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Abstract

Many existing random network models such as Erdős–Rényi and preferential attachment have deficiencies

in modelling real-world networks. In particular, real-world networks are often highly clustered while those

models fail to exhibit that property. This paper introduces a new general embellishment of network models

that rectifies some of those deficiencies, through the random addition of edges between vertices that have

common connections. Some general results are also presented and proved.

1 Introduction

1.1 Background and Introduction

Graph structures present in many real-world systems, such as friendship networks, the Internet and biological

networks In particular, those networks are usually enormous with intrinsic randomness, making it difficult to

study their structures on a global scale [1]. Therefore, random networks are natural candidates in modelling

such systems. Due to the complexity of real-world network systems, it is only feasible to extract statistics out

of empirical data. Some of the common statistics include:

� The degree distribution of the graph. This is the proportion of nodes in the graph with a given degree

k. Many real-world graphs are observed to be approximately scale-free, meaning that the tail degree

distribution is asymptotically proportional to k−γ .

� The typical distance of the graph. This refers to the length of a path between two uniformly randomly

chosen vertices. Real-world graphs are typically small-worlds (even ultra-small worlds). That is to say

the typical distance is of order O(log(n)) with high probability.

� Components structures. The components here refers to the connected components, which are sets of nodes

that can reach one another through the edges. Empirical data suggests real-world networks are usually

highly-connected in the sense that there is a giant component almost the size of the network with a few

other smaller ones.s

� Clustering coefficients. The clustering coefficient is the proportion of wedges (or v-shapes) in the graph

with the closing edge present. Real-world networks are typically highly-clustered with their clustering

coefficient being positive (not close to 0).

We will introduce the background knowledge and discuss those properties with more detail in section 2.

The general aim of random network models is to explain and model the properties of real-world networks

through probabilistic or stochastic methods, as well as their structure as they grow. Many random network

models have been developed over the years. The most well-studied ones include:

� Erdős–Rényi ER
(
n, λ

n

)
� Configuration Model CM(n,d)

� Preferential Attachment PA(m,δ)
n (b)

In section 3, we will introduce those models in more detail.

As summarised in table 1.1, those models are not highly clustered. The reason behind it is their tree-like local

limit, which means they have a high number of uncompleted triangles. We will formalise the idea of local limits

in section 4.
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Random Network Model Scale-free? Small-world? Highly-connected? Highly-clustered

Erdős–Rényi No Yes Yes No

Configuration Model Yes Yes Yes No

Preferential Attachment Yes Yes Yes No

Table 1.1: A comparison of random network models.

We observe in real-world friendship networks, individuals are quite likely to become friends with their friends-

of-friends, which motivates this research. Based on this observation, we introduce an embellishment by adding

those missing friends-of-friends connections independently with some probability q. We will show that the

method is applicable to a wide variety of random network model and improves their clustering behaviour,

making the models highly-clustered. In section 5 we will introduce the embellishment in greater detail and

derive a few other properties of embellished graphs.

1.2 Statement of Authorship

David Chen formalised the definitions of the embellishment, developed and proved properties of the embellish-

ment.

Dr Nathan Ross developed the idea of the embellishment, supervised the project, assisted with proofs of some

of the theorems and proofread this report.
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2 Random Graphs and Their Properties

In this section we will introduce definitions used in the future sections. In subsection 2.1 we will formally define

random graphs and related concepts. After that we will explore properties of real-world graphs and formulate

them with the language of random graphs in subsection 2.2.

2.1 Graphs and Random Graphs

Definition 2.1 (Graphs). A graph G is a pair (V (G), E(G)) where V (G) is the countable vertex set or node

set and E(G) the edge set. G is a directed graph if for all u, v ∈ V (G), u, v are adjacent if and only if

(u, v) ∈ E(G). G is an undirected graph if for all u, v ∈ V (G), u, v are adjacent if and only if {u, v} ∈ E(G).

For our study we will consider undirected graphs only, so unless otherwise specified all graphs mentioned in this

paper are undirected. The next concept is the degree of a node, which is the number of edges attached to that

node.

Definition 2.2 (Degree). Let G be a graph. The degree of a node v ∈ V (G) is dG(v), the number of vertices

adjacent to it. That is, dG(v) = |{u ∈ V (G)|{u, v} ∈ E(G)}|.

We will also use DG = dG(V ) to denote the degree of a uniformly randomly selected node V , regardless of

whether the graph G is random. This random variable is also known as the typical degree of G. Now we will

introduce paths and distances in graphs.

Definition 2.3 (Paths and Length of Paths). Let G be a graph and u, v ∈ V (G). A path between u and v is

a finite sequence of adjacent nodes w = (w0, . . . , wk) such that w0 = u, wk = v and {wi, wi+1} ∈ E(G). The

length of this path w is k.

Note that paths in general can visit a node multiple times and form cycles and they do not need to be the most

“direct” way to connect nodes. This concept leads to connectedness and graph distances.

Definition 2.4 (Connectedness and Connected Components). Let G be a graph and u, v ∈ V (G). We say that

u is connected to v if there is a path between u and v. The connected component of u is C(u), the set of

nodes connected to u. The giant component of G is the largest connected component in G, denoted Cmax.

Definition 2.5 (Graph Distance). Let G be a graph and u, v ∈ V (G) connected. The graph distance between

u and v is the length of the shortest path between u and v.

Next, we define graphs with a fixed root node, which is useful in local convergence as we will see in section 4.

Definition 2.6 (Rooted Graph). A rooted graph is a pair (G, o) where G is a graph and o ∈ V (G) a fixed

vertex. Sometimes we simply write G when there is no ambiguity.

We would expect two graphs G and H to be equivalent if we merely reordered the nodes since the structure of

the graph remain unchanged. This leads to the definition of graph isomorphisms.

Definition 2.7 (Graph Isomorphism). Let G and H be graphs. We say G is isomorphic to H and write

G ∼= H if there is a bijection ϕ : V (G) → V (H) such that {v, w} ∈ E(G) if and only if {ϕ(v), ϕ(w)} ∈ E(G).
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Definition 2.8 (Rooted Graph Isomorphism). Let (G, o) and (H, v) be rooted graphs. We say (G, u) is iso-

morphic to (H, v) and write (G, o) ∼= (H, v) if there is a bijection ϕ : V (G) → V (H) such that ϕ(o) = v and

{v, w} ∈ E(G) if and only if {ϕ(v), ϕ(w)} ∈ E(G).

A random graph G is a graph structure with a fixed vertex set V (G) yet a random edge set E(G). Formally,

we define them as a random vector of indicators denoting whether an edge is present in the graph.

Definition 2.9 (Random Graphs). A random graph G is a random vector (1{u,v})u,v∈V (G) where V (G) is a

determined set.

We also use (Gn)n>0 to denote a sequence of random graphs with increasing vertex set size |V (Gn)| and study

their properties as n → ∞. This is because we are interested in how those models evolve as they grow in size

and n → ∞ is consistent with the nature that real-world networks are large. We will provide some examples of

such properties in the next subsection.

Also, note that it is common practice to simply write G, E(G) for random graphs and the random edges. We

will adopt this convention in the future sections.

2.2 Properties of Random Networks

Properties of real-world random networks include scale-free, highly connected, highly clustered, small-world.

We will define the above properties in this subsection. Note that there are also other properties of interest,

such as assortativity (degree-degree dependencies), centrality (a measure of vertex importance) and community

structures (highly-connected local subgraphs), which we will not go into great detail here.

To define scale-free, we need to define sparse first.

Definition 2.10 (Sparse). ([1, p11] Let (Gn)n>0 be a sequence of graphs. We call (Gn)n>0 sparse if the

empirical degree sequence converges to some non-negative integer distribution pk, 1

|V (Gn)|
∑

v∈V (Gn)

1{dGn (v)=k}


k≥0

→ (pk)k≥0 .

When Gn is random we can modify the above definition to make it a convergence in distribution or in probability.

Definition 2.11 (Scale-free). Let (Gn)n>0 be a random graph sequence. Then we say Gn is scale-free if as

k → ∞, ∑
i>k

pi ∼ k−r .

Note that the definition of scale-free can be relaxed with slowly-varying functions [1, p11-p12], which we will

not discuss in detail here.

Definition 2.12 (Highly Connected). ([1, p14]) Let (Gn)n>0 be a sequence of random graphs. We say that Gn

is highly-connected if the size of the giant component Cmax is Θ(n).

Usually the giant component is unique, i.e. the size of the second largest component is o(1).
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The clustering coefficient of a graph comes with a few variants. We will use the local clustering coefficient

here since it is relatively easy to compute. This clustering coefficient measures the average number of ordered

triangles with a vertex at v over the number of ordered wedges with their turning points at v.

Definition 2.13 (Local Clustering Coefficient). ([1, p17]) Let G be a graph (random or not random). Define

the number of triangles through a node v

∆G(v) =
∑

u,w∈V (G)

1{u,v}∈E(G)1{v,w}∈E(G)1{w,u}∈E(G)

and the clustering coefficient of a specific node v

CCG(v) =
∆G(v)

dG(v)(dG(v)− 1)
.

Then the local clustering coefficient of G is

CCG =
1

|V (G)|
∑

v∈V (G)

CCG(v) =
1

|V (G)|
∑

v∈V (G)

∆G

dG(v)(dG(v)− 1)
.

The highly clustered property of real-world networks reveals the fact that wedges are often complete. In the

example of friendship networks, it means an individual’s friends are likely to be friends with each other as

illustrated in figure 2.1.

1

2

3

1

2

3

Figure 2.1: Your friends are friends (left) vs your friends are not friends (right). In real-world networks, (left)

is common.

Definition 2.14 (Highly Clustered). A sequence of graphs (not random) are said to be highly clustered if

lim inf
n→∞

CCGn > 0 .

When the graph sequence (Gn)n>0 is random, (CCn) is a sequence of random variables, which makes the concept

of highly clustered tricky to define. We provide a weak definition and a much stronger one below.

Definition 2.15 (Weakly Highly Clustered). A sequence of random graphs is weakly highly clustered if

lim
n→∞

E
(
CCGn

)
> 0 .

Definition 2.16 (Strongly Highly Clustered). A sequence of random graphs is strongly highly clustered if

for some constant c > 0,

CCGn

P→ c .

The weak version shown in definition only requires the expectation of the clustering coefficient to converge to a

positive constant, whereas the strong version presented in definition requires the random variable to converge

in probability, which implies the weak version. Note that a convergence in distribution of CCGn is sufficient to

meet the definition of the strong version since the limiting random variable is a constant.

Finally we will define the small-world property.
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Definition 2.17 (Typical Distance). Let G be a random graph. The typical distance L(G) is the graph

distance of any two uniformly randomly chosen vertices, conditioned on them being on the same connected

component.

Definition 2.18 (Small-world). ([1, p15]) Let (Gn)n>0 be a sequence of random graphs. Gn is said to be a

small-world if there exist a constant K > 0 such that

P(L(Gn) ≤ K log n)) → 1 .

Gn is said to be an ultra-small world if for every constant ϵ > 0,

P(L(Gn) ≤ ϵ log n)) → 1 .

3 Random Network Models

In this section we will introduce some of the most popular random network models, including Erdős–Rényi

ER
(
n, λ

n

)
, Configuration Model CM(n,d) and Preferential Attachment PA(m,δ)

n (b).

3.1 Erdős–Rényi Models

The Erdős–Rényi random graph ER
(
n, pn = λ

n

)
takes two parameters where n is the number of vertices in the

graph and pn is the probability any edge is present in the graph. In addition, we assume the edges between any

pair of nodes are added mutually independently. The Erdős–Rényi random graph is one of the simplest random

network models, yet it also displays many interesting features. Figure 3.1 shows an example of the Erdős–Rényi

graph.

1

2

34

5

pn

pn

pn

pn

Figure 3.1: A realisation of the Erdős–Rényi model ER(n, pn = λ
n ) with λ = 2.5 and n = 5. Black edges are

present in the graph while the red edges are not.

3.2 Configuration Models

The configuration model builds the network in a reversed order. Starting with n nodes and a fixed degree

sequence dn for the graph, we try to pairs up the “stubs” randomly, as illustrated by figure 3.2. Note that

self-loops and multi-edges may be generated in the process.
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Figure 3.2: Illusting the configuration model [1, p216]

The ability to specify the degree distribution allows the configuration model to be scale-free. However, as we

will see in Theorem 4.5, the configuration model cannot be highly-clustered.

3.3 Preferential Attachment

In the preferential attachment model, nodes are added one at a time to the graph and connected to the existing

nodes randomly, with more weights placed on nodes with high degree.

1 2 3

4

1
4

1
2 1

4

Figure 3.3: Preferential attachment: Vertex 2 is a high-degree vertex and so new vertices are more likely to be

connected with it.

It can be shown that Preferential Attachment model are scale-free. Nevertheless, similar to the configuration

model, its local limit is tree-like as shown by Theorem 4.6.

4 Local Convergence of Random Network Models

4.1 Local Convergence

Sometimes the neighbourhood around a random vertex converges to a common random graph structure as the

graph grows large. This motivates the concept of local convergence, which is quite useful in simplifying the

analysis of random graph properties. To begin with, we define the r-neighbourhoods of graphs.

Definition 4.1 (r-neighbourhood). Let G be a graph and v ∈ V (G). Let r be a positive integer. The r-

neighbourhood of v is

B(G)
r (v) = {u | dG(u, v) ≤ r} .

Now we present the definition of local convergence.

Definition 4.2 (Local Convergence). ([2, p60]) Let (Gn, on) be a sequence of random rooted graphs where Gn

is a random graph and on a uniformly randomly chosen vertex in Gn.
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� We say (Gn, on) converges locally weakly to (G, o) if for every integer r > 0 and finite rooted graph

H∗,

P
(
B(Gn)

r (on) ∼= H∗
)
→ P

(
B(G)

r (o) ∼= H∗
)
.

We denote this (Gn, on)
d→ (G, o).

� We say (Gn, on) converges locally in probability to (G, o) if for every integer r > 0 and finite rooted

graph H∗,

E
[
1{

B
(Gn)
r (on)∼=H∗

}∣∣∣∣Gn

]
P→ P

(
B(G)

r (o) ∼= H∗
)
.

We denote this Gn
P→ (G, o).

With local convergence, quite a few properties of graphs will converge to their corresponding properties in the

local limit, which greatly simplifies the analysis. To begin with, sizes of the r-neighbourhoods converges to the

r-degree of vertex o in the limiting graph, which is clear from the definition of local convergence. Also, the

sequence of local clustering coefficient converges in probability to the expectation of the coefficient of root o,

making it a loteasier to compute.

Theorem 4.3 (Convergence of Clustering Coefficient). ([2, p71]) Let (Gn)n>0 be a sequence of graphs with

|V (Gn)| → ∞. Suppose Gn
P→ (G, o). Then

CCGn

P→ E
(

∆G(o)

(dG(o)(dG(o)− 1))

)

4.2 Local Convergence of Random Network Models

Now we present the local convergence results related to the random network models introduced in section 3

Theorem 4.4 (Local Convergence of the Erdős–Rényi Model). ([2, p63]) ER
(
n, λ

n

)
converges locally in prob-

ability to a Poisson Branching process with offspring distribution Pn(λ).

Theorem 4.5 (Locally Tree-like Nature of the Configuration Model). ([2, p142]) Let Gn = CMn(d) be a

sequence of configuration graphs and Dn the degree of a randomly selected node in V (Gn). Then under regularity

conditions below,

� DGn

d→ D for some random variable D.

� E(DGn
) → E(D) < ∞.

Gn converges locally in probability to the unimodular Galton-Watson tree (G, o) with root offspring distribution

(P(D = k))k≥0.

Theorem 4.6 (Local Convergence of Preferential Attachment Models). ([2, p204]) Let m ≥ 1 and δ > −m.

The preferential attachment model PA(m,δ)
n (d) converges locally in probability to the Pólya point tree.

We will not go into the details of what the local limits are precisely, but note that all of the local limits are

tree-like as illustrated by figure 4.1. This means the clustering coefficient of those random network models must

converge to 0 in probability by theorem 4.3 because no triangles exist in a tree. In the next section (section 5)

we will introduce and analyse a potential solution to this issue.
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1

2

3

4

5

6

7

Figure 4.1: An example of a tree.

5 A General Embellishment

As we demonstrated in section 4, many common random graph models have a tree-like local limit. As a result,

they cannot be highly clustered since the number of triangles is asymptotically small compared to the number

of wedges.

We observe that the issue can be resolved by completing a sufficient number of triangles in the original graph.

In this section, we will propose a generally applicable embellishment to improve the clustering coefficient of

random graphs in subsection 5.1. Then we will show study some of its properties in subsection 5.2.

5.1 Construction

For any sequence of random graphs Gn = (V (Gn), E(Gn)), define

W (Gn) = {{u, v} | dGn(u, v) = 2} .

Define the embellished graph G′
n such that starting from Gn, edges in W (Gn) are added independently with

probability q (figure 5.1). We will consistently use G′
n to denote the random graph obtained by embellishing

Gn with this operation.

In the context of a friendship network, this operation simulates the process of establishing friendship with an

individual’s friends-of-friends. Such connections will complete a considerable amount of triangles in the original

graph, boosting the clustering coefficient as a result.

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Figure 5.1: The neighbourhood of a graph (left) and the edges that are possibly added (right). The red edges

corresponds to the added connections of node 1.
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5.2 General Results

We introduce the notations we will use for the rest of this subsection. Let G be an arbitrary random graph.

Define d
(2)
G (v) = |{u|dG(u, v) = 2}| the number of nodes of exactly distance 2 away from v. Define DG = dG(V )

to be the degree of a uniformly random vertex V in V (G) and D
(2)
G = d

(2)
G (V ). Following the convention above,

we use dG′(v) and DG′ to denote the degrees in the embellished graph.

A critical observation is that knowing the structure of the 2-neighbourhood in the original graph is sufficient to

construct the structure of the 1-neighbourhood of the embellished graph. This yields the relationship between

D′
G and

(
DG, D

(2)
G

)
:

Lemma 5.1 (Embellished Degree Distribution). Let G be a random graph. Then conditioned on
(
DG, D

(2)
G

)
,

D′
G

d
= DG +X

where X ∼ Bi
(
D

(2)
G , q

)
and X and DG are independent conditioned on

(
DG, D

(2)
G

)
.

Figure 5.1 illustrates the idea. The connections of a node in the embellished graph consists of connections in

the original graph (black) and added connections (red). Knowing the original first-degree and second-degree

distributions in the original graph allows us to specify the degree distribution of the embellished model.

Now suppose we have a sequence of random graphs (Gn)n>0. We extend the above notation and use DGn
to

denote the typical degree of Gn, etc.

Theorem 5.2 (Weak Convergence of Embellished Degree). Assume
(
DGn , D

(2)
Gn

)
d→
(
D,D(2)

)
for some random

variable
(
D,D(2)

)
. Then DG′

n

d→ D′ where conditioned on
(
D,D(2)

)
D′ d

= D +X

where X ∼ Bi
(
D(2), q

)
and X and D are independent conditioned on

(
D,D(2)

)
.

This theorem basically follows from the previous lemma and we will leave the formal proof to subsection A.1.

Also observe that our operation has no effect on the component structure:

Theorem 5.3 (Component Structure Unchanged). G′ has the same component structure as G. In other words,

u and v are connected in G′ if and only if u and v are connected in G.

Proof. This is obvious since our operation only adds edges within connected components and hence distinct

components are not joint in the process.

A direct consequence of this is that the highly-connected property is preserved under the embellishment:

Corollary 5.4 (Preservation of Highly-connected Graphs). If (Gn)n>0 is a sequence of highly-connected graphs

then so is (G′
n)n>0.

Finally, we present a few results on typical distances in embellished graphs.

Lemma 5.5 (Bound on Graph Distance). Let G be a graph (not random). Then for any pair of nodes u, v ∈
V (G),

1

2
dG(u, v) ≤ dG′(u, v) ≤ dG(u, v) .

11



Proof. The upper bound is clear since no edges are removed during the embellishment process.

For the lower bound we proceed by contradiction. Suppose there is a path (with positive probability) w =

(w′
0, . . . , w

′
k) between u and v in the embellished graph G′ with k < 1

2dG(u, v). We will show that there must be

path in G between u, v with length smaller than dG(u, v), which contradicts the premise. Notice that for any pair

of nodes i, j, {i, j} ∈ E(G′) with positive probability if and only if {i, j} ∈ E(G) or {i, j} ∈ W (G). Therefore,

{wi, wi+1} ∈ E(G′) with positive probability means {wi, wi+1 ∈ E(G)} or {wi, wi+1 ∈ E(G)} ∈ W (G). If

{wi, wi+1 ∈ E(G)} ∈ E(G) then the distance between them is 1; otherwise {wi, wi+1 ∈ E(G)} ∈ W (G) and the

dG(wi, wi+1) between them is 2. This means dG(u, v) must be no greater than the length of the longest path

we can derive from w, which is of length

d(w0, w2) + d(w1, w2) + · · ·+ d(wk−1, wk) = 2dG′(u, v) < dG(u, v) ,

and the proof is complete.

Theorem 5.6 (Stochastic Domination of Typical Distance). LG stochastically dominates LG′ . That is, for any

l,

P(LG ≥ l) ≥ P(LG′ ≥ l) .

Proof. For a random graph G, we generate the coupling (L̄G, L̄G′) with G′ the embellished graph of G. Since

P(L̄G′ ≤ L̄G) = 1 by lemma 5.5, the result follows.

Corollary 5.7 (Preservation of Small-world Properties). If (Gn)n>0 is a sequence of small-world graphs then

so is (G′
n)n>0. If (Gn)n>0 is a sequence of ultra-small world graphs then so is (G′

n)n>0.

Proof. Using theorem 5.6 and the assumption, there exists a K > 0 such that

P
(
LG′

n
≤ K log n

)
≤ P

(
LG′

n
≤ K log n

)
≤ 1 .

Taking limits as n → ∞ shows P
(
LG′

n
≤ K log n

)
→ 1. The ultra-small world version can be shown in a similar

way.

5.3 Local Convergence of Embellished Models

Here we give stronger results that can be shown when the original sequence of random graphs converges locally.

Our first result shows that local convergence of random graphs is preserved under the embellishment.

Theorem 5.8 (Local Convergence is Preserved). Let Gn be a sequence of random graphs. Then if (Gn, on)
d→

(G, o) then (G′
n, o

′
n)

d→ (G′, o).

We will leave the proof the theorem in subsection A.2.

Theorem 5.9 (Degrees of Embellished Graphs). Let Gn be a sequence of random graphs with (Gn, on)
d→ (G, o).

Then dG′
n
(on)

d→ dG′(o) where dG′(o) | dG(o), d(2)G (o)
d
= dG(o) +X where X | dG(o), d(2)G (o) ∼ Bi

(
d
(2)
G (o), q

)
.

Proof. As illustrated by figure 5.1, the only source of degree change is from the added edges (red), which follows

Bi
(
d
(2)
G (o), q

)
since edges are iid Bernoulli variables with parameters q.

12



The following theorem shows that our embellishment boosts the clustering coefficient.

Theorem 5.10 (Clustering Coefficient Boosted). Let (Gn)n>0 be a sequence of graphs with |V (Gn)| → ∞.

Suppose Gn
P→ (G, o) and P(dG(o) > 1) > 0. Then

CC
′
Gn

→ E
(

∆G(o)

dG(o)(dG(o)− 1)

)
> 0 .

Here P(dG(o) > 1) > 0 is a non-degeneracy condition to ensure the original graph does not consist of isolated

edges or vertices only, in which case no wedges present in the graph and the clustering coefficient is undefined.

This theorem justifies the boost in the clustering coefficient. We will leave the proof to subsection A.3.

6 Discussion

In this paper we introduced random networks and some of the properties of real-world networks. Despite being

consistent with most features of real-world networks, many existing random networks fail to explain the highly-

clustered property, which motivates this study. We introduced an embellishment that rectifies this problem.

We showed that it preserves the local convergence of random networks and boosts their clustering coefficient to

a positive constant, no matter what it was previously.

In general our embellishment performs well. It is generally applicable and it boosts the clustering coefficient of

many common random network models.

There are also a few drawbacks with our embellishment. It tends to increase the degree of vertices with a high

number of second-order neighbours significantly, which may disrupt the degree distribution in some extreme

cases. This makes the effect of the embellishment heavily dependant on the second-order neighbourhood of the

original graph, which might be complicated.

Recent research shows that scale-free graphs with exponent 1 < γ < 2 cannot be highly-clustered in the sense

that the clustering coefficient must converge to 0 [3]. This means our embellishment will likely break the scale-

free property of random graphs. However, whether the scale-free property is preserved for larger exponents

remain unclear.

Further research may be done by running simulations to confirm our theorems and perhaps reveal other prop-

erties of this embellishment.
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A Appendix

A.1 Proof of Theorem 5.2

Theorem 5.2 (Weak Convergence of Embellished Degree). Assume
(
DGn

, D
(2)
Gn

)
d→
(
D,D(2)

)
for some random

variable
(
D,D(2)

)
. Then DG′

n

d→ D′ where conditioned on
(
D,D(2)

)
D′ d

= D +X

where X ∼ Bi
(
D(2), q

)
and X and D are independent conditioned on

(
D,D(2)

)
.

Proof. Expand using law of total probability,

P
(
DG′

n
= k

)
=

∞∑
k1,k2=0

P
(
DG′

n
= k

∣∣∣DGn
= k1, D

(2)
Gn

= k2

)
P
(
DGn

= k1, D
(2)
Gn

= k2

)
. (A.1)

Here we apply lemma 5.1 to the conditional probability,

P
(
DG′

n
= k

∣∣∣DGn = k1, D
(2)
Gn

= k2

)
= P

(
DGn +Bi(D

(2)
Gn

, q) = k
∣∣∣DGn

= k1, D
(2)
Gn

= k2

)
= P

(
k1 +Bi(k2, q) = k

∣∣∣DGn
= k1, D

(2)
Gn

= k2

)
= P

(
k1 +Bi(k2, q) = k

∣∣∣D = k1, D
(2) = k2

)
= P

(
D +Bi(D(2), q) = k

∣∣∣D = k1, D
(2) = k2

)
= P

(
D′ = k

∣∣∣D = k1, D
(2) = k2

)
.

(A.2)

For simplicity, we abused the notation to work with Bi directly. The other term in A.1 converges due to the

assumption (Dn, Dn ∗ (2)) d→
(
D,D(2)

)
,

P
(
DGn

= k1, D
(2)
Gn

= k2

)
→ P

(
D = k1, D

(2) = k2

)
(A.3)

as n → ∞ Using A.2 and A.3, the result follows:

P
(
DG′

n
= k

)
→

∞∑
k1,k2=0

P
(
D′ = k

∣∣∣D = k1, D
(2) = k2

)
P
(
D = k1, D

(2) = k2

)
= P(D′ = k) .

A.2 Proof of Theorem 5.8

Theorem 5.8 (Local Convergence is Preserved). Let Gn be a sequence of random graphs. Then if (Gn, on)
d→

(G, o) then (G′
n, o

′
n)

d→ (G′, o).

Proof. We need to show that for any positive integer r,

P(B(G′
n)

r (o′n)
∼= H∗) → P(B(G′)

r (o) ∼= H∗) .
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Since P(B(Gn)
r (on) ∼= H∗) → P(B(G)

r (o) ∼= H∗) for any r, we can make a coupling (B̄
(Gn)
r (on), B̄

(G)
r (o)) such

that P(B̄(Gn)
r (on) ≇ B̄

(G)
r (o)) → 0. With this coupling,

P
(
B
(G′

n)
r (o′n)

∼= H∗
)

= P
(
B
(G′

n)
r (o′n)

∼= H∗, B̄
(Gn)
2r (on) ∼= B̄

(G)
2r (o)

)
+P

(
B
(G′

n)
r (o′n)

∼= H∗, B̄
(Gn)
2r (on) ≇ B̄

(G)
2r (o)

)
.

(A.4)

Notice that the second term in (A.4) vanishes as n → ∞:

P
(
B
(G′

n)
r (o′n)

∼= H∗, B̄
(Gn)
2r (on) ≇ B̄

(G)
2r (o)

)
≤ P

(
B̄

(Gn)
2r (on) ≇ B̄

(G)
2r (o)

)
→ 0 . (A.5)

For the first term we are under the event
{
B̄

(Gn)
2r (on) ∼= B̄

(G)
2r (o)

}
. Since their structures are isomorphic, we may

couple the Bernoulli variables generating their embellished versions and obtain a coupling

(
B̄
(G′

n)
r (on), B̄

(G′)
r (o)

)
such that B̄

(G′
n)

r (on) ∼= B̄
(G′)
r (o). As n → ∞ this gives

P
(
B

(G′
n)

r (o′n)
∼= H∗, B̄

(Gn)
2r (on) ∼= B̄

(G)
2r (o)

)
=P

(
B̄
(G′

n)
r (o′n)

∼= H∗, B̄
(Gn)
2r (on) ∼= B̄

(G)
2r (o)

)
=P

(
B̄
(G′)
r (o) ∼= H∗, B̄

(Gn)
2r (on) ∼= B̄

(G)
2r (o)

)
=P

(
B̄
(G′)
r (o) ∼= H∗

)
− P

(
B̄
(G′)
r (o) ∼= H∗, B̄

(Gn)
2r (on) ≇ B̄

(G)
2r (o)

)
→P

(
B̄
(G′)
r (o) ∼= H∗

)
=P

(
B
(G′)
r (o) ∼= H∗

)

(A.6)

where the convergence is obtained similarly to (A.5). Combining the result of (A.5) and (A.6), the desired

result follows from (A.4).

A.3 Proof of theorem 5.10

Theorem 5.10 (Clustering Coefficient Boosted). Let (Gn)n>0 be a sequence of graphs with |V (Gn)| → ∞.

Suppose Gn
P→ (G, o) and P(dG(o) > 1) > 0. Then

CC
′
Gn

→ E
(

∆G(o)

dG(o)(dG(o)− 1)

)
> 0 .

Proof. By Theorem 4.3,

CCG′
n
→ E

(
∆G′(o)

dG′(o)(dG′(o)− 1)

)
.

To show the quotient is positive, note that both the numerator and denominator are always non-negative.

Hence it suffice to find a realisation of the quotient that is positive with the realisation occurring with a positive

probability. This is clear since we assume P(dG(o) > 1) > 0, so there exists a realisation dG(o) = k > 1 with

positive probability. For this k, one can check that adding one connection between the neighbours of o is a

possible realisation that guarantees a positive quotient since ∆G′(o) ≥ 2 in this case.
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