ em) = R(ej , ek, em, el)

= gt(R
t(ej , ek)em, el)−Π(ek, em)Π(ej , el) + Π(ej , em)Π(ek, el)

=
1

f2(t)2
gSn−2(ẽj ∧ ẽk, ẽl ∧ ẽm)

= 0.

Thus, as there are no other contributing terms from above, we achieve equation (7)

R(ej ∧ ek) =
1− f ′2(t)

2

f2(t)2
ej ∧ ek.

9.6 Appendix 6:

In this appendix we calculate the Einstein equations under the given transformation required for Propo-

sition 6.1. Firstly we note that

R′
i = L2R2 and

L′
i =

f ′′2
f2

− L2
i

by simple calculations. Then,

ξ′ = L′
1 + (n− 2)L′

2

=
f ′′1
f1

− L2
1 + (n− 2)

f ′′2
f2

− (n− 2)L2
2

= −λ− L2
1 − (n− 2)L2

2

by equation (8),

L′
1 =

f ′′1
f1

− L2
1 + ξL1 − ξL1

=
f ′′1
f1

− L2
1 + L2

1 + (n− 2)L1L2 − ξL1
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=
f ′′1
f1

+ (n− 2)
f ′1f

′
2

f1f2
− ξL1

= −λ− ξL1

by equation (9) and

L′
2 =

f ′′2
f2

− L2
2 + ξL2 − ξL2 + (n− 3)R2

2 − (n− 3)R2
2

=
f ′′2
f2

− L2
2 + L1L2 + (n− 2)L2

2 − (n− 3)R2
2 − ξL2 + (n− 3)R2

2

=
f ′′2
f2

+
f ′1f

′
2

f1f2
− (n− 3)

(f ′2)
2 − 1

f22
− ξL2 + (n− 3)R2

2

= −λ− ξL2 + (n− 3)R2
2

by equation (10).
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