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Abstract

In this report, we study Brownian motion and some of its general properties. Brownian motion is used to

model the erratic, random movement of particles due to collisions with one another. We begin with its general

properties, including its definition, before going on to derive the distribution of the maximum across an interval

and the distribution of hitting times. We then explore certain martingales of Brownian motion, including one

of the implications as a part of Lévy’s characterisation of Brownian motion. Lastly, we look at the analytical

properties of Brownian motion, including the non-differentiability, the unbounded variation and the non-zero

quadratic variation, as well as the consequences of these properties, before formulating a framework of integration

that circumvents these consequences, the Itô integral.
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1 Introduction

Brownian motion was first observed by Jan Ingenhousz in 1785, when he noticed the irregular motion and

behaviour of coal dust particles on the surface of alcohol. It was named after a botanist, Robert Brown, who

observed pollen grains suspended in water under a microscope moving along an irregular, jittery motion. There

are many models and theories for describing this motion in physics, but in mathematics, it is described by the

Wiener process, a continuous-time stochastic process named after Norbert Wiener. The Brownian motion is

synonymous with the Wiener process in mathematical literature.

Brownian motion is defined by three mathematical properties, the independence of increments, the normality

of increments and the continuity of paths. As it is a stochastic process, these defining properties have implications

on many of its probabilistic properties, which have been studied extensively, but it also has significant association

to analysis and its analytical properties, essentially forming the cornerstone of stochastic analysis. This report

hopes to explore these probabilistic and analytical properties in finer detail than what an undergraduate course

would usually cover.

The report is written under the assumption that the reader is familiar with the theory of σ-algebras, condi-

tional expectation and martingales.

2 Statement of Authorship

The details included in this report are purely theoretical, all of which are well-established in mathematical

literature, thus no new theorems have been developed. The purpose of this project was to study a field

of mathematics not generally covered in undergraduate mathematics and the interesting results studied in the

process have been included in this report by Pu Ti Dai. The information in this report has been primarily sourced

from Fima Klebaner’s Introduction to Stochastic Calculus with Applications and other resources provided by

supervisors Gregory Markowsky and Kaustav Das.

3 Brownian Motion and its General Properties

3.1 Definition of Brownian Motion

Brownian motion has three defining mathematical properties (Klebaner 2005):

1. The independence of increments. For all times 0 ≤ t1 ≤ t2 ≤ ... ≤ tn, the increments Btn − Btn−1 ,

Btn−1
−Btn−2

, ..., Bt2 −Bt1 are independent random variables.

2. Normally-distributed increments. An increment of the process, i.e. Bt − Bs, where s < t, is Normally

distributed with mean 0 and variance t− s, i.e.,

Bt −Bs ∼ N(0, t− s) for t > s.
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3. Continuity of paths. The function t 7→ Bt for t ≥ 0 is a continuous function of t with probability 1.

We call {Bt : t ≥ 0} a standard Brownian motion if B0 = 0, i.e. if the Brownian motion starts at 0. All

references to Brownian motion in this report are assumed to be standard Brownian motion, unless specified

otherwise.

3.2 Space and Time Homogeneity of Brownian Motion

It is quite easy to see that the starting point of a one-dimensional Brownian motion is the mean of the process.

In other words, a Brownian motion can be translated through varying its mean. If we let Bx
t denote a Brownian

motion where B0 = x, then we can say

Bx
t = B0

t + x.

This means that Brownian motion is space-homogeneous. In other words, its distribution does not change with

a shift in space.

Brownian motion is also time-homogeneous, where its distribution does not change with a shift in time. We

can see this with the independent increments of Brownian motion, which all follow a Normal distribution with

a mean 0 and a variance equivalent to the length of the increment. As such, as long as two increments of a

Brownian motion occur over the same length, regardless of where they occur, they are distributed identically.

3.3 Covariance Function of Brownian Motion

Theorem 1 (Covariance Function of Brownian Motion). The covariance function of Bs, i.e. Cov(Bs, Bt), is

equal to min(s, t). If s < t, then Cov(Bs, Bt) = s.

Proof. By the definition of the covariance function, we have

Cov(Bs, Bt) = E[BsBt] as B0 = 0.

If s < t, then Bt = (Bt −Bs) +Bs.

E[BsBt] = E[B2
s ] + E[Bs(Bt −Bs)] = s.

We can do the same when s > t and show that Cov(Bs, Bt) = t. Thus Cov(Bs, Bt) = min(s, t).

3.4 Scaling Invariance of Brownian Motion

Theorem 2 (Scaling Invariance of Brownian Motion). Let Bt be a standard Brownian motion and let a ∈ R.

The process Xt where Xt is defined as 1
aBa2t is also a standard Brownian motion (Mörters and Peres 2010).

Proof. The independence of increments, the normality of increments and the continuity of paths remain unaf-

fected under scaling. As such, to show that Xt is a standard Brownian motion, the increments only need to be

4



shown to follow the same Normal distribution as a standard Brownian motion.

E
[
1

a
Ba2t −

1

a
Ba2s

]
=

1

a
(E[Ba2t]− E[Ba2s])

= 0.

Var

[
1

a
Ba2t −

1

a
Ba2s

]
=

1

a2
Var[Ba2t −Ba2s]

=
1

a2
(a2t− a2s)

= t− s.

3.5 Recurrence Property of Brownian Motion

Definition 1 (Stopping Time). A random time T is called a stopping time if it is possible to determine

whether T has occurred at time t already by observing the information available up to time t. For a more

rigorous definition, for any t, the sets {T ≤ t} ∈ Ft, the σ-field (which may be generated by the random

process) up to t (Klebaner 2005).

Definition 2 (Hitting Time of Brownian Motion). A hitting time of Brownian motion, Tx, is the first time a

Brownian motion reaches a certain level, x, hence it is also a stopping time. More formally

Tx = inf{t > 0 : Bt = x}.

Definition 3 (Exit Time of Brownian Motion). An exit time of Brownian motion, τ , is the time for a Brownian

motion that starts in an interval (a, b) to exit the interval. It is also a stopping time. It is denoted by

τ = min(Ta, Tb).

Theorem 3. Let a < x < b and τ = min(Ta, Tb). Then P(τ < ∞|B0 = x) = 1 and Ex[τ |B0 = x] < ∞.

An implication of this theorem is that a Brownian motion will eventually reach all values of x, almost surely,

if we allow the process to last forever. This also means that given an exit time τ ,

P(τ < ∞) = 1.

So we can expect a Brownian motion to eventually exit an interval, regardless of the width of the interval or

the location of the upper and lower bounds.

This can also be interpreted as we can expect a Brownian motion to hit a level a an infinite number of times.

This is known as the recurrence property of Brownian motion and is formalised below.

Theorem 4.

P(Tb < ∞|B0 = a) = 1.
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3.6 Maximum and Minimum of Brownian Motion

It is possible to derive a probability distribution for the maximum of a Brownian motion within a time interval,

but first, we must introduce the reflection principle.

Theorem 5 (Reflection Principle). Let T be a stopping time. Define B̂t = Bt for t ≤ T and B̂t = 2BT − Bt

for t > T . Then B̂t is also a Brownian motion.

Theorem 6 (Maximum of Brownian Motion). Let Mt denote the maximum value that a Brownian motion

starting at x = 0 achieves in the interval [0, t], i.e. Mt = max0≤s≤t Bs. For any x > 0,

P(Mt ≥ x) = 2P(Bt ≥ x) = 2

(
1− Φ

(
x√
t

))
,

where Φ(x) is the standard Normal distribution function.

Proof. Let Tx denote the hitting time for x. If we have Mt > x, it is implied that our process hits x before time

t i.e. Tx < t. Hence we have

P(Mt ≥ x) = P(Tx ≤ t, Bt ≥ x) + P(Tx ≤ t, Bt ≤ x).

By the reflection principle, there is equal probability for the process to be greater than x and less than x at t,

i.e. P(Tx ≤ t, Bt ≥ x) = P(Tx ≤ t, Bt ≤ x). Hence

P(Mt ≥ x) = 2P(Tx ≤ t, Bt ≥ x).

However, as Brownian motion is a continuous process, Bt > x implies the process must reach x, which can also

be written as Tx < t. This gives the final result

P(Mt ≥ x) = 2P(Bt ≥ x).

Theorem 7 (Minimum of Brownian Motion). Let mt denote the minimum value that a Brownian motion

starting at x = 0 achieves in the interval [0, t], i.e. mt = min0≤s≤t Bs. For any x < 0,

P(mt ≤ x) = 2P(Bt ≥ −x) = 2P(Bt ≤ x).

This can be easily proven using the reflection principle and the maximum of a Brownian motion found earlier.

Using the maximum of Brownian motion found before, we can now derive the distribution of hitting times.

Theorem 8 (Distribution of Hitting Times). The probability distribution of Tx is given by

fTx
(t) =

|x|√
2π

t−
3
2 e−

x2

2t ,

which is the Lévy distribution with a location parameter of 0 and a scale parameter of x2, which also happens

to be a special case of the Inverse Gamma distribution. Moreover, E[Tx] = +∞.
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Proof. Let x > 0. The events Mt ≥ x and Tx ≤ t are the same, so

P(Tx ≤ t) = P(Mt ≥ x)

= 2P(Bt ≥ x)

=

∫ ∞

x

√
2

πt
e−

y2

2t dy.

The formula for the density of Tx is obtained by differentiation after the change of variables u = y√
t
in the

integral. Finally,

E[Tx] =
|x|√
2π

∫ ∞

x

t−
1
2 e−

x2

2t dt = ∞, since t−
1
2 e−

x2

2t ∼ 1√
t
, t → ∞.

We can use the time-homogeneity of Brownian motion to generalise this formula to an arbitrary starting

level a and an arbitrary hitting level b, as the distribution of Tb − Ta is equivalent to the distribution of Tb−a if

B0 = 0. This gives

fTb−Ta
(t) =

|b− a|√
2π

t−
3
2 e−

(b−a)2

2t .

4 Martingale Properties of Brownian Motion

4.1 Definition of a Martingale

Before we can look at the martingale properties of Brownian motion, we must first define what a filtration and

a martingale is.

Definition 4 (Filtration). A filtration, {Ft : t ≥ 0}, is a family of increasing sub-σ-algebras of F , i.e.

F0 ⊆ F1 ⊆ · · · ⊆ F .

Definition 5 (Martingales). A stochastic process Xt, t ≥ 0 is a martingale if for any t it is integrable (E|Xt| <

∞), and for any s > 0

E(Xt+s|Ft) = Xt, almost surely,

where Ft is a filtration up to time t.

An intuitive interpretation of a martingale is a fair game. If we let Yt denote our earnings from the game at

time t, then by playing the game one more time, our expected earnings will not change as it is a fair game, i.e.

Our expected earnings at time t+ 1 is the same as our earnings at t.

An discrete example of this is tossing a fair coin, where a heads results in the gain of $1 and a tail results in

the loss of $1. Assuming our total loss or gain after n tosses is Sn, or expected loss or gain after another toss

can be expressed as

E(Sn+1|Fn).
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As we know the next toss can be a heads or a tails with equal probability, we do not expect to gain anything

from the additional game, so we would not expect any change in our total loss or gain. It is equivalent to Sn,

and thus is a martingale

4.2 Important Martingales of Brownian Motion

Theorem 9 (Important Martingales of Brownian Motion). If Bt is a Brownian motion, then the following are

martingales:

1. Bt.

2. B2
t − t.

3. euBt−u2

2 t for any u (also known as the exponential martingale of Brownian motion).

Proof. Bt follows a Normal distribution of mean 0 and variance t by definition, so it is integrable.

E[Bt+s|Ft] = E[Bt + (Bt+s −Bt)|Ft]

= E[Bt|Ft] + E[Bt+s −Bt|Ft]

= Bt + E[Bt+s −Bt] due to the independence of increments

= Bt.

Hence Bt is a martingale.

As Bt has a mean 0 and variance t, E[B2
t ] = t. Therefore B2

t is integrable. t is also integrable.

E[B2
t+s − (t+ s)|Ft] = E[(Bt + (Bt+s −Bt))

2 − (t+ s)|Ft]

= E[B2
t + 2Bt(Bt+s −Bt) + (Bt+s −Bt)

2 − (t+ s)|Ft]

= E[B2
t |Ft] + E[2Bt(Bt+s −Bt)|Ft] + E[(Bt+s −Bt)

2|Ft]− (t+ s)

= B2
t + 2BtE[(Bt+s −Bt)|Ft] + s− t− s

= B2
t − t.

Hence B2
t − t is a martingale.

The moment generating function of Bt, E[euBt ], is etu
2/2, which implies the integrability of euBt−u2

2 t for any

u.

E[euBt+s−u2

2 (t+s)|Ft] = E[eu(Bt+(Bt+s−Bt)−u2

2 (t+s)|Ft]

= E[euBt−u2

2 teu(Bt+s−Bt)−u2

2 s|Ft]

= euBt−u2

2 tE[eu(Bt+s−Bt)−u2

2 s|Ft]

= euBt−u2

2 tE[eu(Bt+s−Bt)e−
u2

2 s] (due to independence of increments)

= euBt−u2

2 tE[euWs ]e−
u2

2 s, where Ws ∼ N(0, t− s)

= euBt−u2

2 t as the MGF of Ws is e
u2

2 s.
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Hence euBt−u2

2 t is a martingale for any u.

The third martingale is known as the exponential martingale of Brownian motion. It has important appli-

cations in financial mathematics, such as for modelling the discounted stock price in the so-called ‘risk-neutral’

Black-Scholes model. It is also used in Girsanov’s theorem for changing measures, which also has applications

in financial mathematics.

The first two martingales, Bt and B2
t − t, bear some resemblance to Hermite polynomials. It can be shown

that all two-variable Hermite polynomials of Brownian motion and time are in fact martingales.

The second martingale provides a characterisation (Lévy’s characterisation) of Brownian motion.

4.3 Lévy’s Characterisation of Brownian Motion

Before we can provide Lévy’s characterisation of Brownian motion, we must introduce and prove another

theorem which will be used in proving Lévy’s characterisation.

Theorem 10 (Conditional Expectation of Itô’s Lemma). Let Xt be a continuous process that is a continuous-

time martingale, where X2
t − t is a martingale as well, and let f be a bounded function with bounded first and

second derivatives (Nielsen 2010). For all 0 ≤ s ≤ t, we have

E(f(Xt)|Fs) = Xs +
1

2

∫ t

s

E(f ′′(Xu)|Fs)du.

Proof. Let Π = (tk)
n
k=0 be a partition of the interval [s, t] such that s = t0 < t1 < t2 < · · · < tn = t, then by

Taylor’s formula, we have

f(Xt) = f(Xs) +

n∑
k=1

(f(Xtk)− f(Xtk−1
))

= f(Xs) +

n∑
k=1

f ′(Xtk−1
)(Xtk −Xtk−1

) +
1

2

n∑
k=1

f ′′(Xtk−1
)(Xtk −Xtk−1

)2 +RΠ.

Taking conditional expectations on both sides and using the Tower property, we obtain

E[f(Xt)|Fs] = f(Xs) +

n∑
k=1

E[E[f ′(Xtk−1
)(Xtk −Xtk−1

)|Ftk−1
]|Fs]

+
1

2

n∑
k=1

E[E[f ′′(Xtk−1
)(Xtk −Xtk−1

)2|Ftk−1
]|Fs] + E[RΠ|Fs]

= f(Xs) +
1

2

n∑
k=1

E[f ′′(Xtk−1
)|Fs](tk − tk−1) + E[RΠ|Fs].

Using the continuity of Xt, it can be shown that RΠ → 0 in L2 when the length |Π| tends to 0. Hence also,

E[RΠ|Fs] → 0 in L2. Since the function u → E[f ′′(Xu|Fs)] is continuous a.s, we get that

n∑
k=1

E[f ′′(Xtk−1
)|Fs](tk − tk−1) →

∫ t

s

E(f ′′(Xu)|Fs)du a.s.
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When |Π| → 0 and since f ′′ is bounded, the bounded convergence theorem gives that the convergence is also in

L2. Combining the above, we get

E(f(Xt)|Fs) = Xs +
1

2

∫ t

s

E(f ′′(Xu)|Fs)du.

Theorem 11 (Lévy’s Characterisation of Brownian Motion). Given a continuous process Xt, Xt is a Brownian

motion is if both Xt and X2
t − t are martingales.

Proof. A continuous process is a Brownian motion if we can show that the characteristic function of its intervals

corresponds to the characteristic function of an independent Normal distribution.

E[eiu(Xt−Xs)|Ft] = e−
1
2u

2(t−s) for any u and 0 ≤ s ≤ t.

Taking the conditional expectation of Itô’s Lemma, where our function is f(x) = eiux for all x ∈ R, we obtain

E[eiu(Xt−Xs)|Ft] = 1− 1

2
u2

∫ t

s

E[eiu(Xv−Xs)|Ft]dv.

Since the integrand on the right hand side is continuous, the left side can be differentiated with respect to t

d

dt
E[eiu(Xt−Xs)|Ft] = −1

2
u2E[eiu(Xt−Xs)|Ft].

This can be written as a separable ODE

g′(t) = −1

2
u2g(t) where g(t) = E[eiu(Xt−Xs)|Ft]

with initial condition g(s) = 1. This can be solved to find that

g(t) = e−
1
2u

2(t−s).

Hence

E[eiu(Xt−Xs)|Ft] = e−
1
2u

2(t−s) for any u and 0 ≤ s ≤ t

which implies that Xt has independent increments due to the non-randomness of the right side.

Taking the expectation, we get

E[eiu(Xt−Xs)] = E[E[eiu(Xt−Xs)|Ft]]

= e−
1
2u

2(t−s)

which corresponds to the characteristic function of a Normal distribution with mean 0 and variance t− s. Thus

Xt is a Brownian motion.

5 Analytical Properties of Brownian Motion

We now explore the analytical properties of Brownian motion, which were primarily retrieved from Klebaner

(2005).
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5.1 Non-differentiability of Brownian Motion

Theorem 12 (Non-differentiability of Brownian Motion). Almost all trajectories of Brownian Motion are not

differentiable for any t.

Proof. We present a heuristic proof for the non-existence of the derivative for specific t. If we attempt to

differentiate Bt by first principles, we have

lim
∆→0

Bt+∆ −Bt

∆
.

As the increments of Brownian motion follow a Normal distribution, we have

lim
∆→0

√
∆Z

∆
= lim

∆→0

Z√
∆
.

where Z is a standard Normal variable. This limit converges to ∞ in distribution as lim∆→0 P(| Z√
∆
| > K) = 0

for all K.

5.2 Infinite Variation of Brownian Motion and Implications

An implication of the non-differentiability of Brownian motion is that it has unbounded variation. This is

defined as follows.

Definition 6 (Variation of a Function). The variation of a function of real variable, g, over the interval [a, b]

is defined as

Vg([a, b]) = sup

n∑
i=1

|g(tni )− g(tni−1)|,

where the supremum is taken over partitions a = tn0 < tn1 < · · · < tnn = b.

Definition 7. g is of finite variation if Vg([0, t]) < ∞ for all t. g is of bounded variation if supt Vg([0, t]) < ∞.

In other words, if for all t, Vg([0, t]) < C, a constant independent of t.

Functions of bounded variation over an interval [0, T ] are differentiable almost everywhere on [0, T ]. By show-

ing that Brownian motion is nowhere differentiable a.s, we have essentially shown that it possesses unbounded

variation.

An intuitive interpretation of the unbounded variation of Brownian motion is that it is infinitely-bumpy.

We can use the scaling invariance property to show that if we ‘zoom’ in on a standard Brownian motion in a

certain way, it is still a standard Brownian motion. As such, no matter how much we zoom in, the process will

not be smooth. If we do the same with a function of finite variation, we will eventually end up with a straight

line, which is clearly not the case here.

An implication of the unbounded variation of Brownian motion is that the Riemann integral and its gener-

alisation, the Riemann-Stieltjes integral, fail when trying to integrate with respect to Brownian motion.
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Definition 8 (Riemann Integral). The Riemann Integral of f over interval [a, b] is defined as the limit of

Riemann sums ∫ b

a

f(t)dt = lim
δ→0

n∑
i=1

f(ξni )(t
n
i − tni−1),

where the tni ’s represent partitions of the interval

a = tn0 < tn1 < · · · < tnn = b, δ = max
1≤i≤n

(tni − tni−1), and tni−1 ≤ ξni ≤ tni .

Definition 9 (Riemann-Stieltjes Integral). The Riemann-Stieltjes integral of f with respect to a function of

finite variation g over an interval (a, b] is defined as∫ b

a

f(t)dg(t) = lim
δ→0

n∑
i=1

f(ξni )(g(t
n
i )− g(tni−1)),

with the quantities defined the same as the Riemann integral.

Theorem 13. Let δn = maxi(t
n
i − tni−1) denote the largest interval in the partition of [a, b]. If

lim
δ→0

n∑
i=1

f(tni )(g(t
n
i )− g(tni−1))

exists for any continuous function f , then g must be of finite variation on [a, b].

Brownian motion directly violates this theorem due to infinite variation, so the Riemann-Stieltjes integral

does not exist when integrating with respect to Brownian motion.

5.3 Quadratic Variation of Brownian Motion

Furthermore, Brownian motion possesses non-zero quadratic variation, which is not normally observed in com-

mon continuous functions as they all possess bounded variation.

Definition 10 (Quadratic Variation of a Function). The quadratic variation of a function of real variable, g,

over the interval [a, b] is defined as

[g](t) = lim
δn→0

n∑
i=1

(g(tni )− g(tni−1))
2

where the limit is taken in probability over partitions a = tn0 < tn1 < · · · < tnn = b with δn = max1≤i≤n(t
n
i −tni−1).

Theorem 14. If g is a continuous function with finite variation, then its quadratic variation is zero.

Proof.

[g](t) = lim
δn→0

n∑
i=1

(g(tni )− g(tni−1))
2

≤ lim
δn→0

max
i

|g(tni )− g(tni−1)|
n∑

i=1

|g(tni )− g(tni−1)|

≤ lim
δn→0

max
i

|g(tni )− g(tni−1)|Vg([0, t]).

Since g is continuous, it is uniformly continuous on [0, t], hence limδn→0 maxi |g(tni )−g(tni−1)| = 0 and the result

follows.
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Theorem 15 (Quadratic Variation of a Brownian Motion). The quadratic variation of a Brownian motion over

[0, t] is t.

Proof. We give the proof for a sequence of partitions, for which
∑

n δn < ∞. Let Tn =
∑

i |B(tni )− B(tni−1)|2.

It is easy to see that

E[Tn] = E

[∑
i

|B(tni )−B(tni−1)|2
]
=

n∑
t=1

(tni − tni−1) = t− 0 = t.

By using the fourth moment of N(0, σ2) distribution is 3σ4, we obtain the variance of Tn

Var[Tn] = Var[
∑
i

|B(tni )−B(tni−1)|2] =
∑
i

Var[(tni )−B(tni−1)
2]

=
∑
i

3(tni − tni−1)
2 ≤ 3max(tni − tni−1)t = 3tδn.

Therefore
∑∞

n=1 Var[Tn] < ∞. Using the monotone convergence theorem, we find

∞∑
n=1

Var[Tn] =

∞∑
n=1

E[(Tn − E[Tn])
2] = E

[ ∞∑
n=1

(Tn − E[Tn])
2

]
< ∞.

This implies the series inside the expectation converges almost surely. Hence its terms converge to zero, and

Tn − E[Tn] → 0 a.s., consequently Tn → t a.s.

The non-zero quadratic variation of Brownian motion also implies unbounded variation for all trajectories

of Brownian motion.

5.4 Construction of Itô’s Integral

To compensate for the fact that the Riemann-Stieltjes integral does not exist when integrating with respect to

Brownian motion, we must define an alternate method of integration, the Itô integral. We will only introduce

the Itô integral when integrating simple processes.

We can begin by identifying properties that we would like∫ T

0

X(t)dBt

to have. The integral should have the property that ifX(t) = 1, then
∫ T

0
dBt = BT−B0. At the same time, if the

integrand is a constant function (i.e. X(t) = c), we would like
∫ T

0
X(t)dBt = c(BT−B0). The integral over (0, T ]

should also be the sum of integrals over sub-intervals [0, a] and [a, T ], so
∫ T

0
X(t)dBt =

∫ a

0
X(t)dBt+

∫ T

a
X(t)dBt.

That way,
∫ T

0
X(t)dBt can be easily defined if X(t) takes two different values over the interval. As such, the

integral is defined for simple processes, processes that are constant over finitely many intervals. This can then

be extended through the limiting procedure to define more general processes.

Definition 11 (Simple Non-random Processes). A simple non-random process X(t) is a process for which there

exist times 0 = t0 < t1 < · · · < tn = T and constants c0, c1, ..., cn−1, such that

X(t) = c0I0(t) +

n−1∑
i=0

ciI(ti,ti+1](t),

13



where IA(t) is the indicator function, taking the value 1 if t ∈ A and 0 otherwise. A simple non-random process

is essentially a piecewise function.

The Itô integral of a simple non-random process is defined as a sum∫ T

0

X(t)dBt =

n−1∑
i=0

ci(Bti+1
−Bti).

Due to the independence of increments for Brownian motion, the sum is a Gaussian random variable with mean

0 and variance

Var

[∫ T

0

X(t)dBt

]
= Var

[
n−1∑
i=0

ci(Bti+1
−Bti)

]

=

n−1∑
i=0

Var[ci(Bti+1
−Bti)]

=

n−1∑
i=0

c2i (ti+1 − ti).

We can next define simple random processes, but before that, the concept of being adapted to a filtration

must be introduced.

Definition 12. A process X(t) is called adapted to a filtration F = (Ft) if Xt is Ft-measurable for all t.

We can now define what a simple adapted process is.

Definition 13 (Simple Adapted Processes). A process X = {X(t), 0 ≤ t ≤ T} is called a simple adapted

process if there exist times 0 = t0 < t1 < · · · < tn = T and random variables ξ0, ξ1, ..., ξn−1, such that ξ0 is a

constant, ξi is Fti-measurable (depends on the values of Bt for t ≤ ti, but not on values of Bt for t > ti), and

E[ξ2i ] < ∞, i = 0, ..., n− 1; such that

X(t) = ξ0I0(t) +

n−1∑
i=0

ξiI(ti,ti+1](t).

The main difference between simple non-random processes and simple adapted processes is that the ci’s in

simple non-random processes are constants, while the ξi’s in simple adapted processes are random variables.

The Itô integral for simple adapted processes is defined as such∫ T

0

X(t)dBt =

n−1∑
i=0

ξi(Bti+1 −Bti).

The Itô integral of simple adapted processes has four main properties

1. Linearity. If X(t) and Y (t) are simple processes and α and β are constants, then∫ T

0

αX(t) + βY (t)dBt = α

∫ T

0

X(t)dBt + β

∫ T

0

Y (t)dBt.

2. For the indicator function over an interval (a, b] (I(a,b]),∫ T

0

I(a,b]dBt = Ba −Bb,

∫ T

0

I(a,b]X(t)dBt =

∫ b

a

X(t)dBt.

14



3. Zero mean property. E[
∫ T

0
X(t)dBt] = 0.

4. Isometry property.

E

(∫ T

0

X(t)dBt

)2
 =

∫ T

0

E[X2(t)]dBt.

We will not be providing proofs for these properties for now.

6 Discussion and Conclusions

The report explores the three defining properties of Brownian motion, as well as their general implications

on the recurrence property, maximums and minimums over a time interval and hitting time distributions of

Brownian motion. It then looks at a few important martingales that arise from Brownian motion, as well as how

Brownian motion can be defined differently through Lévy’s characterisation. Finally, we look at the analytical

properties of Brownian motion, such as the non-differentiability, the unbounded variation and the non-zero

quadratic variation, as well as the consequences on integration. The report does not explore the arcsine law of

Brownian motion, which looks at the probability distribution of zeroes of Brownian motion, or any applications

of the exponential martingale of Brownian motion, such as Girsanov theorem. Lastly, it only constructs the Itô

itegral for simple adapted processes and not general adapted processes, without providing proof of the properties

either. These are all potential areas of further study.
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Appendix

Properties of Conditional Expectation

These include some common properties of conditional expectation used throughout the report, as stated by

Williams (1991). Let all X’s satisfy E[|X|] < ∞ and let G and H denote sub-σ-algebras of F .

• If X is G-measurable, then E[X|G] = X, a.s.

• Linearity. E[a1X1 + a2X2|G] = a1E[X1|G] + a2E[X2|G], a.s.

• Tower property. If H is a sub-σ-algebra of G, then

E[E[X|G]|H] = E[X|H], a.s.

• ‘Taking out what is known’. If Z is G-measurable and bounded, then

E[ZX|G] = ZE[X|G], a.s.

• Role of independence. If H is independent of σ(σ(X), G), then

E[X|σ(G,H)] = E[X|G], a.s.

In particular, if X is independent of H, then E[X|H] = E[X], a.s.
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