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Abstract. Let the continued fraction expansion of a real number r be r =

[a1(r), a2(r), ...]. The growth of partial quotients is related with sets which are

improvements to Dirichlet’s theorem. We have calculated the Hausdorff dimen-

sion of the sets

Λ := {(x, y) ∈ [0, 1]2 : max{an(x)an+1(x), an(y)an+1(y)} → ∞ as n → ∞}

Λ(Φ) := {(x, y) ∈ [0, 1]2 : max

{
aun(x)aun+1(x), avn(y)avn+1(y)

}
≥ Φ(n) for all n ≥ 1}.

Where Φ : N → (1,∞) is a function such that Φ(n) → ∞ as n → ∞.
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1. Introduction

To begin we look at the properties of Continued Fraction expansions of real num-

bers, which can be defined as the following Gauss transformation T : [0, 1) → [0, 1) :

T (0) := 0, T (x) := 1
x
(mod 1), for x ∈ (0, 1).

Let a1(x) = ⌊x−1⌋. (where ⌊.⌋ is the floor function or integer part of x−1) and

an(x) = a1(T
n−1(x)) for n ≥ 2. This allows every real number between [0,1) to have

a unique continued fraction expansion of the form:

x = [a1(x), a2(x), a3(x), ...] =
1

a1(x) +
1

a2(x) +
1

a3(x)+...

where x is the real number being represented, [a1(x), a2(x), a3(x), ...] is the shorthand

using the partial quotients an(x)|n≥1.
pn(x)
qn(x)

= [a1(x), ..., an(x)] is defined as the

nth convergent of x obtained by approximating x to n terms. Where pn(x) is the

numerator and qn(x) is the denominator of the nth convergent.

The interest we have in continued fractions is using their convergents as approxi-

mations of irrational numbers as rational numbers. as summarised by:

1

(2 + an+1(x))q2n(x)
≤ |x− pn(x)

qn(x)
| ≤ 1

(an+1(x))q2n(x)

Recently it has been proven that the product of partial quotients is related

with improvements to Dirichlet’s theorem. Specifically building on the work of

Davenport-Schmidt [3], Kleinbock-Wadleigh [11] considered the set:

D(ψ) :=

x ∈ R :
∃N : the system |qx− p| < ψ(t), |q| < t

has a non trivial integer solution for all t > N


Which they called the set of ψ-Dirichlet improvable numbers.

The nth convergents are the best rational approximation for real numbers, which

shows that the continued fractions approach is very useful in analysing the properties

of rational approximations of sets of real numbers. However since continued fractions

are not applicable in higher dimensions, there has yet to be a higher dimensional
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analog to the guass map of continued fractions such that it captures all the features

of approximation that it does in one dimension.

Lü-Zhang [14] attempted to use the Continued Fraction algorithm to compute

Hausdorff dimension of a set with the partial quotients in their continued fraction

of sets of points in the plane with certain growth conditions. To be precise, they

considered the following set. For any positive integers s and t, define:

E = {(x, y) ∈ [0, 1)2 : max{asn(x), atn(y)} → ∞ as n→ ∞}.

and calculated its Hausdorff dimension. To be precise, they obtained the following

result

Theorem 1.1 (Lü-Zhang).

dimH(E) =
3

2
.

In this project, we extend their idea to address the corresponding problem by

considering the growth of the product of consecutive partial quotients. We consider

the following two sets and calculate their Hausdorff dimension.

Λ := {(x, y) ∈ [0, 1]2 : max{an(x)an+1(x), an(y)an+1(y)} → ∞ as n→ ∞}

Theorem 1.2.

dimH(Λ) = 3/2.

Let Φ : N → (1,∞) be a function such that Φ(n) → ∞ as n → ∞. For any

u, v ∈ N. We define the set:

Λ(Φ) := {(x, y) ∈ [0, 1]2 : max

{
aun(x)aun+1(x), avn(y)avn+1(y)

}
≥ Φ(n) for all n ≥ 1}.

Theorem 1.3. Let Φ be a positive function. Then

dimH(Λ(Φ)) = 1 +
1

1 + τα
=

2 + τα

1 + τα

where

α =
1

max{u, v}
and log τ = lim sup

n→∞

log log Φ(n)

n
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2. Preliminaries

2.1. Hausdorff measure and dimension. Let 0 < s ∈ Rn let E ⊂ Rn. Then, for

any ρ > 0 a countable collection {Bi} of balls in Rn with diameters diam(Bi) ≤ ρ

such that E ⊂
⋃

iBi is called a ρ-cover of E. Let

Hs
ρ(E) = inf

∑
i

diam(Bi)
s,

where the infimum is taken over all possible ρ-covers {Bi} of E. It is clear that

Hs
ρ(E) increases as ρ decreases and so approaches a limit as ρ → 0. This limit will

be zero, infinity or a finite positive value. Accordingly, the s-Hausdorff measure Hs

of E is defined as:

Hs(E) = lim
ρ→0

Hs
ρ(E).

For any subset E one can verify that there exists a unique value of s such thatHs(E)

instantly goes from infinity to zero. This value of s for which this jump occurs is

called the Hausdorff dimension of E and is denoted by dimHE:

dimHE := inf{s ∈ R+ : Hs(E) = 0}

2.2. Continued fractions and Diophantine approximation. Recall for x ∈

[0, 1)\Q has continued fraction expansion x = [a1, a2, ...], from Section 1, we have

an(x) = [1/T n−1(x)] for each n ≥ 1. Recall the sequences pn = pn(x), qn = qn(x),

discussed previously has the recursive relation:

pn+1 = an+1(x)pn + pn−1, qn+1 = an+1(x)qn + qn−1, n ≥ 0. (2.1)

Thus pn = pn(x), qn = qn(x) are determined by the partial quotients a1, ..., an, so

we may write pn = pn(a1, ..., an), qn = qn(a1, ..., an). When it is clear which partial

quotients are involved we denote them as pn, qn for simplicity.

We define the cylinder of order n as the set of all real numbers whose continued

fraction expansion begins with partial quotients (a1, ..., an), i.e.:

For any integer vector (a1, ..., an) ∈ Nn with n ≥ 1, write

In := In(a1, ..., an) := {x ∈ [0, 1) : a1(x) = a1, ..., an(x) = 1n}
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We will frequently be using the follow properties of continued fraction expansions.

They are explained in the standard texts [9, 10].

Proposition 2.1. For any positive integers a1, ..., an, let pn = pn(a1, ..., an) and qn =

qn(a1, ..., an) be defined recursively by (1). Then:

(P1)

In =

[pn
qn
, pn+pn−1

qn+qn−1
) if n is even;

(pn+pn−1

qn+qn−1
, pn
qn
] if n is odd.

Thus, the length of the cylinder of order n is given by

1

2q2n
≤ |In| =

1

qn(qn + qn−1)
≤ 1

q2n
≤

( n∏
i=1

ai

)−2

,

since

pn−1qn − pnqn−1 = (−1)n, for all n ≥ 1.

(P2) For any n ≥ 1, qn ≥ 2(n−1)/2 and

1 ≤ qn+m(a1, ..., an, b1, ..., bm)

qn(a1, ..., an) · qm(b1, ..., bm)
≤ 2.

(P3)

n∏
i=1

ai ≤ qn ≤
n∏

i=1

(ai + 1) ≤ 2n
n∏

i=1

ai.

(P4)

1

(an+1(x) + 2)q2n(x)
<

∣∣∣∣x− pn(x)

qn(x)

∣∣∣∣ = 1

qn(x)(qn+1(x) + T n+1(x)qn(x))
<

1

an+1q2n(x)
.

(P5) There exista a constant K > 1 such that for almost all x ∈ [0, 1),

qn(x) ≤ Kn, for allnsufficiently large.

Let µ be the Gauss measure given by

dµ =
1

(1 + x) log 2
dx

The next proposition concerns the position of a cylinder in [0,1).
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Proposition 2.1 ([10]). Let In = In(a1, ..., an) be a cylinder of order n, which is

partitioned into sub-cylinders {In+1(a1, ..., an, an+1) : an+1 ∈ N}. Where n is odd,

these sub-cylinders are positioned from left to right, as an+1 increases from 1 to ∞;

when n is even, there are positioned from right to left.

The following result is due to Luczak[12].

Lemma 2.2 ([12]). For any b, c > 1, the sets

{x ∈ [0, 1) : an(x) ≥ cb
n

for infinitely many n ∈ N},

{x ∈ [0, 1) : an(x) ≥ cb
n

for all n ≥ 1},

have the same Hausdorff dimension 1
b+1

.

The following Lemma was proved by Good [5].

Lemma 2.3 ([5]).

dimH{x ∈ [0, 1) : an+1(x) → ∞ as n→ ∞} =
1

2
.

The following lemma proved by Marstrand [13] is well-known in the field.

Lemma 2.4 ([13]). For any measurable sets A and B,

dimH(A×B) ≥ dimHA+ dimHB.
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3. Proofs of Theorems 1.2 and 1.3

3.1. Proof of Theorem 1.2. Recall that:

Λ := {(x, y) ∈ [0, 1]2 : max{an(x)an+1(x), an(y)an+1(y)} → ∞ as n→ ∞}

3.1.1. Lower Bound: We begin by defining a set

λ = {x : an(x)an+1(x) → ∞ as n→ ∞}.

Then trivially λ × [0, 1) ⊆ E. We also know λ contains set {x : an(x) → ∞ as n

→ ∞}. Then Lemma 2.3,

dimH({x : an(x) → ∞ as n→ ∞}) = 1

2
.

This tells us that: dimH(λ) ≥ 1
2
.

Which tells us that the minimum Hausdorff dimension for λ × [0, 1) = 1 + 1
2
⇒

dimH(λ× [0, 1)) ≥ 1
2
+ 1. Hence

dimH(Λ) ≥
3

2
.

3.1.2. Upper Bound: We start off by defining a function ΛM ,

ΛM =
∞⋂

N=1

{(x, y) ∈ I2 : max{an(x)an+1(x), an(y)an+1(y)} ≥M, ∀n ≥ N}.

It follows that:

ΛM ⊂ {(x, y) ∈ I2 : max{an(x)an+1(x), an(y)an+1(y)} ≥M, ∀n ≥ 1}.

Which implies that for any (x, y) ∈ ΛM :

either an(x)an+1(x) ≥M for all n ∈ Ω

or an(y)an+1(y) ≥M for all n ∈ N\Ω
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Where Ω is an infinite subset. From this we know that the following set contains

ΛM and function for use of a covering argument.

ΛM ⊆ [
⋃
n∈Ω

⋃
a1,a2,...,an+1:arar+1≥M ; 1≤r≤n

In(a1, ..., an)× [0, 1)]

⋃
[
⋃

n∈N\Ω

⋃
a1,a2,...,an+1:arar+1≥M ; 1≤r≤n

[0, 1)× In(a1, ..., an)]

Here we begin to form a cover, using squares of side length |In|, to cover we need

to use a number of squares equal to |In|−1, forming the cover:

Hs(ΛM) ≪ lim inf
n−→∞

∑
a1,...,an+1:arar+1≥M ; 1≤r≤n

(|In|s|In|−1)

Note that, |In| = (
n∏

i=1

ai)
−2. Therefore

Hs(ΛM) ≪ lim inf
n−→∞

∑
a1,...,an+1:arar+1≥M ; 1≤r≤n

n∏
i=1

a
−2(s−1)
i

We then transition this to a logarithm form:

Hs(ΛM) ≪ lim inf
n−→∞

∑
a1,...,an+1:arar+1≥M ; 1≤r≤n

e
−2(s−1)

n∑
i=1

log(ai)

We know:
n∑

i=1

log(ai) = log(a1) + log(a2) + · · ·+ log(an)

and

a1a2 ≥M,a2a3 ≥M, ..., anan+1 ≥M.

Which implies
n∑

i=1

log(ai) ≥ (n−1)
2
log(M) Therefore:

Hs(ΛM) ≪ lim inf
n−→∞

∑
a1,...,an+1:arar+1≥M ; 1≤r≤n

e−(s−1)(n−1) log(M). (3.1)

Next, we define a family of probability measure on the unit interval [0,1] for each

t > 1 and (a1, ..., an) ∈ Nn, define

µt(In) = e
−n P (t)−t

n∑
i=1

log(ai)

Where p(t) = log
2∑

j=1

1
jt
<∞.
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It follows that∑
an+1

µt(In+1) = µt(In) and
∑

(a1,...,an)∈Nn

µt(In) = 1.

Next we fix s > 3
2
, and let t = s− 1

2
as t > 1. We choose M sufficiently large such

that

0 ≤ P (t) ≤ (
2s− 3

n
) log(M)

It follows that:

(−s+ 1)(n− 1) log(M) ≤ −nP (t)− t

n∑
i=1

log(ai)

(−s+ 1)(n− 1) log(M) ≤ −nP (t)− (s− 1
2
) (n−1)

2
log(M)

0 ≤ P (t) ≤ (2s−3
n

) log(M) =⇒ s > 3
2

This tells us that the RHS of (3.1) converges to zero when s > 3
2
. Thus by the

definition of Hausdorff dimension, we have dimH(ΛM) ≤ 3/2, and as a consequence

dimH(Λ) ≤ 3/2.
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3.2. Proof of Theorem 1.3. Recall that Φ : N → (1,∞) is a function such that

Φ(n) → ∞ as n→ ∞. For any u, v ∈ N. We define the set:

Λ(Φ) := {(x, y) ∈ [0, 1]2 : max

{
aun(x)aun+1(x), avn(y)avn+1(y)

}
≥ Φ(n) for all n ≥ 1}.

Theorem 1.3 Let Φ be a positive function. Then

dimH(Λ(Φ)) = 1 +
1

1 + τα
=

2 + τα

1 + τα

where

α =
1

max{u, v}
and log τ = lim sup

n→∞

log log Φ(n)

n

To prove this theorem we consider different cases for τ . When τ < 1, trivially it

follows that Λ(Φ) = I2.

3.2.1. τ = 1.

In this case for any ϵ > 0, there exists n0 ∈ N such that for all n ≥ n0, we have

Φ(n) ≤ e(1+ϵ)n . Then

Λ(Φ) ⊃ {x ∈ [0, 1) : aun(x)aun+1(x) ≥ e(1+ϵ)n for all n ≥ n0} × [0, 1]

⊃ {x ∈ [0, 1) : an(x) ≥ e(1+ϵ)n for all n ≥ n0} × [0, 1].

Using Lemmas 2.2 and 2.4, we have:

dimHΛ(Φ) ≥ lim
ϵ→0

1

1 + (1 + ϵ)
+ 1 =

3

2
.

The upper bound follows from Theorem 1.2 as Λ(Φ) ⊆ Λ. Proving the theorem for

case τ = 1.

3.2.2. 1 < τ <∞.

Let 1 < c < τ . By definition of τ , there exists infinitely many n in an infinite

subset Ω ⊂ N such that:

log c ≤ log log Φ(n)

n
i.e. Φ(n) ≥ ec

n ∀n ∈ Ω.
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Thus for every n ∈ Ω either aun(x)aun+1(x) ≥ ec
n
or avn(y)avn+1(y) ≥ ec

n
We define:

Λ1 :=
{
x ∈ [0, 1] : aun(x) ≥ ec

n

for i.m. n ∈ N
}

and

Λ2 :=
{
y ∈ [0, 1] : avn(y) ≥ ec

n

for i.m. n ∈ N
}

Hence

Λ(Φ) ⊆ (Λ1 × [0, 1])
⋃

([0, 1]× Λ2)

By Lemmas 2.2 and 2.4, we have

dimH(Λ(Φ)) ≤ 1 + max

{
lim
c→τ

1

1 + c
1
u

, lim
c→τ

1

1 + c
1
v

}
≤ 1 + lim

c→τ

1

1 + c
1

max{u,v}

≤ 1 +
1

1 + τ
1

max{u,v}

The lower bound for this case is proven by a similar argument to the upper. We

fix c > τ , then Φ(n) ≤ ec
n
holds for all n ≥ n0. Therefor if we choose u < v, we

then have the inclusion

Λ(Φ) ⊇
{
x ∈ [0, 1] : aun(x)aun+1(x) ≥ ec

n

for all n ≥ n0

}
× [0, 1]

⊇
{
x ∈ [0, 1] : aun(x) ≥ ec

n

for all n ≥ n0

}
× [0, 1]

Therefor, By Lemmas 2.2 and 2.4 we know:

dimH(Λ(Φ)) ≥ 1 + lim
c→τ

1

1 + cmax{u,v} = 1 +
1

1 + τmax{u,v} .

3.2.3. τ = ∞. This case is quickly solved from the above argument that

dimH(Λ(Φ)) = 1 + lim
τ→∞

1

1 + τmaxu,v
= 1 + 0 = 1.
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