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1 Abstract

In many applications, we continually get new information while the future remains unknown and

must find the optimal time to take a particular action in order to maximise the expected reward.

Such problems are known as optimal stopping problems. They can be used to model and assist

investment decision making, and is used in the study of real options. Optimal stopping methods

help investors make decisions when dealing with long-term projects which face a substantial

amount of uncertainty, such as unexpected events that cause a severe disruption to the market.

In the context of such optimal stopping problems, differential equations arise with corresponding

free boundary value problems. These can be solved using analytical and numerical methods.

From these solutions, we aim to analyse market behaviour to assist real options decision making.

2 Introduction

We are often faced with the dilemma of deciding the most ideal time to make a particular choice

in order to maximise our expected reward, i.e. what is the best time to do something in order

to get the best out of it? In scenarios where data is successively coming in but it’s unknown

what that data is going to look like, these decisions are referred to as optimal stopping problems

(Peskir & Shiryaev 2006). They involve finding when to pause the data flow and optimise one’s

situation, even though we do not know if the future will be more or less rewarding. A key

example within a financial context is finding the optimal time to pull out of an investment in

order to maximise profit. Using statistical tools such as stochastic processes and descriptive

operators, these problems can be modelled as differential equations, and relevant boundary

conditions can be used to solve the problem (Gapeev & Lerche 2011).

In this report, we will discuss two optimal stopping problems in particular. The first problem

is maximising the profit from an American put option, which presents a free boundary problem

to be solved analytically. In the second problem, we will analyse a more sophisticated differential

equation model (Nunes et al. 2019) which is not readily solved analytically. We will then develop

a numerical algorithm in MATLAB to solve these types of free boundary value problems using

finite difference methods.
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2.1 Statement of Authorship

This report was written by Patrick Daley under the supervision of Christopher Lustri and

Georgy Sofronov. All theoretical knowledge is well-established and no new analytical methods

have been developed. The numerical algorithm was produced in MATLAB and was developed

by Christopher Lustri and Patrick Daley. All sources of information are contained in the

reference list.

3 Background

3.1 Optimal Stopping Problems

In various applications, we obtain new information sequentially while the future remains un-

known and must identify the optimal time to engage in a certain action such that the expected

reward is maximised. These problems are known as optimal stopping problems (Peskir &

Shiryaev 2006).

They are often applied in the study of real options, providing a framework for models that

assist investment decision making. They are particularly useful in scenarios where investors are

dealing with long term projects, since optimal stopping methods are capable of dealing with

the substantial amounts of uncertainty in the future for such projects.

3.2 Stochastic Processes

To describe the probability of the market value behaviour and how it may change over time, a

mathematical tool is required such as a stochastic process. This is defined as a parameterised

collection of random variables: {Xt}t∈T . The parameter space T refers to the time interval

at which the stopping action can take place, which is generally the halfline [0,∞) (Oksendal

2013). This could be interpreted in a financial modelling context as the market value at time t.

3.2.1 Brownian Motion

Brownian Motion is the stochastic process that describes randomness or uncontrolled motion

(Oksendal 2013). This can be written as {Bt}t≥0. Random trajectories of Brownian motion
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can be simulated, as seen in Figure 1. This visually demonstrates how the stochastic process

represents random behaviour with no clear, underlying trend.

3.2.2 Geometric Brownian Motion

For financial applications, we generally use a more advanced stochastic process named Geomet-

ric Brownian Motion X = {Xt}t≥0 which solves the following differential equation (Gapeev &

Lerche 2011):

dXt = rXtdt+ σXtdBt. (1)

This can be described as an extension to Brownian Motion, that is achieved by applying the

exponential function. The first term represents the general trend of the process and the second

term represents the random noise. The advantages of this stochastic process is that we no

longer obtain negative values and and there is a general exponential growth trend. Hence, this

makes the process relevant to the application of financial problems as market prices follow these

properties. This is demonstrated in the random trajectories in Figure 1:

Figure 1: Random trajectories of Brownian Motion and Geometric Brownian Motion (A Ran-

dom Walk Through Mathematics 2013).
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3.3 Differential Equations

Using these stochastic processes and descriptive operators, we are able to model the behaviour

of the market and develop differential equations that describe optimal stopping problems. By

establishing particular boundary conditions relevant to the context of the problem, we can

attempt to find a solution to these equations and hence the broader questions at hand.

Often this leads to a free boundary problem. This involves not only solving the unknown

function, but also solving the unknown domain. These problems are generally very challenging,

so whilst some may be solved analytically, there is often the need to develop numerical solutions.

4 Financial Derivatives: Put and Call Options

An option is a financial derivative which allows the owner to buy or sell an asset sometime in

the future at a pre-determined price. A put option refers to when an investor locks in a price to

sell an asset at a later date. The strategy is ideal if they believe the asset’s value will go down

as they will make profit selling an over-priced asset. A call option refers to when an investor

locks in a price to buy an asset instead, and hence is an ideal strategy if they believe it’s value

will increase.

Optimal stopping problems often arise when analysing these investment strategies. One

needs to determine at which time they should exercise their option, i.e. buy or sell their asset,

in order to maximise their profit.

We will consider an optimal stopping problem in the context of an American put option

with an infinite horizon. This means the owner of the option can exercise at any time from

the execution date with no expiration period. Furthermore, the strike price is set and so the

pre-determined value of the asset will not change. Hence, the problem at hand is what is the

most ideal time to exercise the option in order to maximise profit?

So, the arbitrage-free price of the put option is given by:

V (x) = sup
τ

Ex(e
−rt(K −Xt)

+). (2)

We should note from this function that:

• V represents the value of the firm and x represents the price to invest.
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• The supremum means we take the maximum expected value in the given time span

τ = [0,∞), at each time t.

• The function (K −Xt)
+ = max(0, K −Xt) represents our profit size, with parameter K

representing the strike price. The option will only be exercised if we achieve a positive

profit, and will not be exercised under any circumstance if it results in a loss.

• The parameter r is the interest rate.

• The exponential decay term represents the need to eventually stop somewhere, it is not

optimal to continue forever.

Using the relevant statistical operator, we can form the following differential equation that

models this optimal stopping problem.

Dx2V ′′ + rxV ′ − rV = 0, D =
σ2

2
. (3)

where V represents the value of the option and x represents the price of the asset. Also, σ

is a parameter from the stochastic process (1).

We must now establish some boundary conditions. Firstly, when the investor sells an asset

of value x at price K, they will make a profit margin of K − x. Secondly, we require the

function to be a continuous, smooth-fitting curve at the optimal stopping point b. Finally, the

profit must always be positive and can’t exceed the sell price of K. Applying this logic, we can

develop the following boundary conditions for the problem:

V (x) = (K − x)+ for x = b, (4)

V ′(x) = −1 for x = b, (5)

0 ≤ V (x) ≤ K for all x > 0. (6)

These boundary conditions describe a free boundary problem. These are difficult to solve

as there are two key components:

1. Finding the arbitrage-free price, i.e. the unknown value function (2).

2. Finding the optimal exercise time, an unknown point b.
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However, these boundary conditions uniquely specify the solution. This is evident from the

numerical outputs in section 6.2, with values either side of the correct value of b diverging as

seen in figures 5 and 6.

Equation (3) follows the structure of an Euler-Cauchy equation, to which there are well

known methods to find a solution as outlined in (Peskir & Shiryaev 2006). Hence, the solution

to the problem set is:

b =
K

1 +D/r
, (7)

V (x) =


D
r
( K
1+D/r

)1+r/Dx−r/D, x ∈ [b,∞),

K − x, x ∈ (0, b].

(8)

Figure 2: Plot of V (x) with D = 0.5, r = 0.15, K = 500.

5 Jump-Diffusion Processes

There are often external, unexpected events which cause a severe disruption to the market,

resulting in booms and crashes. These occur quite regularly and are responsible for the volatil-

ity of the market. Examples of factors that may cause such effects range from government

legislation to technological improvements.

A recent example is the impact of the COVID-19 pandemic on the economy and stock

market. The unprecedented social isolation saw many business failing to receive consumer

demand (Craven et al. 2020), resulting in significant drops in the value of these firms. In

particular, the oil market saw an extreme downturn following the coronavirus outbreak in

China in early 2020 which caused supply and demand issues with exports/imports (Dutta

et al. 2020).

It is of great importance to incorporate the potential influence of such “jumps” when mod-

elling market values. Whilst Geometric Brownian Motion effectively models random behaviour,
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it does not account for any external effects on the system which may have sudden and signifi-

cant impacts. Thus, we require a new stochastic process if we want to incorporate these effects

into our model.

These spontaneous impacts can be modelled via the jump-diffusion process. These are

more advanced then the previous stochastic processes, having an extra term to account for the

probability of these jumps occurring.

A differential equation that models the optimal stopping time in a jump-diffusion pro-

cess is presented in the paper (Nunes et al. 2019). The class of the stochastic process is a

one–dimensional jump–diffusion, and it solves the following stochastic differential equation:

dX(t)

X(t−)
= µdt+ σdW (t) + κdN(t). (9)

Applying the relevant operators, this results in a differential equation model of the form:

x2V ′′ +
r

D
xV ′ − r

D
V = Axα(lnx)n, (10)

where again V represents the value of the firm and x represents the price to invest. Also,

parameters A and α are non-zero real numbers while parameter n is a positive integer.

The equation (10) arises in settings with more complicated free boundary problems, that

are not always readily solved analytically as we saw before. Thus, it is important to utilise

other efficient methods to solve these problems such as numerical algorithms.

6 Numerical Methods

A numerical method refers to the process of solving a mathematical problem by utilising com-

puter programs. They are an incredibly powerful tool, and can provide an alternative and more

efficient solution to problems with analytical solutions. Often, they can still generate a solution

quickly even if the problem is impossible to solve analytically.

6.1 Finite Differences

The finite difference method is an approximation method used to numerically solve partial

differential equations (Zhou 2012). It may be implemented to solve a diverse range of problems
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with different types of boundary conditions, and so can be incorporated when solving free

boundary problems.

The finite difference method is a relatively simple numerical method and the development

of technology has lead to faster computers capable of various techniques. However, it still holds

relevance today due to the ease of its application to various problems.

The method involves approximating the derivatives in a differential equation using the finite

difference formulas, which allows us to transform the problem into a system of equations which

may be solved using linear algebra.

This is achieved through discretisation; breaking down a continuous variable into many

small, discrete components. This can be done by taking the interval outlined by the bound-

ary conditions to solve the equation and dividing it into n equal subintervals of length h, as

visualised in Figure 3.

Figure 3: Visualisation of the division of the function into subintervals (Kong et al. 2020).

By then applying an understanding of the first principle definition of a derivative and

extending these via Taylor expansions, we can derive the finite difference formulas. The central

difference formulas are often selected as they provide more stable solutions and are useful when

values are fixed on either side of the interval. These formulas are as follows:

dy

dx
=

yi+1 − yi−i

2h
, (11)

d2y

dx2
=

yi−1 + 2yi + yi+1

h2
. (12)
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By substituting these formulas into the differential equation for each n function values, we

obtain a system of n+1 algebraic equations which can be readily solved numerically (Kong et al.

2020). Hence, this technique can be used to develop numerical algorithms to solve equations

such as (3) and (10) that are found in optimal stopping problems.

6.2 Solving the Free Boundary Problem

The following numerical algorithm was developed to solve equations in free boundary problems,

and will be applied to the problem in Section (4). This algorithm is a shooting method, which

involves guessing the solution and repeatedly trialling simulations with an adjusted guess until

the solution is found. It uses the finite differences method to solve the equation.

Several variables were declared to represent the parameters and establish the problem’s

domain. The first interval of the problem can be quickly computed, and the finite difference

method is then applied to solve the second interval.

To solve the free boundary problem, we utilised the fact that as x −→ ∞, V −→ 0. We

selected a larger value of x, which we will label x∞. We also selected a value of b, with b < K,

which is the “guess”.

Next, we solved equation (3) on [0, b], with boundary conditions V (0) = K and V (b) = K−b.

We then solved equation (3) on [b, x∞] using the finite difference method. This is done by

dividing V (x) into a large number of subintervals, such that Vj is the function value for the

j-th subinterval, and substituting formulas (11) and (12) into equation (3) and rearranging Vj

in terms of Vj−1 and Vj−2. V1 was able to be calculated using boundary condition (4), and

V2 was calculated using the value for V1 and boundary condition (5). From there, we could

compute the remaining Vj values.

Finally, we checked if V (x∞) = 0. If this condition was met, within a margin of error

tolerance, we had found our solution. However, if the condition was not met, the guess for b

had to be adjusted and another iteration of the algorithm was conducted. This process repeated

until the solution was computed.

Figure 4 shows the final output after computing the correct b value. Figure 5 demonstrates

when shooting from b values larger than the solution, the function decreases indefinitely and

we must reiterate with smaller values of b. Similarly, when shooting from smaller b values, we
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must increase our guess for b each iteration until the graph no longer grows indefinitely.

Figure 4: A plot of the function with D = 0.5, r = 0.5, K = 10 and b = 5.

Figure 5: A plot of the function with D = 0.5, r = 0.5 and K = 10, shooting from b = 6.

Figure 6: A plot of the function with D = 0.5, r = 0.5 and K = 10, shooting from b = 4.
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7 Discussion and Conclusion

There are various applications where optimal stopping problems arise, particularly in a financial

context. Using stochastic processes, the behaviour of financial markets can be modelled via

developing differential equations to help solve such problems. We have explored some specific

examples of these problems, developing some analytical solutions to (3) and (10) using relevant

boundary conditions. This led to the realisation of the importance of other efficient methods,

and so a numerical algorithm was developed to solve such free boundary problems.

This research could be extended by considering the optimal stopping time differential equa-

tion models in settings with multiple actors by applying game theoretic principles. It would

extend the models to allow for the presence of another party who can also invest in the mar-

ket (i.e. the second actor), which will result in a system of differential equations to analyse.

The numerical algorithm could also be applied to different problems, allowing for potential to

extend it upon the given framework and generalise it for wider applications. Furthermore, the

algorithm’s sophistication could be developed by improving the parameter adjustment between

trials by applying Newton’s method, allowing for more effective iterations to lower computing

time.
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