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Abstract

This paper investigates the mathematical modelling of lesions in Multiple Sclerosis patients, spatially and over

time. No previous research had been identified that attempted to model this particular immune response on a

cellular level using mathematics. This paper outlines the key components and dynamics that are captured by

the model, and the formulation of a bespoke system of Partial Differential Equations which were then solved

using the Finite-Volume method. MATLAB programming was utilised to simulate the system over time, and

the behaviour of the model could then be visualised. Our findings indicate that, based on the preliminary PDE

model created, all populations of myelin converged to a steady-state of full regeneration over time. Suggestions

for further research into this model have been made, namely parameterisation and improving the model to

capture the realistic nature of T-cell activity observed in Multiple Sclerosis patients.

1 Introduction

Multiple Sclerosis (MS) is an autoimmune, demyelinating and neurodegenerative disease that affects the brain

and central nervous system [1]. All nerve cells have a protective, insulating cover called a myelin sheath [1].

This particular demyelinating disease describes the case in which myelin present in the brain and spinal cord

gets degraded and exhibits damage. In MS patients, damage to this myelin occurs when the immune system

mistakenly attacks the myelin causing scarring in the brain [2]; these scars are referred to as lesions and are

visible on MRI scans. As lesions form within the brain and/or spinal cord, they disrupt the ability of the

affected nerve cells to transmit signals which can result in a range of neurological symptoms, depending on the

location of these lesions [1]. Little is known about the possible causes or triggers of MS and currently there is

no cure for the disease, only treatments to reduce symptoms.

The key objective of this paper is to model the immune response on a cellular level that is triggered by

demyelination in the brain using a system of Partial Differential Equations (PDEs). More broadly, our aim is

to create a model that can predict the evolution of a patient’s disease throughout their lifetime and from this,

identify optimal intervention points for treatment.

We identified four main components to simulate with this model that are imperative to the immune response:

healthy myelin (M), damaged myelin (MD), chemokine (C) and T-cells (T ). Damaged myelin initially present

in the domain triggers an immune response. Firstly, the lesions will secrete chemokine, which is also known as a

chemotactic cytokine [2]. This chemokine is the main player in the immune response as it is a protein that acts

as an attractant to immune cells. This leads us to the action of chemotaxis, which is the movement of immune

cells (namely T-cells) towards the chemoattractant (chemokine) as the signalling protein induces cell migration

to area of damage [3]. Thus, we will also be modelling T-cells, a type of CD8+ immune cell, that will travel up

the chemokine gradient towards lesions and attempt to heal them [4].
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This paper outlines the formulation of the model as a system of four PDEs and the mathematical discreti-

sation of these PDEs (spatially and temporally) according to the Finite-Volume Method. This paper also

explains the implementation of solving and visualising this system using the programming language MATLAB

and outlines the key findings and areas for further research.

2 Statement of Authorship

The contributors to this academic paper include the author Geneva Birtles and supervisors Adrianne Jenner,

Robyn Araujo and Michael Dallaston. Adrianne Jenner originally conceived the project outline and objectives,

and provided specialist knowledge of Multiple Sclerosis. Geneva Birtles and Adrianne Jenner formulated the

system of partial differential equations. Geneva Birtles performed the Finite-Volume Method discretisation

and MATLAB computational work with assistance from all supervisors. Geneva Birtles ran all computational

simulations and analysed results with support from supervisors.

3 Modelling the Immune Response

3.1 Modelling Chemotaxis

Initially, we can formulate the PDE models that describe the chemotaxis of T-cells up the chemokine gradient.

This model has been based off the the minimal model derived in article [3], defined in Equations 1 and 2 below:

∂v

∂t
= ∇2v + u− v (1)

∂u

∂t
= ∇(D∇u− χu∇v) (2)

Where u is chemotaxing towards the signal v, t is time and ∇ represents the two-dimensional gradient

operator.

Thus, we will have the chemokine acting as the signal v, exhibiting simple diffusion (as seen in Equation (1)) and

will have the T-cells (denoted u in the minimal model) diffusing and chemotaxing towards this signal (as seen

in Equation (2)). Evidently, we can derive the two-dimensional PDEs for chemokine and T-cells, by expanding

the gradient terms and defining the relevant constants.

Preliminary Chemokine Model (2D Diffusion):

∂C(x, t)

∂t
= ∇2(Dc C(x, t))

∂C(x, t)

∂t
= ∇ · (Dc ∇C(x, t)) (3)

∂C(x, t)

∂t
= ∇ ·

(
Dc

∂C(x, t)

∂x
i+Dc

∂C(x, t)

∂y
j

)
∂C(x, t)

∂t
=

∂

∂x

(
Dc

∂C(x, t)

∂x

)
+

∂

∂y

(
Dc

∂C(x, t)

∂y

)
(4)
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Where the chemokine diffusion constant is defined by Dc and we do not yet have any additional source or

sink terms.

Preliminary T-cell Model (2D Diffusion and Chemotaxis):

∂T (x, t)

∂t
= ∇ · (Dt∇T (x, t)− χT (x, t)∇C(x, t)) (5)

∂T (x, t)

∂t
= ∇ ·

((
Dt

∂T (x, t)

∂x
i+Dt

∂T (x, t)

∂y
j

)
−
(
χT (x, t)

∂C(x, t)

∂x
i+ χT (x, t)

∂C(x, t)

∂y
j

))
∂T (x, t)

∂t
= ∇ ·

(
Dt

∂T (x, t)

∂x
i+Dt

∂T (x, t)

∂y
j

)
−∇ ·

(
χT (x, t)

∂C(x, t)

∂x
i+ χT (x, t)

∂C(x, t)

∂y
j

)
∂T (x, t)

∂t
=

∂

∂x

(
Dt

∂T (x, t)

∂x

)
+

∂

∂y

(
Dt

∂T (x, t)

∂y

)
− ∂

∂x

(
χT (x, t)

∂C(x, t)

∂x

)
− ∂

∂y

(
χT (x, t)

∂C(x, t)

∂y

)
∂T (x, t)

∂t
=

∂

∂x

(
Dt

∂T (x, t)

∂x
− χT (x, t)

∂C(x, t)

∂x

)
+

∂

∂y

(
Dt

∂T (x, t)

∂y
− χT (x, t)

∂C(x, t)

∂y

)
(6)

Where the T-cell diffusion constant is defined by Dt, the chemotactic sensitivity (rate of chemotaxis) is

defined by χ and we do not yet have any additional source or sink terms.

3.2 Formulation of the System of Coupled Partial Differential Equations

Continuing from the preliminary chemotaxis PDEs, we can begin to formulate our full system of equations for

each of the four components. These PDEs model the concentrations of each of these substances in the domain

over time. Both concentrations of healthy myelin (M) and damaged myelin (MD) are nondimensionalised by

nature and can vary from 0 to 1. See Figure 1 for full visualisation of system dynamics and interactions between

each of the components.

Healthy Myelin:

The healthy myelin grows logistically in the domain (at rate, r) and becomes damaged by nearby damaged

myelin (at rate v). Healthy myelin begins at a homogenous profile over the entire domain and the carrying

capacity of healthy myelin plus damaged myelin is 1. The PDE to model healthy myelin is defined below in

Equation 7.
∂M(x, t)

∂t
= rM(1− (M +MD))− vMMD (7)

Damaged Myelin:

The damaged myelin diffuses throughout the domain (at rate DM ), damaging neighboring healthy myelin (at

rate v) and growing in the presence of T-cells (at rate δ). This damaged myelin represents lesions within the

domain. The PDE to model damaged myelin is defined below in Equation 8.

∂MD(x, t)

∂t
= DM∇2MD + vMMD − δMDT (8)

Chemokine:
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The chemokine diffuses throughout the domain (at rate DC) and is secreted by the damaged myelin (at rate s);

the chemokine also decays at rate δC . The PDE to model chemokine activity is defined below in Equation 9.

∂C(x, t)

∂t
= DC∇2C − δCC + sMD (9)

T-cells:

T-cells diffuse throughout the domain (at rate Dt) while simultaneously chemotaxing up the chemokine gradient

(at rate χ); the T-cells also decay at rate δT . The PDE to model T-cell activity is defined below in Equation

10.
∂T (x, t)

∂t
= ∇ · (Dt∇T − χT∇C)− δTT (10)

Figure 1: System Dynamics and Interactions

4 Numerical Solving Method

Due to the complexity of the system of PDEs, it is virtually impossible to solve them using analytical methods.

Thus, the Finite Volume Method was chosen to solve the system numerically for each of the four components at

predefined discrete points. This method will involve discretising the PDEs spatially and temporally to formulate

a simpler system of equations and then inputting these into MATLAB to be solved computationally at discrete

time points. This method will be detailed in the following sections.
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4.1 Finite-Volume Method

The Finite-Volume method (FVM) works by manipulating the existing PDEs into a system of simpler ODEs

that can be solved at a set of discrete time points. Firstly, the spatial domain must be predefined and split up

into a mesh of discrete points (termed nodes), each of which lies at the centre of a rectangular control volume,

which in total make up the entire domain. A spatial discretisation can then be performed for each of the PDEs

at these nodes. This works by integrating the PDEs over the control volume and converting the divergence

terms into surface integrals, using the divergence theorem. We can then evaluate these surface integrals as fluxes

at each of the four sides of the control volume. The Finite-Volume method is conservative as the flux entering

a particular control volume is equal to the flux leaving the surrounding control volumes. After the spatial

discretisation has been executed, a temporal discretisation can be conducted to in order to simulate the solution

over time. The Theta Method is utilised in this time discretisation, which works by integrating the resultant

ODE (from the spatial discretisation) from t = tn to t = tn+1 and approximating the resulting integrals using

the weighted theta (θ) approximation. From this, each of these equations can be solved computationally using

a Newton solver in MATLAB.

4.2 Spatial Discretisation

We can now implement the spatial discretisation of our defined system of PDEs (Equations 8, 9 and 10), since

the PDE for healthy myelin doesn’t contain a flux term (Equation 7) it doesn’t require a spatial discretisation.

Initially, we will be implementing a simple no-flux boundary condition for our PDEs:

∂C(x, t)

∂n
= 0, on ∂Ω, t > 0 (11)

∂MD(x, t)

∂n
= 0, on ∂Ω, t > 0 (12)

∂T (x, t)

∂n
= 0, on ∂Ω, t > 0 (13)

Where ∂C(x,t)
∂n , ∂MD(x,t)

∂n and ∂T (x,t)
∂n denote the directional derivative normals to the boundary ∂Ω.

4.2.1 Chemokine PDE

To begin our spatial discretisation of the chemokine PDE (9), we can rearrange equation (3) and integrate over

the control volume (denoted Vp), such that:

∂C(x, t)

∂t
= ∇ · (Dc ∇C(x, t))− δCC + sMD

0 =
∂C(x, t)

∂t
+∇ · (−Dc ∇C(x, t)) + δCC − sMD

0 =

∫ ∫
Vp

∂C(x, t)

∂t
dV +

∫ ∫
Vp

∇ · J dV + δC

∫ ∫
Vp

C(x, t) dV − s

∫ ∫
Vp

MD(x, t) dV (14)

Where:

J = −Dc ∇C(x, t) (15)
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We can then introduce a control volume averaged value of C, ∂C
∂t and MD over Vp (see Figure 2 for visualisation

of node design):

C̄P =
1

∆xP∆yP

∫ ∫
Vp

C(x, t)dV

dC̄P (t)

dt
=

1

∆xP∆yP

∫ ∫
Vp

∂C(x, t)

∂t
dV

M̄DP =
1

∆xP∆yP

∫ ∫
Vp

MD(x, t)dV

These can subsequently be rearranged: ∫ ∫
Vp

C(x, t)dV = ∆xP∆yP C̄P

∫ ∫
Vp

∂C(x, t)

∂t
dV = ∆xP∆yP

dC̄P (t)

dt∫ ∫
Vp

MD(x, t)dV = ∆xP∆yP M̄DP

These approximations can then be substituted into Equation 14:

0 = ∆xP∆yP
dC̄P (t)

dt
+

∫ ∫
Vp

∇ · JdV + δC∆xP∆yP C̄P − s∆xP∆yP M̄DP

Dividing through by ∆xP∆yP gives:

0 =
dC̄P (t)

dt
+

1

∆xP∆yP

∫ ∫
Vp

∇ · JdV + δCC̄P − sM̄DP (16)

We can then approximate the remaining integral using Green’s Theorem. This allows the double integral over the

two-dimensional divergence (∇ ·J) over the control volume to be expressed as follows, Where, n̂ is the outward

unit normal on the boundary of the control volume (Γp). As our control volume is rectangular in shape, this

can be further separated into the four distinct faces (east, north, west, south), such that Ep = {e, n, w, s}. Thus,

we can state: ∫ ∫
Vp

∇ · JdV =

∮
Γp

J · n̂ dσ =
∑
j∈Ep

∫
Γj

J · n̂ dσ

As this line integral cannot be computed by analytical techniques we can employ a numerical strategy: a one-

point midpoint quadrature approximation. Such that, we can define mj as the coordinated of the midpoint

of the cell face Γj and correspondingly, defining lj as the cell face length. Thus, we can use the following

approximation: ∫
Γj

J · n̂ dσ ≈ (J · n̂)mj
lj

Which gives: ∫ ∫
Vp

∇ · JdV ≈
∑
j∈Ep

(J · n̂)mj
lj

For each of our four cell faces we can define the corresponding unit normals and face lengths, as follows:
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East Face (j = e): n̂ = i and le = ∆yP , which gives (J · n̂)me
le = Je∆yP

West Face (j = w): n̂ = -i and lw = ∆yP , which gives (J · n̂)mw
lw = −Jw∆yP

North Face (j = n): n̂ = j and ln = ∆xP , which gives (J · n̂)mn ln = Jn∆xP

South Face (j = s): n̂ = -j and ls = ∆xP , which gives (J · n̂)ms
ls = −Js∆xP

Thus, our double integral can be rewritten finally as:∫ ∫
Vp

∇ · JdV ≈ ∆yP (Je − Jw) + ∆xP (Jn − Js)

This approximation can then be substituted back into Equation 16:

0 =
dC̄P (t)

dt
+

1

∆xP∆yP
(∆yP (Je − Jw) + ∆xP (Jn − Js)) + δCC̄P − sM̄DP

0 =
dC̄P (t)

dt
+

1

∆xP
(Je − Jw) +

1

∆yP
(Jn − Js) + δCC̄P − sM̄DP (17)

Using Equation 15 and a standard forward difference approximation for the partial derivatives, we can now

evaluate our J terms:

Je = −Dc

[
∂C

∂x

]
e

≈ −Dc

(
CE − CP

δxe

)
Jw = −Dc

[
∂C

∂x

]
w

≈ −Dc

(
CP − CW

δxw

)
Jn = −Dc

[
∂C

∂y

]
n

≈ −Dc

(
CN − CP

δyn

)
Js = −Dc

[
∂C

∂y

]
s

≈ −Dc

(
CP − CS

δys

)
Where CP is the current concentration of chemokine at our particular node (node we are currently evaluating),

CE is the concentration at the node to the right of our particular node, CW is the concentration at the node to

the left, CN is the concentration at the node above and CS is the concentration at the node below (see Figure

2 for full visualisation of node design).

Hence, substituting our J values into Equation 17 and letting C̄P ≈ CP and M̄DP ≈ MDP , we can derive

our full Finite Volume Equation (FVE):

0 =
dCP (t)

dt
+

Dc

∆xP

(
CP − CW

δxw
− CE − CP

δxe

)
+

Dc

∆yP

(
CP − CS

δys
− CN − CP

δyn

)
+ δCCP − sMDP (18)

Boundary Conditions:

For this chemokine PDE we assume no-flux boundary conditions along all sides of the domain (see Equation 11)

we can derive alternative Finite Volume Equations (adapted from Equation 17) accordingly for each boundary

node. See Appendix A for full set of boundary Finite Volume Equations.
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Figure 2: Node/Mesh Design

4.2.2 T-cell PDE

Following the same derivation method of the FVE used in section 4.2.1, we take Equation 5 and integrate over

the control volume, such that:

∂T (x, t)

∂t
= ∇ · (Dt∇T (x, t)− χT (x, t)∇C(x, t))− δTT

0 =

∫ ∫
Vp

∂T (x, t)

∂t
dV +

∫ ∫
Vp

∇ ·Q dV +

∫ ∫
Vp

δTT dV (19)

where

Q = χT (x, t)∇C(x, t)−Dt∇T (x, t) (20)

Using the relevant control volume averaged values of T and ∂T
∂t over Vp, this can be simplified:

0 =
dT̄P (t)

dt
+

1

∆xP∆yP

∫ ∫
Vp

∇ ·Q dV + δT T̄P

Again using Green’s Theorem to evaluate the second double integral, we arrive at the following approximation:∫ ∫
Vp

∇ ·Q dV ≈ ∆yP (Qe −Qw) + ∆xP (Qn −Qs)

Thus,

0 =
dT̄P (t)

dt
+

1

∆xP
(Qe −Qw) +

1

∆yP
(Qn −Qs) + δT T̄P (21)

Using Equation 20, a standard forward difference approximation for the partial derivatives and an average

approximation of our T terms (see Table 1 for full list of approximations), we can now evaluate our Q terms.

It is also useful to utilise the rewritten form of our PDE (see Equation 6).

Qe = χ [T ]e

[
∂C

∂x

]
e

−Dt

[
∂T

∂x

]
e

≈ χ

(
TE + TP

2

)(
CE − CP

δxe

)
−Dt

(
TE − TP

δxe

)

Qw = χ [T ]w

[
∂C

∂x

]
w

−Dt

[
∂T

∂x

]
w

≈ χ

(
TW + TP

2

)(
CP − CW

δxw

)
−Dt

(
TP − TW

δxw

)
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Qn = χ [T ]n

[
∂C

∂y

]
n

−Dt

[
∂T

∂y

]
n

≈ χ

(
TN + TP

2

)(
CN − CP

δyn

)
−Dt

(
TN − TP

δyn

)
Qs = χ [T ]s

[
∂C

∂y

]
s

−Dt

[
∂T

∂y

]
s

≈ χ

(
TS + TP

2

)(
CP − CS

δys

)
−Dt

(
TP − TS

δys

)
Where TP is the current concentration of T-cells at our particular node, TE is the concentration at the node

to the right of our particular node, TW is the concentration at the node to the left, TN is the concentration at

the node above and TS is the concentration at the node below (see Figure 2 for full visualisation of nodal design).

Hence, substituting our Q values into Equation 21 and letting TP ≈ T̄P we can derive our full Finite Vol-

ume Equation:

0 =
dTP (t)

dt
+

1

∆xP

[
χ

(
TE + TP

2

)(
CE − CP

δxe

)
−Dt

(
TE − TP

δxe

)
− χ

(
TW + TP

2

)(
CP − CW

δxw

)
+

Dt

(
TP − TW

δxw

)]
+

1

∆yP

[
χ

(
TN + TP

2

)(
CN − CP

δyn

)
−Dt

(
TN − TP

δyn

)
−

χ

(
TS + TP

2

)(
CP − CS

δys

)
+Dt

(
TP − TS

δys

)]
+ δTTP

(22)

Table 1: Relevant Approximations (Central Difference & Averaging)

Relevant Approximations[
∂T
∂y

]
n
≈ TN−TP

δyn

[
∂C
∂y

]
n
≈ CN−CP

δyn
[T ]n ≈ TN+TP

2[
∂T
∂y

]
s
≈ TP−TS

δys

[
∂C
∂y

]
s
≈ CP−CS

δys
[T ]s ≈

TS+TP

2[
∂T
∂x

]
e
≈ TE−TP

δxe

[
∂C
∂x

]
e
≈ CE−CP

δxe
[T ]e ≈

TE+TP

2[
∂T
∂x

]
w
≈ TP−TW

δxw

[
∂C
∂x

]
w
≈ CP−CW

δxw
[T ]w ≈ TW+TP

2

Boundary Conditions:

For this T-cell PDE we assume no-flux boundary conditions along all sides of the domain (see Equation 13)

we can derive alternative Finite Volume Equations (adapted from Equation 21) accordingly for each boundary

node. See Appendix B for full set of boundary Finite Volume Equations.

4.2.3 Damaged Myelin PDE

Given the similarity of the damaged myelin PDE to the chemokine PDE the spatial discretisation follows the

same process; the full derivation of the Finite Volume Equations can be found in Appendix C. The resulting

general Finite Volume Equation is as follows:

0 =
dMDP (t)

dt
+

Dm

∆xP

(
MDP −MDW

δxw
− MDE −MDP

δxe

)
+

Dm

∆yP

(
MDP −MDS

δys

− MDN −MDP

δyn

)
− vMPMDP − δMDPTP

(23)
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4.3 Temporal Discretisation

Thus, as we have completed all spatial discretisation for the system, we can now discretise our system in time

utilising the Theta method. In order to do this we can first integrate our FVEs (Equations 21, 21 and 23) and

our PDE for healthy myelin (Equation 7) from t = tn to t = tn+1 and approximate the resulting integrals using

the weighted θ approximation, defined as follows:∫ tn+1

tn

f(t)dt ≈ δt[(1− θ)f(tn) + θf(tn+1)] (24)

Starting with the T-cell FVE, we can integrate the Finite Volume Equation 21 from t = tn to t = tn+1, which

gives:

0 =

∫ tn+1

tn

dTP (t)

dt
dt+

∫ tn+1

tn

1

∆xP
(Qe −Qw)dt+

∫ tn+1

tn

1

∆yP
(Qn −Qs)dt+

∫ tn+1

tn

δTTP dt

Evaluating the time derivative term:∫ tn+1

tn

dTP (t)

dt
dt = [TP (t)]

tn+1

tn = T
(n+1)
P − T

(n)
P

Approximating remaining terms using the weighted theta approximation (24) gives:∫ tn+1

tn

1

∆xP
(Qe −Qw)dt ≈

δt

∆xP
[(1− θT )(Q

(n)
e −Q(n)

w ) + θT (Q
(n+1)
e −Q(n+1)

w )]

∫ tn+1

tn

1

∆yP
(Qn −Qs)dt ≈

δt

∆yP
[(1− θT )(Q

(n)
n −Q(n)

s ) + θT (Q
(n+1)
n −Q(n+1)

s )]∫ tn+1

tn

δTTP dt ≈ δtδT [(1− θT )T
(n)
P + θTT

(n+1)
P ]

Finally, implementing the Backward Euler Method by taking θT = 1 and substituting these back into our FVEs

we obtain:

T-cell Discretisation:

0 = T
(n+1)
P − T

(n)
P + δt

[
1

∆xP

(
Q(n+1)

e −Q(n+1)
w

)
+

1

∆yP

(
Q(n+1)

n −Q(n+1)
s

)
+ δTT

(n+1)
P

]
(25)

Repeating this method for each of the other PDEs, gives the follow results:

Chemokine Discretisation:

0 = C
(n+1)
P − C

(n)
P + δt

[
1

∆xP

(
J (n+1)
e − J (n+1)

w

)
+

1

∆yP

(
J (n+1)
n − J (n+1)

s

)
+ δCC

(n+1)
P − sMD

(n+1)
P

]
(26)

Damaged Myelin Discretisation:

0 = MD
(n+1)
P −MD

(n)
P + δt

[
1

∆xP

(
W (n+1)

e −W (n+1)
w

)
+

1

∆yP

(
W (n+1)

n −W (n+1)
s

)
−vM

(n+1)
P MD

(n+1)
P − δMD

(n+1)
P T

(n+1)
P

] (27)

Healthy Myelin Discretisation:

0 = M
(n+1)
P −M

(n)
P − δt

[
rM

(n+1)
P (1− (M

(n+1)
P +MD

(n+1)
P ))− vM

(n+1)
P MD

(n+1)
P

]
(28)
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5 Computational Implementation

The fully discretised FVM equations (Equations 25 - 28) could then be solved on MATLAB by iterating through

discrete timesteps. Initially, a newton solver code was written to solve the system but was later replaced

with an inbuilt MATLAB function ‘fsolve’ in order to improve efficiency. As the system was not completely

nondimensionalised and no parameter estimation had been conducted, arbitrary stand-in parameter values were

used for simulations. Running simulations for 1500 timesteps, using a 50× 50 mesh, took approximately 35 to

40 minutes and outputted a solution vector of size 10, 000×1500. The individual solution vectors for each of the

components could then be extracted from the full solution vector and visualised using MATLAB’s inbuilt ‘surf ’

function. Various simulations were run using different initial profiles for each of the components and different

boundary flux conditions. The simulations deemed most realistic used the following initial conditions: initially,

small patches of damaged myelin and full healthy myelin everywhere else, and no T-cells or chemokine present

in the domain. T-cells were sources entirely from a constant flux around the entire domain and chemokine was

sourced entirely from secretion from lesions. Furthermore, a mesh size of 50× 50 was chosen for simulations as

it produced a high definition output visualisation, although with a substantial runtime trade-off (see Figure 3).

(a) 20× 20 Mesh (5.74 seconds) (b) 50× 50 Mesh (116.35 seconds)

Figure 3: Efficiency and Fidelity Comparison with Change in Mesh Size

6 Findings

The main aspect of interest was the potential for different patterns and steady-state profiles emerging when

testing different initial lesion profiles. Three different initial profiles we investigated and the simulation results

are exhibited in Appendices D-F. The baseline simulation (see Appendix D) began with an initial lesion profile

of a single small patch of damaged myelin in the centre of the domain. The first alternative simulation (see

12



Appendix E) began with two lesions, one smaller and one larger. The second alternative simulation (see Ap-

pendix F) began with one larger lesion in the centre surrounded evenly by four smaller lesions. The key finding

from these simulations was that, regardless of the initial lesion profile, all simulations converged to the same

steady-state profile of full myelin regeneration. This indicated that although simulations exhibited expected

results, changes would have to be made in order to improve the realistic nature of the model and to truly capture

the behaviour of MS lesions, as full myelin regeneration would never be completely successful in MS patients.

In theory, not only would the T-cells be unable to regenerate the healthy myelin completely but they would

tend to cause further damage and lesion growth.

In all of the simulations we can observe the expected dynamics of the model. Up until 150 timesteps we can

see the initial lesion growing slowly and once the T-cells from the boundary chemotax towards the chemokine

we begin to see the lesion eroding (around 250 timesteps). As the chemokine gradient is highest towards the

centre of the lesion this is the location that begin to erode first, and once about 550 timesteps have passed the

remnants of the lesion are barely visible. After the lesion is destroyed no more chemokine is secreted into the

domain and it then diffuses and decays slowly. Similarly with the T-cells, once the lesion is destroyed they will

still continue to travel into the domain, but over time will diffuse to a homogeneous steady-state.

Another metric we wanted to observe was the change in total volumes of each of the components over time,

obtained by integrating over the domain. Figure 4 exhibits each of the components integrated across the domain

over time, for 10 various parameter changes. Firstly, examining Figure 4a, we can see that all simulation garner

the same result except for the simulation that substantially increased the T-cell decay rate (δT ), as expected.

Furthermore, in Figure 4b, all simulations exhibit the same general pattern for chemokine volume over time; the

volume initially exhibits a rapid increase as the lesion grows and once the lesion is destroyed, a gradual decrease

is exhibited as the chemokine decays. We can see the simulation that increased the chemokine decay rate (δC)

exhibits a steeper decrease after lesion elimination, as expected. We can further observe the simulation that

significantly increases the diffusion constant of the damaged myelin (Dm), has a great impact on the speed of

lesion growth, and hence, chemokine secretion. Additionally, we can clearly observe in Figure 4c and 4d, the

lesion growth and subsequent myelin regeneration mirrored in both figures. Independent of parameter values,

we can again observe all simulations reaching the same steady-state of complete lesion elimination over time.

7 Conclusion

Overall, the objective to formulate a model that would capture the immune response triggered by Multiple

Sclerosis demyelination and subsequently solve this system was achieved. The system was simulated numerically

and visualised in MATLAB and outputted relevant and meaningful results that allowed us to gather important

insights. Although the simulations and model were a success and exhibited expected and reasonably realistic

preliminary results, there is much room for extension and improvement. A key objective for future studies of
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(a) T-cell Volume over Time (b) Chemokine Volume over Time

(c) Damaged Myelin Volume over Time (d) Healthy Myelin Volume over Time

Figure 4: Integrated Volumes over Time

this model would be to either parameterise or non-dimensionalise the system to garner more meaningful results.

A way in which the parameters could be estimated would involve further research into known cell behaviours

(eg. rates of decay) and potentially, to calibrate the model with MS patient MRI data. This would certainly go

a long way in improving the model to exhibit realistic results. Additionally, an evident limitation of the model

was the simplified T-cell model. This was clear as the model captured T-cells only healing damaged myelin

rather than mistakenly causing further damage to the myelin, as exhibited in MS patients. To capture this, a

possible extension would be to include two different T-cell PDEs into the model, one which heals lesions and

one which causes further demyelination. Another improvement to the T-cell model would be to make the flux of

T-cells into the domain dependent on total volume of damaged myelin present. Finally, as exhibited in real MS

patients, the model could further be adapted to capture the potential for random lesion generation in different

areas of the brain.
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Appendix A: Chemokine Boundary Conditions

See below full set of boundary Finite Volume Equations for the chemokine PDE (Equation 9).

North Boundary Nodes: [
∂C

∂y

]
n

= 0, ∴ Jn = 0

Finite Volume Equation:

0 =
dCP (t)

dt
+

1

∆xP
(Je − Jw)−

Js
∆yP

+ δCCP − sMDP

North-East Boundary Node: [
∂C

∂y

]
n

=

[
∂C

∂x

]
e

= 0, ∴ Jn = Je = 0

Finite Volume Equation:

0 =
dCP (t)

dt
− Jw

∆xP
− Js

∆yP
+ δCCP − sMDP

East Boundary Nodes: [
∂C

∂x

]
e

= 0, ∴ Je = 0

Finite Volume Equation:

0 =
dCP (t)

dt
− Jw

∆xP
+

1

∆yP
(Jn − Js) + δCCP − sMDP

South-East Boundary Node: [
∂C

∂y

]
s

=

[
∂C

∂x

]
e

= 0, ∴ Js = Je = 0

Finite Volume Equation:

0 =
dCP (t)

dt
− Jw

∆xP
+

Jn
∆yP

+ δCCP − sMDP

South Boundary Nodes: [
∂C

∂y

]
s

= 0, ∴ Js = 0

Finite Volume Equation:

0 =
dCP (t)

dt
+

1

∆xP
(Je − Jw) +

Jn
∆yP

+ δCCP − sMDP

South-West Boundary Node: [
∂C

∂y

]
s

=

[
∂C

∂x

]
w

= 0, ∴ Js = Jw = 0

Finite Volume Equation:

0 =
dCP (t)

dt
+

Je
∆xP

+
Jn
∆yP

+ δCCP − sMDP
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West Boundary Nodes: [
∂C

∂x

]
w

= 0, ∴ Jw = 0

Finite Volume Equation:

0 =
dCP (t)

dt
+

Je
∆xP

+
1

∆yP
(Jn − Js) + δCCP − sMDP

North-West Boundary Node: [
∂C

∂y

]
n

=

[
∂C

∂x

]
w

= 0, ∴ Jn = Jw = 0

Finite Volume Equation:

0 =
dCP (t)

dt
+

Je
∆xP

− Js
∆yP

+ δCCP − sMDP

Appendix B: T-cell Boundary Conditions

See below full set of boundary Finite Volume Equations for the T-cell PDE (Equation 10).

North Boundary Nodes: [
∂C

∂y

]
n

=

[
∂T

∂y

]
n

= 0, ∴ Qn = 0

Finite Volume Equation:

0 =
dTP (t)

dt
+

1

∆xP
(Qe −Qw)−

Qs

∆yP
+ δTTP

North-East Boundary Node:[
∂C

∂y

]
n

=

[
∂C

∂x

]
e

=

[
∂T

∂y

]
n

=

[
∂T

∂x

]
e

= 0, ∴ Qn = Qe = 0

Finite Volume Equation:

0 =
dTP (t)

dt
− Qw

∆xP
− Qs

∆yP
+ δTTP

East Boundary Nodes: [
∂C

∂x

]
e

=

[
∂T

∂x

]
e

= 0, ∴ Qe = 0

Finite Volume Equation:

0 =
dTP (t)

dt
− Qw

∆xP
+

1

∆yP
(Qn −Qs) + δTTP

South-East Boundary Node:[
∂C

∂y

]
s

=

[
∂C

∂x

]
e

=

[
∂T

∂y

]
s

=

[
∂T

∂x

]
e

= 0, ∴ Qs = Qe = 0

Finite Volume Equation:

0 =
dTP (t)

dt
− Qw

∆xP
+

Qn

∆yP
+ δTTP
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South Boundary Nodes: [
∂C

∂y

]
s

=

[
∂T

∂y

]
s

= 0, ∴ Qs = 0

Finite Volume Equation:

0 =
dTP (t)

dt
+

1

∆xP
(Qe −Qw) +

Qn

∆yP
+ δTTP

South-West Boundary Node:[
∂C

∂y

]
s

=

[
∂C

∂x

]
w

=

[
∂T

∂y

]
s

=

[
∂T

∂x

]
w

= 0, ∴ Qs = Qw = 0

Finite Volume Equation:

0 =
dTP (t)

dt
+

Qe

∆xP
+

Qn

∆yP
+ δTTP

West Boundary Nodes: [
∂C

∂x

]
w

=

[
∂T

∂x

]
w

= 0, ∴ Qw = 0

Finite Volume Equation:

0 =
dTP (t)

dt
+

Qe

∆xP
+

1

∆yP
(Qn −Qs) + δTTP

North-West Boundary Node:[
∂C

∂y

]
n

=

[
∂C

∂x

]
w

=

[
∂T

∂y

]
n

=

[
∂T

∂x

]
w

= 0, ∴ Qn = Qw = 0

Finite Volume Equation:

0 =
dTP (t)

dt
+

Qe

∆xP
− Qs

∆yP
+ δTTP

Appendix C: Full Spatial Discretisation of Damaged Myelin PDE

Following the same derivation method of the FVE used in section 4.2.1, we take Equation 8 and integrate over

the control volume, such that:

∂MD(x, t)

∂t
= DM∇2MD + vMMD − δMDT

0 =

∫ ∫
Vp

∂MD(x, t)

∂t
dV +

∫ ∫
Vp

∇ ·W dV − v

∫ ∫
Vp

MMD dV + δ

∫ ∫
Vp

MDT dV (29)

Where,

W = −DM∇MD(x, t) (30)

Using the relevant control volume averaged values of MD, M , T and ∂MD

∂t over Vp, this can be simplified:

0 =
dM̄DP (t)

dt
+

1

∆xP∆yP

∫ ∫
Vp

∇ ·W dV − vM̄P M̄DP − δM̄DP T̄P

Again using Green’s Theorem to evaluate the second double integral, we arrive at the following approximation:∫ ∫
Vp

∇ ·W dV ≈ ∆yP (We −Ww) + ∆xP (Wn −Ws)
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Thus,

0 =
dM̄DP (t)

dt
+

1

∆xP
(We −Ww) +

1

∆yP
(Wn −Ws)− vM̄P M̄DP − δM̄DP T̄P (31)

Using Equation 30, a standard forward difference approximation for the partial derivatives and an average

approximation of our MD terms, we can now evaluate our W terms.

We = −Dm

[
∂MD

∂x

]
e

≈ −Dm

(
MDE −MDP

δxe

)

Ww = −Dm

[
∂MD

∂x

]
w

≈ −Dm

(
MDP −MDW

δxw

)
Wn = −Dm

[
∂MD

∂y

]
n

≈ −Dm

(
MDN −MDP

δyn

)
Ws = −Dm

[
∂MD

∂y

]
s

≈ −Dm

(
MDP −MDS

δys

)
Where MDP is the current concentration of damaged myelin at our particular node, MDE is the concentration

at the node to the right of our particular node, MDW is the concentration at the node to the left, MDN is

the concentration at the node above and MDS is the concentration at the node below (see Figure 2 for full

visualisation of nodal design).

Hence, substituting our W values into Equation 31 and letting MDP ≈ M̄DP , MP ≈ M̄P and TP ≈ T̄P

we can derive our full Finite Volume Equation:

0 =
dMDP (t)

dt
+

Dm

∆xP

(
MDP −MDW

δxw
− MDE −MDP

δxe

)
+

Dm

∆yP

(
MDP −MDS

δys
− MDN −MDP

δyn

)
−vMPMDP−δMDPTP

Boundary Conditions:

For this damaged myelin PDE we assume no-flux boundary conditions along all sides of the domain (see Equa-

tion 12) we can derive alternative Finite Volume Equations (adapted from Equation 23) accordingly for each

boundary node.

See below full set of boundary Finite Volume Equations for the damaged myelin PDE:

North Boundary Nodes: [
∂MD

∂y

]
n

= 0, ∴ Wn = 0

Finite Volume Equation:

0 =
dMDP (t)

dt
+

1

∆xP
(We −Ww)−

Ws

∆yP
− vMPMDP − δMDPTP

North-East Boundary Node:[
∂MD

∂y

]
n

=

[
∂MD

∂x

]
e

= 0, ∴ Wn = We = 0
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Finite Volume Equation:

0 =
dMDP (t)

dt
− Ww

∆xP
− Ws

∆yP
− vMPMDP − δMDPTP

East Boundary Nodes: [
∂MD

∂x

]
e

= 0, ∴ We = 0

Finite Volume Equation:

0 =
dMDP (t)

dt
− Ww

∆xP
+

1

∆yP
(Wn −Ws)− vMPMDP − δMDPTP

South-East Boundary Node:[
∂MD

∂y

]
s

=

[
∂MD

∂x

]
e

= 0, ∴ Ws = We = 0

Finite Volume Equation:

0 =
dMDP (t)

dt
− Ww

∆xP
+

Wn

∆yP
− vMPMDP − δMDPTP

South Boundary Nodes: [
∂MD

∂y

]
s

= 0, ∴ Ws = 0

Finite Volume Equation:

0 =
dMDP (t)

dt
+

1

∆xP
(We −Ww) +

Wn

∆yP
− vMPMDP − δMDPTP

South-West Boundary Node:[
∂MD

∂y

]
s

=

[
∂MD

∂x

]
w

= 0, ∴ Ws = Ww = 0

Finite Volume Equation:

0 =
dMDP (t)

dt
+

We

∆xP
+

Wn

∆yP
− vMPMDP − δMDPTP

West Boundary Nodes: [
∂MD

∂x

]
w

= 0, ∴ Ww = 0

Finite Volume Equation:

0 =
dMDP (t)

dt
+

We

∆xP
+

1

∆yP
(Wn −Ws)− vMPMDP − δMDPTP

North-West Boundary Node:[
∂MD

∂y

]
n

=

[
∂MD

∂x

]
w

= 0, ∴ Wn = Ww = 0

Finite Volume Equation:

0 =
dMDP (t)

dt
+

We

∆xP
− Ws

∆yP
− vMPMDP − δMDPTP
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Appendix D: Baseline Simulation Visualisation

Figure 5: Baseline Simulation Results Visualised over Time
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Appendix E: First Alternative Initial Profile Simulation Visualisation

Figure 6: First Alternative Simulation Results Visualised over Time
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Appendix F: Second Alternative Initial Profile Simulation Visualisa-

tion

Figure 7: Second Alternative Simulation Results Visualised over Time
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