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Abstract: We consider the problem of finding and classifying Einstein metrics on n spheres that are
invariant under certain cohomogeneity one group action. Using the Bohm-Wilking rounding theorem,

we show that a class of these invariant metrics, called doubly warped, must be round to be Einstein.

1 Introduction:

Einstein manifolds constitute solutions of the Einstein field equations for a gravitational field in the
special case that there is no matter. They also have applications in many other areas of mathematical
physics [1]. Moreover, these objects are also interesting in a geometric sense. Constructing, classifying
and studying Einstein manifolds is thereby a crucial part of Riemannian geometry.

Many examples of Einstein metrics have been constructed on S™. Firstly, there are the well known
round metrics induced from the pullback of the Euclidean metric on R™*! and scalar multiples of it.
In 1973, Jensen was able to find more Einstein metrics on S*™*3 for m > 1 [11]. The most notable
development since, is Bohms construction of infinite sequences of non-isometric Einstein metrics over S®,
S8, ST, S® and S? in 1998 [3]. Boyer, Calicki and Kollar also found many non-isometric families of Einstein
metrics on odd dimentional spheres [4] and there have been many other results on this topic. However,
uniqueness results are relatively uncommon and far from comprehensive. Most have been predominantly
obtained under assumptions of homogeneous symmetry or curvature positivity.

In this document we aim to use the Bohm-Wilking rounding theorem to show that extensions of

particular doubly warped product metrics on n spheres must be isometric to a round metric.
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2 Riemannian geometry

In this section we cover most definitions and standard results required for the main research. Firstly we
introduce some Riemannian geometry as in [13]. An introduction to necessary information of smooth
manifolds and some notation is presented in Appendix 1.

As smooth manifolds alone only give a smooth structure of manifolds, we introduce an inner product



over the tangent space to get notions of distances and angles and thereby geometry. The inner product

chosen is called a metric.

Definition 2.1. A metric ¢ on M defines an inner product g, : T,M x T,M — R on the tangent
space for any p € M. A metric g is smooth if for any smooth vector fields X,Y € X(M), the map
p = gp(X,,Y),) is smooth on M. A Riemannian manifold is then defined as a pair (M, g), where M is a

smooth manifold and g is a smooth metric on M.

Remark. As the tangent space is a vector space we can consider the metric as a symmetric matrix. Given

coordinate maps (z1,...,2™) we can assign components, gij’p = gp (8:,31' . Oyi ‘p) . Moreover using the

tensor product one can write the metric in terms of this basis as

where dx® is the corresponding element of the dual basis in the cotangent bundle. There is a brief
introduction to temsors and tensor products in Appendix 2. For use below we give slightly different
notation as we will denote (dx?)? := dz' ® dx’. Note that above and for the rest of the document we will

also use the Einstein summation convention, see Appendix 1 for more details.

Example 2.1. R” with its natural structure is a simple example of a Riemannian manifold where the
metric is simply the dot product. That is, over the canonical basis for the tangent plane, (e!, ..., e"),

1 i=y -

Gij = 035 = or equivalently g = (de')”.

0 i#j
Example 2.2. As S ¢ R™"!, the tangent plane on the n sphere is contained in the corresponding
tangent plane in n+ 1 euclidean space. Then we can use the metric in Example 2.1 on R™*! and restrict
it to S". Formally, this is the metric on S defined via pullback of the Euclidean metric on R**!. We

call this a round metric. We also call positive scalar multiples of such a metric, round.

A standard approach to measure the geometry of a Riemannian manifold is to measure its curvature.
Before we can define notions of curvature we first need to define some preliminary objects, first of which

is the Lie bracket, an operator that measures the non commutativity of composition of vector fields.

Definition 2.2. The Lie bracket, [-,-] : X(M) x X(M) — X(M) is defined as

(X, Y)(f) = X(Y(f)) = Y(X(/))
for all f € C>*(M).

Remark. We note that the Lie bracket does indeed define a vector field as it is a linear operator and

satisfies the Leibniz rule. For a calculation see Appendix 3.

We now define the covariant derivative which is able to measure the change of one vector field along

another. It is a very important concept used here for introducing curvature.



Definition 2.3. Fix a Riemannian manifold (M,g). The Levi-Civita connection, also known as the
covariant derivative, is a map V : X(M) x X(M) — X(M), denoted by (X,Y) — VxY, satisfying the

following properties:
1. Vx(Y+ Z2)=VxY + VxZ;
2. Vigx4gn)Z = [VxZ + gVy Z;
3. Vx(fY) = X(N)Y + fVxY;
4. [X,Y]=VxY — VyX; and
5. X(g(Y,2)) = g(VxY,Z) +g(Y,Vx Z).

Remark. The fundamental theorem of Riemannian geometry states that such a connection exists and is
unique. In fact it shows that the Levi-Civita connection is uniquely determined by the Koszul formula

as below:
29(VxY,2Z) = X(g(Y,2)) + Y (9(X, 2)) — Z(9(X,Y)) + 9([X, Y], Z) — g([X, Z],Y) — g([Y, Z], X).

Finally we can introduce some curvature forms, firstly the Riemannian curvature tensor from which

other forms are built.

Definition 2.4. Fix a Riemannian manifold (M, g). The (1,3) Riemannian curvature tensor is the map

R:X(M) x X(M) x (M) — X(M) defined by,
R(X, Y)Z = vayZ - VYVXZ - V[X7y]Z.

Similarly, the (0,4) Riemannian curvature tensor is defined by lowering the indices of the (1,3) Riemannian

curvature tensor as below:
R(X,Y, Z,W) = g(R(X,Y)Z, W).

Remark. We note that indeed the (1,3) and consequently the (0,4) Riemannian curvature are tensorial,
that is for any f € C°(M), R(fX,Y)Z = R(X,fY)Z = R(X,Y)fZ = fR(X,Y)Z. See Appendix 3
for calculations.

We also introduce important symmetries on the Riemannian curvature tensors as in [13] as they will
be used throughout this document.
Proposition 2.1. The Riemannian curvature tensor R(X,Y, Z, W) satisfies the following properties:

1. R(X,)Y,Z,W)=—-R(Y,X,Z,W)=R(X,Y,W,Z); and

2. R(X,Y,Z,W)=R(ZW,X,Y).

As the tensor is antisymmetric within its first and last two components, we can consider it acting
over bivectors instead. In fact, we are able to introduce the curvature operator, an operator acting
over bivectors that describes the (0,4) Riemannian curvature tensor. Note that there is a definition of

bivectors in Appendix 2.



Definition 2.5. Fix a Riemannian manifold (M, g). The curvature operator R : A2M — A%2M is the

linear operator defined to satisfy the following equation:
JR(XAY), UAV)=R(XAY,UAV):=R(X,Y,V,U).

Remark. We note that as the (0,4) Riemanian curvature tensor is indeed tensorial in all components
and skew symmetric in its first two and last two components, the curvature operator is indeed a well

defined linear operator over A2M. Moreover by condition 2 from Proposition 2.1, R is symmetric.

Lastly we define Ricci curvature by contracting the (1,3) Riemannian curvature tensor.

Definition 2.6. Fix a Riemannian manifold (M, g). The Ricci curvature tensor, Ric : X(M) x X(M) —
C>° (M), is the (0,2) tensor defined by

Ric(X,Y) :=tr{Z — R(Z,X)Y}.

Remark. Note that locally we can find an orthonormal basis (e;)7; of vector fields about any chart. That
is, there exists functions f; € C°°(M) such that locally every vector field can be written as X = f;e;.

Then we can compute the Ricci curvature tensor by
Ric(X,Y) = g(R(e;, X)Y,e;) = R(e;, X, Y, e;).

We note Proposition 2.1 shows that the the Ricci curvature tensor is symmetric. As both the Ricci
curvature and metric are symmetric (0,2) tensors, it makes sense to compare them and we can give the

following definition.

Definition 2.7. A Riemannian manifold (M, g) is called an Einstein manifold if
Ric(X,Y) = A\g(X,Y)

for all X,Y € X(M) and a constant A € R.

2.1 Ricci flow

We now introduce Ricci flow, a powerful tool used to yield many results in geometry and topology. It is
a way to evolve the metric of a manifold such that the Ricci curvature becomes more uniform. In 2002,
Perelman was able to show how Ricci flow could be used to prove the Poincaré Conjecture (one of the

renowned millennium problems).

Definition 2.8. Given a smooth manifold M with initial metric go and open interval (0,1), the Ricci

flow assigns each t € (0,1) a metric g, on M such that for all X, Y € X(M),

9 g:(X,Y) = —2Ric” (X, Y).



Example 2.3. Consider an Einstein manifold (M, gg) with Einstein constant A\. Then g; = (1 — 2At)go

is a Ricci flow on M over the interval (0, ). Indeed,
Or gt = O (1 — 2X\t)go = —2Ago = —2Ric? = —2Ric?".
For an explanation of the final step see Appendix 3.

We now introduce normalised Ricci flow, which gives a way to evolve the metric according to Ricci

flow but rescales to maintain constant volume.

Definition 2.9. Given a smooth compact manifold M with initial metric go and open interval (0,1),
the normalised Ricci flow assigns each t € (0,1) a metric g: on M such that for all X,Y € X(M)

2 [u S dVy)
n fy @V

Here, we further contract the curvature to get the scalar curvature, S := try(Ric), the trace of the Ricci

6t gt(X7 Y) = —21%10(]t (X, Y) + gt(X, Y)

curvature with respect to the metric.

Remark. From Example 2.3 we expect that the metrics of Einstein manifolds are themselves solutions
of normalised Ricci flow because the Ricci flow only rescales their metrics. Indeed we find that Einstein

manifolds are fixed point solutions of the normalised Ricci flow as the scalar curvature simplifies to nA.

3 Invariance of doubly warped metrics

3.1 Lie groups

In order to later investigate Einstein manifolds that are invariant under a group action, we first introduce

Lie groups and more specifically SO(n).

Definition 3.1. A Lie group (M, ") is a group such that M is a smooth manifold and the map (z,y) —

271 .y is smooth.

Example 3.1. The well know Lie group, SO(n + 1) is the group of matrix multiplication over the set
of n + 1 dimensional square orthogonal matrices with determinant 1. The carrier space of SO(n + 1)
is R**! that is, the group elements act over R"*!'. Moreover, as these matrices are orthogonal, they
preserve norm. Hence, for all A € SO(n+ 1), A(S™) = S™. Then, as their determinant is 1, SO(n + 1)

is simply the set of rotations of S™.

Example 3.2. We can construct a subgroup SO(2) x SO(n — 1) of SO(n + 1) as the group of matrix

multiplication over the set of n + 1 dimensional square matrices of the form:

So 02 (n—1)
Om—1)2  Sn-1
where Sy € SO(2), S,—1 € SO(n —1) and 0; ; is a ¢ x j matrix of 0s. Some simple calculations show
that SO(2) x SO(n — 1) is indeed a subgroup and a sub-manifold of SO(n + 1) and hence a Lie group
itself.



We note that we can have a manifold with the action of a Lie group. For example S™ can be acted
on via SO(2) x SO(n — 1). This now begs the question of investigating manifolds with actions of a Lie

group similar to the manifold itself.

Definition 3.2. A cohomogeneity one manifold M is a manifold with actions of a compact Lie group

(N, ) whose quotient M /N is one dimensional.

We say that a Riemannian manifold is invariant under a Lie group if all actions in the group preserve
the manifold. For example we see that S” with a round metric is invariant under SO(n + 1). In fact a

metric on S® must be round to be invariant under SO(n + 1).

3.2 Construction of a doubly warped metric

We aim to find all Einstein metrics on S™, for n > 4, that are invariant under the group action SO(2) x
SO(n —1). We note that this action is well defined on S C R"*! as SO(2) x SO(n —1) C SO(n + 1)
by Example 3.1 and 3.2. We also note that the principal orbits of SO(2) x SO(n — 1) are diffeomorphic
to S x S"~2 and hence the action is of cohomogeneity one.

We will only investigate a specific class of invariant metrics, although any invariant metric is isometric
to one we give below. To easily define this class we first construct a product manifold, M := I x S' x S*—2
where I = (0,7) C R an open interval. Then SO(2) x SO(n — 1) is also a group action on M, where
SO(2) acts on S! and SO(n — 1) acts on S"~2 by rotations as in Example 3.1. Moreover, the group
action is cohomogeneity one again as the principal orbits are diffeomorphic to S! x S*~2. We define the

metric on I x S! x S*~2 as doubly warped,
g = dt> + f1(t)%d0? + fo(t)*ds?, (1)

where ds? is the round metric on "2 of Ricci curvature n — 3, df? is the canonical metric on S' which
gives it length 27 and f1(t), f2(¢t) > 0 for all t € (0,T). We note that indeed (M, g) is invariant under
SO(2) x SO(n — 1) as for fixed ¢, (S, f1(¢)%d6#?) and (S"71, f2(t)%ds?) are invariant under SO(2) and
SO(n — 1) respectively.

Lastly, we note that M is diffeomorphic to S™ \ P, where P = ({0}? x S"=2) U (S* x {0}"7!) are

singular orbits of dimension n — 2 and 1. The diffeomorphism is given by

Tt . Tt
O(t,0,8) = (cos <2T) 6, sin (2T> s) (2)
fort €I, 0= (01,05) €S and s = (s1,...,5,_1) € S""2. We verify @ is a diffeomorphism in Appendix

4. To intuitively see why we get singular orbits we use notation as in Example 3.2. We note that

as t — 0, S,_1 vanishes and we get a one dimensional orbit corresponding to elements of the form

( Sa 02 (n—1)

On—1) 2 019 (et ) Similarly as t — T', S5 vanishes and we get a n—2 dimensional orbit corresponding

022 02 (n-1) )

to elements of the form (0<n71) , S

If we define a metric § on S~ ! such that

9(X,Y) = g(d®(X), d®(Y)), 3)



then ® is an isometric embedding. Thus we get a natural identification of I x S! x S*~2 in S®. Moreover
as SO(2) acts on the first 2 coordinates, 6, and SO(n — 1) acts on the last n — 1 coordinates, s, we see
that (S™, ) will also be invariant under SO(2) x SO(n — 1). Informally we are able to think of M as
a subset covering most of S, and we use this to get an invariant metric on S™ as the group action is

preserved on the diffeomorphism.

4 Boundary conditions and curvature operator

In this section we give a lemma detailing sufficient conditions of the metric in equation (3), on the
singular orbits {0} x S"~2 and S! x {0}"~1, such that it is a smooth metric on S". We then calculate
the curvature operator of the metric.

Note that if we take ¢ = 0 and ¢ = T in the diffeomorphism in equation (2) we exactly get the
missing singular orbits. However, in these cases, then S*~2 and S' will vanish respectively. Moreover,
without constraints on f; and fo, the geometry does not make sense on these boundaries. Thus in order
to preserve the structure of g on S” as ¢ — 0 and ¢t — T, f, and f; respectively must vanish. Now,
by imposing these conditions we are able to get important higher order conditions on f; and f; on the
boundaries. We will soon give Lemma 3.1 which details this, but first we show two useful propositions

from [13].

Proposition 4.1. For a doubly warped product g = dt* + ¢(t)*ds? + ¢(t)*ds? on (0,b) x SP x S7, if
¢ : (0,b) = (0,00) is smooth and ¢(0) = 0, then we get a smooth metric at t = 0 with local topology
RPHL x S9, if and only if

¢ is odd about 0 ,¢'(0) =1
and

Y is even about 0,1 (0) > 0.

Proposition 4.2. For a doubly warped product g = dt* + qb(t)zdsf, + 1/)(t)2dsg on (0,b) x SP x S, if
¢ : (0,b) = (0,00) is smooth and ¢(b) = 0, then we get a smooth metric at t = b with local topology
RPHL x S9, if and only if

¢ is odd about b ,¢'(b) = —1

and

Y is even about b ,1(b) > 0.
We can now introduce the lemma we will use.

Lemma 4.1. A Riemannian metric, g, as in equation (1) on I x St x S*=2 can be extended to a smooth

Riemannian metric on S™ by equation (3) if f1 and fo are smoothly extendable to functions on [0,T)]



such that:
f1 is even about 0 and f1(0) > 0;

f1 is odd about T and f{(T) = —1;
fa is odd about 0 and f5(0) = 1; and
fa is even about T and fo(T) > 0.

Remark. Tt is possible to give a more general forms such that we get an if and only if assertion. In fact
such conditions would be sufficient for Section 6. However, we do not give these forms as the proof is

too complicated to be included.

Proof. We cannot immediately extend g to S™ via equation (3) as g is only defined on M, an embedding
which does not cover S™. Moreover, we then only have smoothness on the image of ®. Thus we need to
ensure smoothness at ¢ = 0 and ¢t = T as this covers the missing singular orbits. We noted earlier that
as t — 0, fy vanishes and thus by Proposition 4.1, we get the conditions at 0. Similarly, as t — T, f1
vanishes and using Proposition 4.2 we get the conditions at T'. Hence we have smoothness at 0 and T,

so the extension g will also be smooth. O

Lemma 3.1 immediately gives some second order terms for the functions f; and fs, in fact, for almost
all of the results below only second or lower order terms are needed. All second or lower order terms of

f1 and f; from Lemma 3.1 are listed below:

f1(0) >0, f1(T) = 0, f1(0) = 0, fI(T) = =1, f{(T) =
f2(0) =0, f2(T) > 0, f5(0) = 1, f5(T") = 0 and f5(0) =

Let (el)l 1" be vector fields that form an orthogonal basis for the tangent planes of S' x S*~! on some
chart under the product metric d§? 4+ ds?. We can construct it such that e; is tangent to S! and e; is
tangent to S"~2 for j > 1. It is easy to then ensure (ei)?:_f will form an orthonormal basis locally in the
tangent spaces of S' x S*~2 under the metric fi(¢)2d6? + fo(t)?ds? for fixed t € (0,T). Note that formally
we should define a collection of these to cover each ty x S' x S*~2, then M and later S*. However, we
will only need to use them locally so we do not need to be cautious about using them globally. We
note that then e; extends smoothly over a neighbourhood of M as ¢ varies and so (0, €1, €a, ...) forms a
local orthonormal basis for (M, g). Thus (O; Ae1,...,0t Aep_1,€1 Aea,e1 Aes,...,en_o Ae,_1) forms an
orthonormal basis in A2M which we claim diagonalises the curvature operator. Recall that we defined
the metric on bivectors in Appendix 2.

We will now compute the curvature operator. In order to do so we first need to do many calculations

and use several propositions from [13]. This lengthy calculation is all in Appendix 5 and we find:

RO, A er) = ((;) By A exs (4)
B,

RO Nei) = — fz(t)ém i; (5)

R(e1 Ne;) = Egﬁg; e1 Ae;; and (6)



1 0
— = e Aeg. 7

PO "
Therefore equations (4), (5), (6) and (7) show the curvature operator is indeed diagonalised and its

%(ej A ek) =

eigenvalues are:
f”(t)

L =% D)
t)) with multiplicity n — 2;

with multiplicity 1;

2. —

N AUYAD
T TR0

4, lfff()f with multiplicity ().

with multiplicity n — 2; and

5 The Einstein equations

We will now construct a system of ODEs which are necassary and sufficient conditions for (M, g) to be
an Einstein manifold. We note that as (0, e1, ea, ..., e,—1) is an orthonormal basis at any point and the
Ricci curvature is a tensor it is sufficient to have,
Ric(0:,0¢) = A
Ric(e1,e1) = A, and
Ric(e;, e;) = A for i > 2,
as the off diagonal terms are indeed 0 by Appendix 5. Using antisymmetry of the Riemannian curvature

tensor we find R(X, X, X, X) =0 for all X € X(M) and thus,
)\ = Ric(@t, &) = R(@t,&g,at,@t) —+ R(@t, €1,€1, 3t) + R(@t, 6]‘, Gj, &)

= g(R(0s Ner1), 0 Ner) + g(R(0: Aej), O N ej)
A _— 2 (1)
O 0]

Similarly,
A = Ric(er,e1) = g(R(O: Ne1),0c Ner) + g(R(er ANej),er ANej)
0NN (U1 10)

- SO f()
f(®) fit)fa(t

Lastly, for ¢ > 2,

A = Ric(e;, ;) = g(R(0r N e;)0: Nei) + g(R(er Nei),er Ae) + g(Rlej Aei), e Ae;)

1O RORBG 1 0
L0 hORG " T RwE

Therefore the manifold M = I x S' x S"~2 with metric as in equation (1) is Einstein if and only if the

following system of ODEs is satisfied:

1) TN
“h AR N (8)
{0 OG-
G AGTAC R ©)
ZORRAVIA0 L pe
R0 RoRO T TRy (10)



6 Curvature operator is positive

In order to later use the Bohm-Wilking rounding theorem, we need to show that at any point the sum
of the two smallest eigenvalues is positive. In fact we are able to show they are all positive on M which
we recall we can identify with S™. That is, we claim the eigenvalues are positive for all ¢ € (0,T), t =0
andt="1T.

Firstly, we make use of Theorem 1.84 in [1] which is a result of the Bochner theorem. We use it to

ensure positivity of A.

Theorem 6.1. Let (M,g) be a compact Riemannian manifold and its Ricci curvature is nonpositive,

then any Killing vector fields are parallel and the connected component of the isometry group is a torus.

As S™ is compact, suppose it has nonpositive Ricci curvature. As S™ is invariant under our group
actions of SO(2) x SO(n — 1), the isometry group contains SO(2) x SO(n — 1). Moreover, as SO(2) x
SO(n—1) has a sub manifold diffeomorphic to the connected manifold S' xS"~! and n > 4, the connected
component of the isometry group is not a torus. Thus (M, g) and hence (S™, §) must have positive Ricci
curvature and thus if they are Einstein then A > 0.

As A > 0 we can begin to analyse equations (8), (9) and (10) to show positivity of the curvature

operator, but first we construct a lemma for use below.

Lemma 6.1. Choose L > 0, and let f : [0,L] = R, h:[0,L) — R be smooth functions with f(0) > 0. If

a _

T R(t)f(t) for all t € [0, L)

then f is positive on [0,L). Similarly if h is smooth on [0, L] and the ODE is satisfied on [0, L] then f

is positive on all [0, L].

Proof. Suppose for sake of contradiction there exists a point where f is non positive, then by intermediate

value theorem there exists a ¢ € (0, L) such that f(c) = 0. Using separability the well known solution is
f(t) _ Aefg h(T) dr

where A € R a fixed constant. By setting t = 0, we find A = f(0) > 0. Note that as h is smooth on [0, ]
it is integrable and bounded here. Thus, set 8 = i%f | h(t), then
te|0,c
0=f(c) > Ae” >0

a contradiction. The same argument holds for ¢ = L if h is smooth on [0, L]. O

To show the eigenvalue of multiplicity 1 is positive on [0, L], we first give a variable transformation.

Set L; = {T:v R; = % and £ = Ly + (n — 2) Lo, then equations (8), (9) and (10) become,
¢ =-Li-(n-2)L3 -\ (11)
Ly =—€L — X (12)

10



Ly=—¢Ly + (n—3)R3 — \; and (13)
Ry = —LaR,. (14)

See Appendix 6 for details. We now have a proposition, which resembles Proposition 1 from [6], regarding

the eigenvalue of multiplicity 1.

"

Proposition 6.1. —ZL- is positive on [0,T)].

fi

Proof. Define K := —’;—1:. We investigate the smoothness of K, L; and Lo for use later. We note that
as f; is smooth and positive on (0,T), all these transformed variables are smooth on (0,7T). Moreover,
as f1 can be smoothly extended to [0,7], we only need to show existence and compatibility of limits of
transformed variables at 0 and 7" to show smoothness.

K is smooth at 0 as f1(0) > 0. At T, we use L'Hopitals rule to show lim; 7 K(t) = —f1"(T), which
must exist as fi is smooth and hence K is smooth at T

L, is also smooth at 0 as f1(0) > 0, moreover L1(0) =0 as f'(0) =0. Also as f1(T) =0, f{(T) = -1
and f; > 0 on (0,T), L1(t) — —oco as t — T. Thus Ly smooth on [0,7) and similarly, we find L, is
smooth on (0, T], where instead Lo (t) — o0 as t — 0.

We now use boundary conditions to find the value of K(0) and we can then show K > 0 for all
t € (0,7]. In the following calculations, we denote O;(t) as series expansions with only terms of degree
2 and above. We will calculate L} (0) in order to find K(0), and we require the behaviour of ¢ near 0.
For small ¢ we find
f5(t)
f2(t)
as L1(0) =0, f2(0) =0, f4(0) =1 and f(0) = 0. Thus, by equation (12),

n— 2+ Os(t)

I 000) + Li(t)t + O1(t),

€)= (n—2)

+Li(t) =

L3(0) = lim —£(#) La (1) — A

= A lim ((m + L)+ O (t)) (L () + O (t)))

:_/\_th/l(t)LoOi"(t)
t—0 1_’_#
— A= (n—2)L\(0)
—A
/ _
Li(0) = et

Thus, by smoothness L;(t) < 0 on (0,¢) for some € € (0,T]. Note that, by simple calculation,
L) =-K-1% (15)

and hence, K (0) = —L(0) — L1(0)? = -2; > 0. Before we can analyse the sign of K and Ly on (0,T) we
need to develop an expression for K’. First, note that by using equation (11), equation (15) is equivalent

to K = £Ly + X — L3. Now, differentiating K = £L; + A — L? using equation (11) and (15) gives
K'=—(n—2)KLy— (n—2)L,L3. (16)

11



We now claim that K is positive on (0,7’), moreover we claim that L, is negative on (0,7"). We will also
show K is positive at T'.

Suppose for sake of contradiction, there exists a non positive point of —L; or K on [0,7T). Note that
as —L1(0) = K(0) > 0 and L; and K are smooth on this interval, then by intermediate value theorem
at least one of Ly and K must vanish on (0,7"). We consider 2 cases, L1 does not vanish before K or L;
vanishes before K.

Suppose that L; vanishes before K, that is ¢; is the first point such that Li(c¢;) =0 and K > 0 on
[0,¢1]. But then by equation (15), Lj(c1) = —K(c1) < 0, so ¢; is not the first vanishing point of L;.
Indeed, Lq(c1 —eg) > 0 for some small £y and by intermediate value theorem there exists a co € (0,¢1—eg)
such that L (c2) = 0.

Instead suppose L; does not vanish before K, then set ¢y as the first point such that K(co) = 0
which exists by intermediate value theorem. Hence, by assumption, L; < 0, K > 0 on [0, ¢), so letting
a € (0,¢0), K(a) > 0. As Ly <0 on [0, co], by equation (16), K’ > —(n — 2)L2 K. Let v be the solution
to the IVP 4/ = —(n — 2) Ly on the interval [o, T] where v(a) = K(a) > 0. Then clearly, K > v on
[, T]. However, by Lemma 6.1 as Ly is smooth on [, T, K(co) > 7v(co) > 0.

Moreover, the same argument shows that K (T') > v(T') > 0. O

We can now use the above result to obtain a proposition about the eigenvalues of multiplicity n — 2.

1 1 £/
Proposition 6.2. Both —=2 and i/ are positive on [0,T].
f2 fife
Proof. We note that by equation (8) and (9),
f2 Jife
7 = Lifs

So it suffices to show positivity for only one of these eigenvalues at any point. We first show positivity
on the interior of the interval. Note that we showed L; is smooth on [0,7") and negative on (0,7) in
Proposition 6.1. Thus, as f5(0) =1 > 0 by the boundary conditions, Lemma 6.1 hence shows f4 > 0 on
[0,T). Therefore, as fo > 0 and L; < 0 on (0,7,

i f
o L1f2 >0on (0,7).

We now check the boundaries. At 0 as f{(0) = 0 and f2(0) = 0 and f1, fa, f1, f4 are smooth on [0, T]

we can use L’Hopitals rule,

g A0S A0 + FOF @)
t50  f1(t)fa(t) 150 fI(t) f2(t) + F1() F5(2)
o SOBO e A
B AT A0 B R A e

as per Proposition 6.1. To show the eigenvalues are positive at T' we note that by boundary conditions

f2(T) > 0, so is suffices to show fJ(T) < 0. As we have shown fJ(¢t) < 0 on (0,7, by smoothness

12



Y(T) < 0. Moreover, combining (17) and (10) and rearranging we get an ODE,

1) = (-9 B0 20,

As fo(T) > 0, by uniqueness and existence of 2nd order ODEs, for fixed a := fo(T") > 0, there exists a
unique solution on a neighbourhood about T. Suppose f§(T) = 0, then fo(t) = a = \/E solves this
equation. However, then f5(t) = 0 near T', but as above f5(t) > 0 for all ¢t € (0,T), a contradiction, and
thus f2(T) < 0. O

We now can use Proposition 6.1 and 6.2 to show a third proposition which is closely follows Proposition

2 from [6], to show the final eigenvalue is positive.

_ 12
2

13

Proof. For t € (0,T], it suffices to show that f5 € (=1,1) on (0,7] as fo > 0 here. In fact at T, f4(T) =0

Proposition 6.3.

is positive on [0,T].

so we only need to investigate the open interval and later 0. We first note that by Proposition 6.2, f} > 0

on [0,T) so we only need to show fj < 1. Note by equation (9),

L Y050 | FOR0
“AL) == DT T TR

If we multiply equation (10) by f», and differentiate it, using the expression above for —Af4(t) we find

0= — (1) f1@)f5 @) N i) f5(t) —f5() f3 (1) o) (f5(t)* = 1)
e f1(t) fi(t)? f2(t) f2(t)? '

+(n—4) +(n—3)

Suppose for sake of contradiction fi(co) > 1 for some ¢y € (0,T). As f5(0) =1, f4(T) = 0 and f2 is
smooth on [0, 7] it is bounded and has a maximum at to € (0,T) where f5(to) > fi(co) > 1, f5(to) =
and f4(tg) < 0. Thus substituting in these inequalities we find

o filto) 3 (to) | fi(to)*f5(to) —f3(to) f3 (to)

0 = —£1'(t0) - ¥ ( —f(to) £ (to)

fi(to) fi(to) f2(to)

> (o)

as L1(tg)? > 0 by Proposition 6.1. Thus, we found a contradiction and hence, f; € (0,1) on (0,7).

+(n—4) +(n—3) 2

Consequently the eigenvalue is positive on (0,T).
Lastly at 0, as f5(0) =1 and f2(0) = 0 we use L’Hopitals rule
_ f! 2 _ ! ! 1/
N 101 {0): (ORI 1)
=0 fo(t)? =0 2fo(t) f5(t) =0 fa(t)
by Proposition 6.2. O

>0

Together, Propositions 6.1, 6.2 and 6.3 show that the curvature operator is positive and hence 2-

positive. Consequently, we can use the Bohm-Wilking rounding theorem [2] stated below.

Theorem 6.2 (Bohm-Wilking rounding theorem). On a compact manifold the normalised Ricci flow
evolves a Riemannian metric with 2-positive curvature operator to a limit metric with constant sectional

curvature.
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We recall that the extension of g to S™ was g as in equation (3) and Lemma 4.1. Note that using the
diffeomorphism, (S™, §) also has a positive curvature operator. As stated in Section 2, Einstein manifolds
are fixed point solutions to the normalised Ricci flow. Thus, as (S™, ) is Einstein, by the Bohm-Wilking
rounding theorem, it must have constant sectional curvature.

It is well know that any compact, simply-connected smooth manifold of dimension n with constant
positive sectional curvature is isometric to a round metric on S™. Therefore, asn > 4 > 2, S" is a
compact, simply-connected smooth manifold and thus g must be round. We note that the round metric
of Ricci curvature n — 1 on S™ can be achieved by setting T'= 7, fi(t) = cos(t) and fa(t) = sin(t). It is

easy to see that the conditions of Lemma 4.1 and equations (8), (9) and (10) are satisfied as expected.

7 Discussion and conclusion

In this report we introduced the relevant notions of manifolds and Riemannian geometry, constructed a
cohomogenity one group action and a class of invariant metrics. We then gave constraints such that the
manifold was Einstein and showed that it must be round for n > 4. The Lie group we investigated was
SO(2) x SO(n — 1) and we studied the class of doubly warped metrics on I x S' x S*~2 that can be
extended to S™.

It is interesting to note that Béhm was able to find infinitely many Einstein metrics on S™ for
5 < m < 9 that were invariant under any cohomogenity one action of the form SO(l) x SO(k) where
I,k > 3. The work done above cannot be extended to such a group action as the Einstein equations
include a fifth eigenvalue of the curvature operator which allows for non-positive eigenvalues.

Possible further research may include loosening the constraints of Einstein to a Ricci soliton, similar
to [6]. Other possible areas of research may include investigating other classes of metrics over spheres or
trying to apply the Bohm-Wilking rounding theorem to other 4 dimensional compact manifolds such as

CP,#CP,.
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9 Appendix

9.1 Appendix 1: Smooth Manifolds

In this appendix we present smooth manifolds as in [12].

Definition 9.1. We define a smooth manifold of dimension n (sometimes denoted M™) as a second
countable Hausdorff set M and a collection of injective maps ¢, : Q4 — R™, Q, C M open for all @ € T
an indexing set, which satisfies the following properties:
1. U Qo = M,
acl

2. if Q4 N Qg # 0 then ¢, o @El 1 08(Qa NQB) = ©a(Qa NQp) is smooth; and

3. {(¢a, )} is maximal.

For terminology, a pair (¢q, ) is called a chart and a collection {(pq, ) : o € A} for indexing set
A C I such that the collection covers M is called an atlas.
Remark. Any atlas satisfying the first two conditions of Definition 9.1 can be extended to be maximal,

that is, such that the collection {(¢q, )} is not contained in a larger atlas.

Example 9.1. A trivial example of a smooth manifold of dimension n is simply R™, where the charts

are all of the form (I4,U), where I; is the identity and U C R™ is an open set.

Example 9.2. Another example of an smooth manifold is S" := {z € R"*! : ||z|| = 1}. There are many
ways to develop charts for S”, but for this example we use stereographic projection to find an atlas for
S2.

Let (21,79,73) € S%, Qn := {(21,79,23) € S? : w3 < 1}, Q5 := {(w1,72,23) €S? : 23 > —1} and

T €T T T
on(z1, 22, 73) = ( ! 2 > and @g(x1, 22, x3) = < ! 2 >,

1—33‘371—1'3 1+£L'371+(E3
then indeed {(pn,Qn), (ps,Qs)} is an atlas and it will satisfy conditions 1 and 2 from Definition 2.1

when checked. For example g 0 o' (z,y) = ( is smooth on ¢5(Qy NQg) = R?\ {(0,0)}.

Using charts and their inverses can allow functions on manifolds to be given locally as maps between
Euclidean spaces. As differentiability of functions, f : R™ — R", is well known, the notion of a
differentiability on smooth manifolds is then given ensuring differentiability of the analogous function in

Euclidean space.

Definition 9.2. A function f : M — N from a smooth manifold M™ to another N™ is smooth at p € M
if for all charts (q, Qa), (¢35, 2g) such that p € Q,, f(p) € Qg, the function

¥B ofo<p;1 fPa(Qa) = R"

©a(Qa) CR™, is smooth at ¢, (p). The function f is said to be smooth if it is smooth at ¢ for all ¢ € M.
The set of all smooth functions from M to R is denoted by C*°(M).
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Remark. The function f is smooth at p if such conditions hold in Definition 9.2 for one such chart of M

and N as transition maps are smooth by condition 2 of Definition 2.1.

Definition 9.3. Let M™ be a smooth manifold. A tangent vector to M at p € M is a linear map
v: C®(M) — R that satisfies the Leibniz rule, that is for all a,b € R, f,g € C*°(M) we have:

1. v(af + bg) = av(f) + bv(g); and

2. v(fg)(p) =v(f)(p) - 9(p) + f(p) - v(g)(p)-

We denote the set of all tangent vectors to M at p as T, M. The set of tangent vectors is called the
tangent bundle denoted TM := {(v,p) :p € M, v € T,M}.

Remark. One can show that for given a given tangent vector v at p, v(f) = v(g) if f = g locally about

p. Thus, this definition only requires smoothness on a neighbourhood of p.

Remark. Let M be a smooth manifold, ¢ > 0 and « : (—e,&) — M a smooth function such that

a(0) =p € M. Then consider the tangent vector v = o/(0), which acts on functions f € C*°(M) by

& (0)f = d(fdi a)

t=0
Moreover all tangent vectors can be generated this way. Intuitively, this is the extension of directional
derivative to manifolds. That is, the vector o/ (0) = v € T,M acts on smooth functions by taking their

derivative along « at p.

Remark. We can define addition and scalar multiplication as standard: for tangent vectors vy, v € T, M,
a € Rand f e C®(M), (vi +v2)(f) :=v1(f) + v2(f) and (a - v1)(f) = a-v1(f). Then it is clear that
the tangent plane T, M is a vector space. Moreover, for a fixed chart containing p, ¢ = (2!, ...,2"), the
collection {(@c) p};1 forms a basis of the tangent plane at p, where the coordinate maps act as vectors
via the previous remark. It is standard notation to denote 9,: = % and this will be used below too.

Moreover we will use the Einstein summation convention, whereby we implicitly sum over indexed terms

in an equation.

In order to analyse tangent vectors over the entire manifold, we define vector fields.

Definition 9.4. A vector field X in M, a smooth manifold, is a map X : M — T'M such that X, :=
X(p) € T,M. A vector field is smooth if the map X : M — T'M is smooth and the set of smooth vector
fields is denoted as X(M).

9.2 Appendix 2:

In this appendix we introduce the tensor product and bivectors. Tensors are used widely and the tensor
product is very natural operator. Bivectors are needed to define the curvature operator.

Firstly, we recall the definition of a tensor.
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Definition 9.5. Given a smooth manifold M, a (p,q) tensor, T, is a multilinear map which maps p vectors

and ¢ covectors to R at each tangent plane. That is for all © € M, then Ty, : (T, M )4 x (T;M)? — R.

We now introduce the tensor product which takes two tensors of order (p,q) and (I,k) and gives a

tensor of order (p+1,q + k).

Definition 9.6. Given a smooth manifold M, a (p,q) tensor, T1, and a (I,k) tensor, Ty, then the tensor
product is the (p+1,¢ + k) tensor T1 ® Ty defined by:

Tt @ T (V15 ey Vgbey W1y oy Wpt1) = T1(V1, 00y Vg W1, ooy Wp) T2 (Vgg 15 05 Vgt by Wt 15 -0, W1
where v; € T, M, w; € T; M.

We now introduce bivectors, a common tool used to describe planes. There are many different

definitions, but we define them as equivalence classes of tensor products.

Definition 9.7. As vectors naturally are (1, 0) tensors, we consider the subset of tensors S, = {(u®wv) :
u,v € T,M}. Then we define bivectors as the equivalence classes of S, that is, uAv := [u®v] under the
equivalence relation u® v ~ r®y if t ® y = —y ® . The second exterior power of T, M, denoted AE)M ,
is the vector field obtained by extending the set of bivectors via addition. We also define the extension

of the metric to bivectors as
Similarly, A?M is then defined over smooth vector fields.

Remark. Although one can still interpret bivectors as maps, it is more convenient to consider them as

bilinear skew symmetric representations of planes. We note that we get bilinearity via the tensor product.

Remark. As the wedge product is a bilinear and antisymmetric map, AIZ)M is spanned by (z; A z;)i<;
where (z;)7_; is a basis of T, M. Moreover, if (e;)7_; is a local orthonormal basis of X(M) then (e; Aej)ic;

will form a local orthonormal basis for AZM.

9.3 Appendix 3:

Here we collate calculations from Section 2 referenced for definitions. First we show that indeed the Lie
bracket is a vector field. It is clearly linear, so we show the Leibniz rule. Let f,g € C*°(M), u = X, and
v =1Y), for p € M then

[u, v](f9)(P) = u(v(fg))(p) — v(u(fg))(p)

=u(v(f)-g+ f-v(g)(p) —vlulf) g+ f ulg)(p)
= u(v(f))(p) - 9(p) + u(v(9))(®) - f(p) — v(u(f))(p) - 9(p) — v(u(g))(P) - f(p)
= [u,v](f)(p) - 9(p) + f(p) - [u,v](9) ()
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We now show that the (1,3) Riemannian curvature tensor is indeed tensorial in all its components.
Firstly we note that, by definition of the Levi-Civita connection, [fX,Y] = fVxY — fVy X - Y (f)X=
fIX, Y] =Y (f)X. Hence,

R(fX,Y)Z =VyxVyZ —VyVyxZ —Vixy|Z

= fVxVyZ — fVyVxZ — Y(f)VXZ — fV[ny]Z + Y(f)VXZ
= fR(X,Y)Z.

Similarly we find R(X, fY)Z = fR(X,Y)Z. Lastly,
R(X,Y)fZ=VxVyfZ -VNyVxfZ—-VixyfZ

=VxfVyZ+VxY(f)Z -VyX(f)Z - VyfVxZ — fVixy)Z - [X,Y](f)Z
=fVxVyZ+ X()VyZ+Y()VxZ+ XY (f)Z-Y(X(f)Z - X(f)VyZ
Y (f)lVxZ - fVyVxZ - fVixy1Z - [X,Y|(f)Z
= fR(X,Y)Z.
Lastly, we show that Ric?® = Ric? for Example 2.3. That is, the Ricci curvature does not change

under a positive scaling of the metric. Firstly, by scaling the metric, § = cg for ¢ > 0, the Levi-

Civita connection VyY = VY is unchanged by the Koszul formula. Hence, E(X,Y)Z = R(X,Y)Z,

R(X,Y,Z, W) = cR(X,Y, Z,W). Given a local orthonormal basis (e;)!_; of smooth vector fields, in g,

then (é;)I"_; is a local orthonormal basis in § where é; = %, and so

Ric(X,Y) = R(X,é;,6;,Y) = R(X, e, €;,Y) = Ric(X,Y).

9.4 Appendix 4:

In this appendix we show that the diffeomorphism given at the end of Section 3 is indeed a diffeomor-

Tt . Tt
D(t,0,8) = <cos <2T) 0, sin (2T> s)
_ KA UL W 1 (Tt
= (cos | 57 ) Orscos | 5p ) Ozosin ( o ) 10 sin | 5 f s

for t € (0,T), 6 = (61,02) € S', s = (s1,....5p—1) € S""2. Note that |®(t,0,s)]> = cos® (2£) 6] +
sin (Z£) |s| = 1, so ®(I x S! x §"72) C S" and indeed we find ®(I x S' x §"~2) = S" \ P, where
P = ({0} x S"2) U (S' x {0} 1).

We now claim that the inverse is given by,

phism. Recall it was given by,

2T 0 s
(21, 20, 0 2ny1) = <7r arccos(|6)), Ik |s|>
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<3 Zn+1

yeeey
2 2 2 2
z3+ ...+ 254 \/z3+...+zn+1

2T [ 9 21 Z2
= | — arccos(y/ 27 + 25), , ,
™ Vata)h e VAR J

for (21,22, ..., 2n+1) € S*\ P and 6 = (z1,22), s = (23, ..., 2nt+1). Note that as we remove the poles from

6
S™ 0 < 16],]s| < 1 and arccos is well defined and smooth on this interval. Clearly 0 € s, ﬁ € S"2
s

and indeed we find that the image, Im(®~!) = I x S' x S"~2 covers M. We do check that it is indeed

O L(D(t,6,5)) = B! (Cos (;) 0, sin (;}) s)

Lastly when we consider the natural structure on I x S! x S*=2 and S™ then we find that ® and ®~! are

an inverse map,

differentiable.

9.5 Appendix 5:

In this appendix we detail some necessary but long calculations to ultimately find the curvature operator
in Section 4. We will require definitions not given in Section 2 about the Hessian and distance functions

from [13].

Definition 9.8. Let (M, g) be a Riemannian manifold and r € C*° (M) a function. The Hessian of r is

a symmetric (0,2) tensor defined by
Hess r(X,Y) = g(S(X),Y) =¢g(VxV,,Y)

where V,. is the gradient vector field of r, defined by the vector field such that g(Z,V,) = Z(r) for all
Z € X(M). The operator S : X(M) — X(M) is called the shape operator.

Remark. The gradient vector field of a coordinate function z; for a given chart is V,, = 0,,.

Definition 9.9. Given a Riemannian manifold (M, g), a function r € C*°(M) is a distance function on
M if g(V,,V,) = 1 identically. The level sets of such a function are defined as M,. := {& € M : r(z) = r}

and its induced metric is denoted g, .

For convenience in sections below we will adopt the notation g1 := d?, ggn—2 := ds?, g1 = f1(t)?d6?,
go = fa(t)%ds® and g; = g1 + go for fixed t € (0,T). We also note that t : M — I C R is a distance
function, as V; = d; and ¢g(0%, ;) = 1. We then find that g; is indeed the induced metric over the level
sets of M.

Before we can do any calculations, we introduce a lemma, which is analogous to an exercise in [8].

Lemma 9.1. Let (My,g1) and (Mz, g2) be Riemannian manifolds with Levi-Civita connections V' and
V2 respectively. Then, the Levi-Civita connection on (My x Ma, g1 + g2) for any vector fields X1,Y; €
X(My x Ms) tangent to and only dependant on My and Xo,Ys € X(M; x M) tangent to and only
dependant on Ms is

Vyity, (X1 + Xo) = Vi, X1 + V3, Xo.
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Remark. We define a vector v € T,(M; x M) as tangent to My, if v(f) = 0 for all functions which
only depend on Ms. Note that we can extend tangent vectors of M; to tangent vectors of My x My
tangent to M, as below. Let X € T,,M;, then we can define Xe T, (M7 x Ma) by X(f) = X(f), where
fe C>®(M) is f(:r) = f(z,p2) and p = (p1,p2). Note that we implicitly used this when constructing

the local orthonormal basis in Section 4.

We now can compute the Hessian of ¢ and its covariant derivative as they are in many curvature
formulas and will then help in calculations below. We note 0; vanishes the shape operator and hence for

X =0; or Y = 0, the Hessian vanishes. Indeed we calculate

Hess t(0r,Y) = g(V5,V,Y) = g(Vy Ve, 0:) = g(Vy Oy, Or)

= %(Y(g(atvat)) +0:(9(0¢,Y)) — 0:(9(9:, Y)) + g([Y 0], 0) — g([Y, 04], 0r) — g([0r, 04],Y))

_ %Y(l) - %g(O,Y) ~0

by the Koszul formula. Thus as the Hessian is a tensor we only need to consider the Hessian for vector
fields without a 0y component (i.e. ¢(X,d;) = 0). Moreover, we only need to consider a basis for
vectors tangent to S! or S*72. Set ¢, = ff—(lt) and é; = f;—(t) for all i > 2. Then (&)} is a local
orthonormal basis for (S' x S"~2 g1 + gsn—2) and hence not dependant on t. Thus, we create the
functions k¥, hY € C°°(M) such that X = >"""", 'hXé and Y = Dy ' hY é; locally. Then, remembering

we adopt the Einstein summation convention,
Hess t(X,Y) = h;*h) Hess t(¢;,€;) = h;*h) g(Ve,01,€;)

hxhyl( i(9(0, €5)) + 0 (g(€i, €5)) — €;(9(€i, 0)) + g([€i, 04, €5) — 9([0r, €51, €i) — g([€:, €51, Or))

=10} (50ulatei ) - 50(006.6) - pallonél.en)

= ¥R S0U9(é )
= BB SO (00 (60, €5) + Folt)P 95260, 5)
= WY (L0095 66, 6) + F5(0 o D)g50 61,6)
iy (B9 + B )

Ja(t) fa(?)
= )09 (X,Y) + f3(t) f2(t)g2(X, Y)

as gs: and gsn—2 are not dependant on t and g([é;, €;],0;)) = 0 as [€;, €;] = V¢, €; — Ve, €; must be tangent
to St x S"~2 by Lemma 9.1. Similarly, by Lemma 9.1, [0;, €;] = Vg,€; — V¢,0; = 0.

Thus we see that the shape operator is defined by S(9;) = 0, S(el) =7 E ;el and S(e;) = ;1?3

for j > 2. Therefore Hess? t(-,-) = g(S(-),S(:)) = (ﬁgg) g1 (- ( é ) (-,+). This is another

important term that appears in curvature equations.
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The last term that is important to calculate is the covariant derivative of the Hessian. In order to do

this we first note that the covariant derivative acts on tensors by,
VxT(Y1,...Yp, 21, ., Zg) =

XTY1, .., Yp, 20,y Zy)) —T(VxY1, ... Yy, 24, ... Zg)) — ... = T (Y1, ..., Y}, 21, ...,V x Zy))
Where Y; are vector fields, and Z; are dual vector fields. Thus, by property 5 in Definition 2.3,

VxgV,Z2) = Xg9(Y,Z) — g(VxY,Z) — g(Y,VxZ) = 0. With this information, we can continue to

calculate the covariant derivative of the Hessian,

Lo (PO B
V*’tHeS”Vat<f<t> DL )

=0 (f1 )" (t ol
O O T s

= g1 — f g1 + g2
f1(?) fi(t)? RO fa(t)?

(1) f3 (@)
[A0) g1 + Fa() g2.

We can finally state and use some propositions from [13].

HOY g 4 80, 0, (B0 4, B,
)
)"

= —Hess® t +

Proposition 9.1. Ifr is a distance function then, (Vo Hess r)(X,Y)+Hess? 7(X,Y) = —R(X, 8,,0,,Y).

Rearranging Proposition 9.1 and using our calculation for the covariant derivative of the Hessian we
find,
R(X,0;,0;,Y) = —(Vg,Hess t)(X,Y) — Hess* t(X,Y)
H(t) N(t)
R(X,0,,8,,Y) = -2 X,V XY 18
(X, 00, 00,Y) fl(t)gl( ) — ! 92(X,Y). (18)

We use another proposition from [13] called the mixed and tangential curvature equations.

Proposition 9.2. If r is a distance function, g, is the induced metric and R" is the Riemannian

curvature over level sets then :
9(R(X, Y)V, W) = g.(R"(X,Y)V, W) — II(Y, V)II(X, W) + II(X, V)TI(Y, W); and
2. g(R(X,Y)Z,0,) = —(VxII(Y, Z)) + (VyII(X, Z)).
where X, Y, Z are vector fields tangent to the level sets M,..

In our case r = t, Il = Hess ¢t and g, = g1 + g2. Moreover, X Y, Z are any vector fields without 0y
components. We find that the mixed curvature V xII vanishes and we can then use Proposition 9.1 and

9.2 to yield equations (4), (5), (6) and (7). Indeed, for any X € X(M) tangent to M, for any fixed t € I,

VxIIl = VxHess t

o (H® R
= Vx (ﬁ(t)“” - h(t)*‘”)

22



x (L) B0 (B0 g, g,

(@) Si() fa(t) fa(t)

Note that for the remainder of this appendix the index ¢ will always be in the range 2 <i <n —1. It is
important not to confuse it with the Einstein summation convention. We will now use equation (18) to
start calculating the terms of the curvature operator. We immediately find,

1'(®) __[®

R(er, 0y, 0, e1) = (t)91(e1,e1)— A0k

o
f3(®) 5 (t)
Riaaaaai:_ i,64) = — ) d
(8 t> Ot, € ) fQ(t) 92(6 € ) fQ(t) an
R(elaataataei) = 0 = R(ei7at7at761)'
Thus,
1)
g(m(at A 61),8t A 61) = R(8t56176138t) = R(el7at7at7el) = - fl(t) .
Similarly,
(R0 A i), 00 A es) = — 120
g t 1)y Ut 7 fQ(t)
and

g(R(Oe Ney), 0 Ner) =0=g(R(O Ne;), 0 Ner).

Now, using Equation 2 in Proposition 9.2, for 1 <l <m<n—-1land1<j<n-1,
g(%(at A ej)’ er N 6m) = 7R(em> €, ej7at) = vﬁm,H(ela ej) - VGLH(ema ej) = 0.

Combining this with previous calculations we achieve equation (4) and (5)

R(O: Nep) = 0 O Nep and R(O; Ney) = — fé/((:))
2

A

We continue by using Equation 1 from Proposition 3.4 and our calculation for the Hessian,

8,5 /\ei.

g(iﬁ(el A ei)7€1 A 62') = R(el,ei,ei,el)

= gi(R'(e1, €i)es, e1) — (s, ;) (er, e1) + (e, e;)IL(e;, eq)

(B A
S (—fi(t)gz(ez,ez) fi(t)gl(el’el)>
AW
1) f2(1)

as Rt(eq,e;)e; must be tangent to S"~2. Indeed, as t is fixed and g; = g1 + g2, we can apply Lemma 9.1
and find
Rr(ely ei>ei = vel veiei - Vei vel €; — v[el,ei]ei = _vg([el,ei],e]')ej €; = X

where X is tangent to S?~2. Similarly, we use Equation 1 from Proposition 3.4 for the off diagonal terms.

That is, for 2<j <k <n-—1,

g(R(er Nej),ej ANey) = gi (R (e1, e;)ex, ej) — I(e;, ex)(er, e5) + I(er, ex) (e, €5)
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= —gi(R"(ex,ej)ei, e1) =0

where R'(ey, e;)e; must also be tangent to S"~2? by Lemma 9.1.

Thus as there are no contributing 0; A e; terms as per above calculations, we have achieved equation

(6),
(1)
G0

Lastly, as go is the metric of curvature —=5 on S"~2 and (é;)’ ~ defined above is an orthonormal basis
¥, 88 g iA0) 2

%(61 A\ 67;) = ———Le1 Ne;.

1=

of (S"72, ggn-2), for 2 < j < k < mn — 1, since the curvature operator is the identity on (S"~2, ggn-2),

9(R(ej Aer),ej Aex) = gi(R' (e5, ex)er, e5) — (ex, ex)(ej, e5) + I(e;, ex) (e, €5)

2 n-2 f3(t) f3(t)
= fa(t)?gsn-2(R>"(ej,ex)en, €j) — (Mgz(emek) : fz(t)gz(ei,ei))
1 R 1 () — f5(t)? .

€; N €, €5 N€Ex) — =

~ [AOE A0
Also, for2<j<k<n—-1,2<l<m<n-—1andl#jorm#k,

g(%(ej A ek)v e GM) = R(ej7 €k, Em, el)

= gi(R'(ej, ex)em, e1) — U(ex, em) (e, e1) + (e, e ) (e, €))
1

= W%nﬂ

=0.

(BNJ N €x, e N 6;,7,)

Thus, as there are no other contributing terms from above, we achieve equation (7)

1 f5(t)?

m(ej A Ek) = W

ej/\ek.

9.6 Appendix 6:

In this appendix we calculate the Einstein equations under the given transformation required for Propo-
sition 6.1. Firstly we note that
R, = LyRy and
1
i f2

by simple calculations. Then,

// 9 B i_ 3 9
=L -7 - -1

=-A-L}—(n—-2)L3

by equation (8),

//
f1

— L34+ L3+ (n—2)L1Ly — EL4

L= L3+ €L — €Ly

//
f1
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N
o

“h
= -A—¢L

— &Ly

by equation (9) and

1

Ly="2 —[24+ €Ly —ELy + (n—3)R3 — (n — 3)R2

f2
:fé/—L§+L1L2+(n—2)L§—(n—3)R§—§L2+(n—3)R§
2
_ A )P -1 oy p2
=7 +f1f2 (n—3) 7 &Ly + (n—3)R;

= —\—&Ly + (n — 3)R3

by equation (10).
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