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Abstract

In this paper, we aim to compute the SL2(C) and PSL2(C) character varieties of a certain family of

once-punctured torus bundles. This family of 3-manifolds is defined by a family of automorphisms φn of

π1S, where S denotes the once-punctured torus. We approach this problem via computing the topology of

a fixed point set XφnS since there is a generically 2:1 map between the SL2(C) characters of the bundle

and the points in the fixed point set if we only consider irreducible characters in S. We study the defining

equations of XφnS and compute the genus for odd positive n. This enables us to gain the genera of the

PSL2(C) character varieties of the 3-manifolds.

1 Introduction

The SL2(C) representation variety of a finitely-generated group Γ, denoted by R(Γ), is the set of representations

from Γ into SL2(C). All characters of these representations form the SL2(C) character variety of Γ, denoted by

X(Γ). Both sets admit the structure of an affine algebraic set.

There are a number of connections found between the topology of 3-manifolds and the SL2(C)-character

varieties of their fundamental groups (Culler and Shalen, 1983; Boyer and Zhang, 1998). In this paper, we study

an infinite family of once-punctured torus bundles Mn.

Let S denote the once-punctured torus and Mφ be an once-punctured torus bundle defined by the home-

omorphism φ from S to itself. In this paper, in order to study the topology of X(π1Mφ), we consider the

restriction map

r : X(π1Mφ)→ X(π1S)

induced by the inclusion map S →Mφ.

A previous result (Horowitz, 1975) shows that we can identify X(π1S) with C3. For any point (x, y, z) ∈ C,

there exists an SL2(C)-representation ρ of π1S such that x = tr(ρ(a)), y = tr(ρ(b)), z = tr(ρ(ab)). We can

show that the image of r is a subset of the fixed point set Xφ(S) of the polynomial automorphism φ̄ defined by

φ̄(Xρ) = Xρφ. Restricting to irreducible characters in X(π1S), the map r : X(π1Mφ) → Xφ(S) is a 2:1 cover

(with possible branch points).

In this paper, we compute the genera of the fixed point set XφnS for an infinite family of monodromies φn

for odd n. We prove the following theorem.

Theorem 6.1. When n is a positive odd integer, the fixed point set XφnS has one component and its genus is

bn2 c.

To extend this result further, we can compute the PSL2(C)-character varieties of the infinite family of

once-punctured torus bundles with monodromies φn.

Theorem 7.1. For every positive odd integer n, the PSL2(C)-character variety X(Mn) of Mn is birational

equivalent to XφnS induced by the fixed point set XφnS. Its genus is zero for all positive odd n.
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1.1 Organisation

Section 2 gives the definition of once-punctured torus bundles and introduces our infinite family {Mn}n>0 and

their fundamental groups. We introduce the concepts of SL2(C) character varieties in section 3. In section 4,

the restriction map r and the fixed point set XφS are introduced. Section 5 introduces the Newton polygon,

which is used in the proof Theorem 6.1.

In section 6, we compute the defining equations for the fixed point set induced by our family of 3-manifolds

Mn. We then compute the genus and the number of components of the fixed point set for each n. Section 7

further extends the result in section 6 to PSL2(C)-character varieties of Mn.

1.2 Statement of authorship

The concepts about once-punctured torus bundle and character variety in section 2 and 3 source from many

papers, mainly from (Boyer, Luft, and Zhang, 2002) and (Culler and Shalen, 1983).

The idea of the restriction map in section 4 comes from my supervisor. Under his direction, I figure out the

result and proof in section 6 and 7.

2 Once-punctured torus bundle

Let S be an once-punctured torus in Figure 1. Its fundamental group is a free group π1S = 〈a, b〉 generated by

the loops a and b as shown in Figure 1.

a

b

Figure 1: once-punctured torus S

We define the once-punctured torus bundle with corresponding framing φ as follows.

Definition 2.1. Let Φ ∈ SL2(Z) be a monodromy of S with the corresponding framing φ. Define the once-

punctured torus bundles with monodromy Φ, denoted by Mφ, as

Mφ := S × [0, 1]�((x, 0), (φ(x), 1)
)

The fundamental group of Mφ admits the presentation

π1Mφ = 〈t, a, b|t−1at = φ(a), t−1bt = φ(b)〉

where a,b are the generators of π1S.
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In previous results, Baker and Petersen studied the SL2(C) and PSL2(C) character varieties of the infinite

family of once-punctured torus bundles with monodromis ABn+2. Here A and B are the right-handed Dehn-

twists in terms of curve a and curve b respectively. And so A and B correspond to the following automorphisms

α and β respectively.

α =

a→ a

b→ ba β =

a→ ab−1

b→ b

Baker and Petersen found a birational isomorphism between the SL2(C)-character varieties of the 3-manifolds

and a family of hyperelliptic curves to compute the genera of the SL2(C)-character varieties. In this paper,

we approach this problem via the restriction map and the fixed point set mentioned in the introduction. Our

preliminary result shows that the corresponding fixed point sets for this family of 3-manifolds have genera 0 for

all n, since the aforementioned restriction map r has branching points. Hence, we further study the family of

monodromies Φn = ABn+2A, which gives us nonzero genus for the fixed point sets. This will be elaborated in

section 6.

For the rest of this paper, we denote Mn as the infinite family of once-punctured torus bundles corresponding

to the monodromy family Φn = ABn+2A. The corresponding family of framings φn admit the following form.

φn =

a→ a(a−1b−1)n+2

b→ ba2(a−1b−1)n+2

Then

π1Mφ = 〈t, a, b|t−1at = a(a−1b−1)n+2, t−1bt = ba2(a−1b−1)n+2〉

3 Character Variety

In this section, we introduce the SL2(C) and PSL2(C) character varieties of finitely-generated group. We then

adapt these concepts to the fundamental groups we introduced in section 1 and give some facts about their

character varieties.

3.1 SL2(C) character variety

Given a finitely-generated group Γ = 〈γ1, ..., γn|rj〉. We define the SL2(C) representation variety of Γ as the

following.

Definition 3.1. An SL2(C) representation of Γ is a homomorphism ρ : Γ →SL2(C). The set of all SL2(C)

representation of Γ, denoted by R(Γ), is the SL2(C) representation variety of Γ.
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For a representation ρ ∈ R(Γ), we define the character Xρ of ρ as a function Iρ : Γ → C defined by

Iρ(p) = tr(ρ(p))(Culler and Shalen, 1983).

Definition 3.2. The SL2(C) character variety of Γ is the set of characters of all representations in R(Γ). We

use X(Γ) to denote the SL2(C) character variety of Γ.

We say that a character Xρ of Γ is an irreducible character if ρ is an irreducible representation of Γ. We

denote the set of all reducible and irreducible characters of Γ as Xred(Γ) and Xirr(Γ) respectively.

Since Γ has n generators, we can identify R(Γ) with a subset of SL2(C)n ⊂ C4n by identifying a represen-

tation ρ with the point (ρ(γ1), ρ(γ2), ..., ρ(γn) ∈ C4n)(Culler and Shalen, 1983).

Similarly, according to (González-Acuña and Montesinos-Amilibia, 1993), the following lemma enables X(Γ)

to admit the structure of an affine algebraic set.

Lemma 3.3. If we define the words {γiγj |1 ≤ i < j ≤ n}∪{γiγjγk|1 ≤ i < j < k ≤ n} as γn+1, ..., γm, a charac-

ter Xρ of Γ is uniquely determined by the words {γ1, ..., γm} by identifying Xρ with the point (trρ(γ1), ..., trρ(γm)) ∈

Cm.

This enables us to treat X(Γ) as an affine algebraic set and study its topology in the affine coordinate.

3.2 SL2(C) character variety of free group of rank two

Throughout this paper, if we have a manifold M , we denote R(π1M) by R(M) and denote X(π1M) by X(M).

Recall from section 2, the fundamental group of once-punctured torus S is a free group of rank two. In

symbols, π1S = 〈a,b〉. From Lemma 3.1, we can identify a character Xρ ∈ X(S) as a point (x, y, z) ∈ C3

by letting x = trρ(a), y = trρ(b), z = trρ(ab). According to (Baumslag, 1993), the map Xirr(S) → C3 is

surjective. So we have the following theorem.

Theorem 3.4. Xirr(S) = C3.

3.3 PSL2(C) character variety

We can also define the PSL2(C) representation variety and PSL2(C) character variety of a finitely-generated

group Γ. Let R(Γ) be the set of all representations from Γ to PSL2(C). The representation variety R(Γ) has

an algebro-geometric quotient X(Γ), called the PSL2(C) character variety of Γ (Boyer and Zhang, 1998).

4 The restriction map and the fixed point set

Recall from section 2, the fundamental group of an once-punctured torus bundle Mφ with framing φ is

π1Mφ = 〈t, a, b|t−1at = φ(a), t−1bt = φ(b)〉
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From section 3.1, if we compute the topology of X(Mφ) directly, we are computing a subset of C7. Hence

we consider the restriction map

r : X(Mφ)→ X(S)

X → X|S

and try to gain information from the image of this map. If we choose a representation ρ ∈ R(Mφ), then ρ needs

to satisfy

ρ(t)−1ρ(p)ρ(t) = ρ(φ(p)),∀p ∈ π1S

Take the traces on both sides, we get

tr(ρ(p)) = tr(ρ(φ∗(p)),∀p ∈ π1S

Combined with section 3.2, we have

Im(r) ⊂ {(trρ(a), trρ(b), trρ(ab))|trρ(a) = trρ(φ(a)),

trρ(b) = trρ(φ(b)),

tr(ρ(ab)) = trρ(φ(ab))}

We can rewrite this set as the fixed point set Xφ(S) of a polynomial automorphism φ̄ induced by φ. From

the definition of Xφ(S), it is an affine variety (possibly reducible) in C3.

Im(r) ⊂ {(trρ(a), trρ(b), trρ(ab))|trρ(a) = trρ(φ∗(a)),

trρ(b) = trρ(φ∗(b)),

tr(ρ(ab)) = trρ(φ∗(ab))}

= {(x, y, z)|(x, y, z) = φ̄(x, y, z)} = XφS

We then prove that the restriction map is a 2-to-1 (possible branched) cover and its image Imr = Xφ(S). Here

we use the following extension lemma which extends from characters of S in Xφ(S) to characters of Mφ.

Lemma 4.1. For any irreducible character Xρ of S such that Xρ ∈ Xφ(S), there exists a matrix T = ρ(t) such

that ρ(t)−1ρ(p)ρ(t) = ρ(φ(p)),∀p ∈ π1S. Moreover, T is unique up to sign.

Proof. Let ρ ∈ R(S) be an irreducible SL2(C) representation with Xρ ∈ XφS. Up to conjugation, we can

assume that

ρ(a) =

s 0

1 s−1


ρ(b) =

t u

0 t−1


where u 6= 0. Since Xρ ∈ XφS, we assume that

5



ρ(φ(a)) =

s1 s2

s3 s+ s−1 − s1


ρ(φ(b)) =

t1 t2

t3 t+ t−1 − t1


If there is an SL2(C) representation ρ′ of π1Mφ extended from ρ, then ρ(t) = T need to satisfy

Tρ(a)T−1 = ρ(φ(a))

and

Tρ(b)T−1 = ρ(φ(b))

If we set T =

t1 t2

t3 t4

, then by direction calculation we obtain a linear homogeneous system of


t1

t2

t3

t4

 in terms

of si, ti, s, t. We can verify that this system has rank 3 and combine with the condition t1t4 − t3t2 = 1. Such T

exists and is unique up to sign.

According to Lemma 4.1 and Lemma 3.3, each irreducible character Xρ ∈ Xφ(S) extends to two distinct

characters in X(Mφ) unless tr(ρ(t)) = tr(ρ(ta)) = tr(ρ(tb)) = tr(ρ(tab)) = 0. This means that the restriction

map r is generically two-to-one, though it has branch points if at least one of tr(ρ(t)), tr(ρ(ta)), tr(ρ(tb)),

tr(ρ(tab)) is nonzero.

5 Newton Polygon of two variables

In this section, we introduce some facts about the Newton Polygon, which are used in the proof of our main

result.

Definition 5.1. Given a polynomial f =
∑
i,j ai,jx

iyj of two variables x and y where ai,j 6= 0, we define the

Newton Polygon of f to be the convex hull of all points (i, j) in the plane.

According to (Khovanskii, 1978), there is a nice connection between the Newton polygon of polynomial

f(x, y) and the genus of the variety V (f) generated by f .

Lemma 5.2. Suppose we have an irreducible polynomial f ∈ C[x, y]. The genus of the variety V (f) is equal to

the number of integer points in the interior of the Newton polygon of f .
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6 Topology of the fixed point set

In section 2, we define the infinite family of once-punctured torus bundles Mn with monodromies Φn = ABn+2A.

The corresponding automorphisms φn have the following explicit formula.

φn =

a→ a(a−1b−1)n+2

b→ ba2(a−1b−1)n+2

(6.1)

In section 4, we connect the SL2(C) character variety of an once-punctured torus bundle Mφ with the fixed

point set Xφ(S) via a branching 2-to-1 cover.

In this section, we compute the topology of the fixed point sets corresponding to this infinite family of

3-manifolds Mn.

Our main result is summarised in the following theorem.

Theorem 6.1. When n is a positive odd integer, the fixed point set XφnS has one component and its genus is

bn2 c.

6.1 Computation of defining equations for XφnS

In this subsection, we compute the defining equations for the subvariety XφnS. We use the following trace

identities in the calculation.

Lemma 6.2 (Trace Identities). Assume A,B,C are elements in SL2(C), then the following identities hold

trA = trA−1 (6.2)

trBA = trAB (6.3)

trBAB−1 = trA (6.4)

trA trB = trAB + trAB−1 (6.5)

Proof. These trace identities can be proved by direct calculation.

If we substitute the automorphism φn into the definition of XφnS, XφnS is the variety of the ideal In ⊂

C[x, y, z] generated by the following equations

trρ(a) = trρ(a(a−1b−1)n+2) (6.6)

trρ(b) = trρ(ba2(a−1b−1)n+2) (6.7)

trρ(ab) = trρ(a(a−1b−1)n+2ba2(a−1b−1)n+2) (6.8)

where x = trρ(a), y = trρ(b), z = trρ(ab).

The first equation can be directly simplified as

trρ(a) = trρ(b−1(a−1b−1)n+1)
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Using trace identity (6.4), the second equation (6.7) is

trρ(b) = trρ(ba2(a−1b−1)n+2)

= trρ((ba) b−1(a−1b−1)n (a−1b−1))

= trρ(b−1(a−1b−1)n)

Using the first two equations and the trace identity (6.5) by letting A = ρ(a(a−1b−1)n+2) and B =

ρ(ba2(a−1b−1)n+2), the third equation (6.8) is

trρ(ab) = trρ(a(a−1b−1)n+2ba2(a−1b−1)n+2)

= trρ(a(a−1b−1)n+2) trρ(ba2(a−1b−1)n+2)− trρ(a(a−1b−1)n+2(ba)n+2a−2b−1)

= trρ(a) trρ(b)− trρ(a−1b−1)

= trρ(a) trρ(b)− trρ(ab)

We define a sequence of polynomials in C[x, y, z] to help us explore the defining equations.

Definition 6.3. Define Ph(x, y, z) = trρ(b−1(a−1b−1)h), h ∈ Z.

Proposition 6.4. According to the above calculation, the fixed point set XφnS is the affine variety V (In) where

In is the ideal In = 〈Pn+1 − x, Pn − y, xy − 2z〉.

6.2 The recursive polynomials

We collect facts about the sequence of polynomials Pn in this section.

Using the trace identity (6.5), we obtain a recurrence relation and the initial conditions for Pn in the following

lemma.

Lemma 6.5. {Pn}n≥0 follows the linear recurrence relation

Pn(x, y, z) = zPn−1(x, y, z)− Pn−2(x, y, z)

with P0(x, y, z) = y and P1(x, y, z) = yz − x.

Proof. Using trace identity (6.5),

Pn(x, y, z) = trρ(b−1(a−1b−1)n)

= trρ(b−1(a−1b−1)n−1)trρ(a−1b−1)− trρ(b−1(a−1b−1)n−2)

= zPn−1(x, y, z)− Pn−2(x, y, z)

The initial conditions can be computed using the same trace identity.

P0 = trρ(b−1) = y
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P1(x, y, z) = trρ(b−1a−1b−1)

= trρ(b−1)trρ(a−1b−1)− trρ(b−1ba)

= trρ(b)trρ(ab)− trρ(a)

= yz − x

Observing the recurrence relation, we find that Pn can be written as a linear combination of x and y.

Lemma 6.6.

Pn(x, y, z) = fn(z)y − fn−1(z)x

where fn(z) is a polynomial depending on z only. fn(z) is defined by the same recurrence relation fn(z) =

zfn−1(z)− fn−2(z) and initial conditions f0(z) = 1, f1(z) = z.

Proof. This can be easily proved by induction.

For an arbitrary fixed z, using the characteristic polynomial λ2−2zλ+1 = 0 of the linear recurrence relation,

we get the following explicit formula for fn.

Lemma 6.7.

fn(z) =


n+ 1, if z = 2

n(−1)n+1, if z = −2

1√
z2 − 4

((
z +
√
z2 − 4

2
)n+1 − (

z −
√
z2 − 4

2
)n+1), if z 6= ±2

We can also express fn(z) as a summation of monomials of some powers of z using the binomial theorem.

Lemma 6.8.
When n = 2k + 1, fn(z) =

∑k
m=0 pm,nz

2k−2m+1 where pm,n =
(−1)m

22k−2m+1

∑k
i=m

(
2k+2
2i+1

)(
i
m

)
When n = 2k, fn(z) =

∑k
m=0 qm,nz

2k−2m where qm,n =
(−1)m

22k−2m
∑k
i=m

(
2k+1
2i+1

)(
i
m

)
The explicit formula for pm,n and qm,n are hard to simplify but we can retrieve some facts which are useful

in our later proof.

Remark 6.9. Since the constant coefficient is the summation of a product of binomial coefficients, we can see

that pm,n 6= 0 and qm,n 6= 0 for all pairs {m,n} well-defined.

6.3 One simplified basis for In

In section 6.1, we compute the explicit defining equations generating the subvariety XφnS. To rigorously prove

Theorem 6.1, we use the techniques from computational algebraic geometry.

To simplifying the 3 defining equations in Proposition 5.4, we use the idea of Buchberger’s algorithm (Cox,

Little, and O’Shea, 2007) which is used to compute the Groebner basis of an ideal of a polynomial ring.

9



Definition 6.10. For the ideal In = 〈Pn+1 − x, Pn − y, xy − 2z〉, we denote Xn = Pn+1 − y, Xn−1 = Pn − y,

G = xy − 2z.

We can rewrite Xn as Xn = Pn+1 − P−1 and Xn−1 = Pn − P0 where P−1 is defined in Definition 6.3.

Then in the following lemma, we compute a sequence of polynomials recursively to summarise Xn and Xn−1

into one single polynomial.

Lemma 6.11. Define Xi+2 = zXi+1 − Xi for i > 0. When n = 2k + 1 is a positive odd integer, the ideal

In = 〈Xn, Xn−1, xy − 2z〉 = 〈Pk+1 − Pk, xy − 2z〉.

Proof. Using induction, we can prove that Xi = Pi+1−Pn−i−1 for 0 < i ≤ n. Since Xi+2 is a linear combination

of Xi+1 and Xi, 〈Xi+2, Xi+1〉 ⊆ 〈Xi+1, Xi〉. By definition, 〈Xi+1, Xi〉 ⊆ 〈Xi+2, Xi+1〉. Thus, 〈Xi+2, Xi+1〉 =

〈Xi+1, Xi〉

Hence when n = 2k + 1,

〈Xn, Xn−1〉 = 〈Xn−1, Xn−2〉

= ...

= 〈Xk, Xk−1〉

= 〈Pk+1 − Pk, Pk − Pk+1〉

= 〈Pk+1 − Pk〉

6.4 Proof of Theorem 6.1

By Lemma 6.11,

XφnS = V
(
〈Pk+1 − Pk, xy − 2z〉

)
, when n = 2k + 1, k ≥ 0

We prove Theorem 6.1 via constructing a birational isomorphism between XφnS and its restriction on (x, z)

coordinate. According to Lemma 6.6, we can express Pk+1 − Pk = 0 as

(fk+1(z)− fk(z))y − (fk(z)− fk−1(z))x = 0 (6.9)

When x 6= 0, we substitute y = 2z
x into Equation 6.9 and multiply x on both sides,

2(fk+1(z)− fk(z))z − (fk(z)− fk−1(z))x2 = 0 (6.10)

From Lemma 6.7, Equation (6.10) is of the following form,

gn(x, z) :=

k+2∑
i=1

piz
i +

k∑
i=0

qix
2zi = 0 (6.11)

where pi, qi are nonzero constant coefficients.

Remark 6.12. When x = 0, the only point in the variety XφnS is (0, 0, 0).
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Define the variety Un as the variety in C2 generated by the Equation (6.11). Then there are rational maps

between XφnS and Un,

r1 : XφnS 99K Un

(x, y, z)→ (x, z)

and

r2 : Un 99K XφnS

(x, z)→ (x,
2z

x
, z)

The varieties Un and XφnS are birational equivalent so we only need to compute the genus of Un.

To use Lemma 5.2, we only need to explore the irreducibility of gn(x, z) ∈ C[x, z] for every positive odd

integer n.

Lemma 6.13. gn(x, z) defined in Equation (6.11) is an irreducible polynomial in C[x, z] for every positive odd

integer n.

Proof. We prove the lemma by contradiction. Suppose gn(x, z) is reducible, then we can factorise it into

gn(x, z) = sn(x, z)tn(x, z) where tn, sn are non-constant polynomials in C[x, z].

Then the Newton polygon of gn(x, z) is the Minkowski sum of the Newton polygons of sn(x, z) and tn(x, z).

The Newton polygon of gn(x, z) is shown in Figure 2. If we travel through the boundary of the Newton polygon

and consider the vectors from each lattice point to the next lattice point, we obtain the boundary vector sequence

v(gn) = {(1,−2), (1, 0), ..., (1, 0), (−1, 1), (−1, 1), (−1, 0), ..., (−1, 0)}

where the numbers of (1, 0) and (−1, 0) in the sequence are k+ 1 and k respectively. Since the Newton polygon

of gn(x, z) is the Minkowski sum of the Newton polygons of sn(x, z) and tn(x, z), v(gn) can be partitioned into

two disjoint nonempty subsequences v(sn) and v(tn), each of which sums to zero.

Given (1,−2), (−1, 1) and (−1, 1) are the only three vectors with nonzero second components, they must be

in the same sequence. Without loss of generality, we assume that (1,−2) and (−2, 2) are in v(sn). Then v(sn)

is of the form {(1,−2), (1, 0), ..., (1, 0), (−1, 1), (−1, 1), (−1, 0), ..., (−1, 0)}, where there are m+1 of (1, 0) and m

of (−1, 0) in the sequence and 0 ≤ m ≤ k − 1, m ∈ Z. v(tn) is of the form {(1, 0), ..., (1, 0), (−1, 0), ..., (−1, 0)},

where there are k −m of (1, 0) and k −m of (−1, 0) in the sequence.

According to the boundary vector sequences of sn(x, z) and tn(x, z), we can write sn(x, z) = x2s
(1)
n (z)+s

(2)
n (z)

and tn(x, z) = tn(z) where s
(i)
n (z) and tn(z) are polynomial in C[z].

From Equation (6.10), gn(x, z) = 2(fk+1(z)− fk(z))z − (fk(z)− fk−1(z))x2. Hence2(fk+1(z)− fk(z))z = s
(2)
n (z)tn(z)

−(fk(z)− fk−1(z)) = s
(1)
n (z)tn(z)
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Since tn(z) is a non-constant polynomial in C[z], by the fundamental theorem of algebra, tn(z) = 0 has a root

α ∈ C. α is also the common roots of 2(fk+1(z)− fk(z))z = 0 and −(fk(z)− fk−1(z)) = 0.

From Lemma 6.8, both fk+1(z) − fk(z) and fk(z) − fk−1(z) have a nonzero constant term, which means

that α 6= 0. Then we have

fk+1(α)− fk(α) = 0 (6.12)

and

fk(α)− fk−1(α) = 0 (6.13)

According to Lemma 6.7, if α = ±2, we can easily check that the Equation (6.12) and (6.13) are not satisfied.

If α 6= ±2, then we can write Equation (6.12) as

1√
α2 − 4

((
α+
√
α2 − 4

2
)k+2 − (

α−
√
α2 − 4

2
)k+2)− 1√

α2 − 4
((
α+
√
α2 − 4

2
)k+1 − (

α−
√
α2 − 4

2
)k+1) = 0

After direct calculation, we have

(
α+
√
α2 − 4

2
)k+1(

α+
√
α2 − 4

2
− 1) = (

α−
√
α2 − 4

2
)k+1(

α−
√
α2 − 4

2
− 1)

Similarly, from Equation (6.13), we have

(
α+
√
α2 − 4

2
)k(

α+
√
α2 − 4

2
− 1) = (

α−
√
α2 − 4

2
)k(

α−
√
α2 − 4

2
− 1)

Dividing the first equation by the second one, we have
α+
√
α2 − 4

2
=
α−
√
α2 − 4

2
, which contradicts that

α 6= ±2.

Lemma 6.14. The genus of Un is k, where n = 2k + 1.

Proof. The Newton polygon of gn(x, z) defined in Equation (6.11) is shown in Figure 2. There are k interior

points in the Newton polygon, namely, (1,1),(2,1) until (k,1). By lemma 5.2, the genus of Un is k.

z

x

(1,0)

(0, 2)

(2, 0)

(1, 2)

(k, 0)

(k, 2)

(k+2,0)

Figure 2: Newton polygon of Equation 6.11

7 PSL2(C) character varieties

In this section, we aim to prove the following theorem.

Theorem 7.1. For every positive odd integer n, the PSL2(C)-character variety X(Mn) of Mn is birational

equivalent to XφnS induced by the fixed point set XφnS. Its genus is zero for all positive odd n.
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7.1 PSL2(C) character varieties for Mn

We consider the PSL2(C) character variety of the infinite family of once-punctured torus bundles Mn. In this

section, we denote X(π1Mn) as X(Mn) and denote X(π1S) as X(S).

Given a character Xρ ∈ X(Mn), an element α ∈ Hom(π1Mn, {±1}) acts on Xρ by αXρ(p) = α(p)Xρ(p) for

any p ∈ π1Mn. This is an action of Hom(π1Mn, {±1}) on X(Mn) and the quotient X(Mn)�Hom(π1Mn, {±1})
is identified with a subset of X(Mn)

Lemma 7.2. Take a homomorphism α ∈ Hom(π1Mn, {±1}). When n is odd, then either (α(a), α(b)) = (1, 1)

or (α(a), α(b)) = (−1,−1).

Proof. Recall the fundamental group of Mn is

π1Mφ = 〈t, a, b|t−1at = a(a−1b−1)n+2, t−1bt = ba2(a−1b−1)n+2〉

From the condition of the presentation, α(a)n+2α(b)n+2 = 1. Since n is odd, α(a)α(b) = 1.

Hence a representation ρ̄ ∈ R(Mn) has either 0 lift or 4 lifts to SL2(C) representations. Let X0(Mn) be the

subvariety of X(Mn) consisting of characters of all PSL2(C) representations lift to representations of SL2(C)

and its image is a subvariety X0(Mn) of X(Mn). The natural map X(Mn) → X0(Mn) is a 4-to-1, branched

cover.

7.2 Fixed point set for PSL2(C)

As stated in section 7.1, the PSL2(C)character variety X(Mn) ⊇ X(Mn)�Hom(π1Mn, {±1}) is determined by

the involution (ρ(a), ρ(b),±ρ(t))→ (−ρ(a),−ρ(b),±ρ(t)) for odd n.

If we also consider the restriction map in section 4

r : X(Mφ)→ XφnS

We can construct a fixed point set for PSL2(C) by identifying the involution (x, y, z)→ (−x,−y, z) in XφnS.

In section 6, we construct a birational isomorphism between XφnS with its restriction Un. We can construct

the corresponding PSL2(C) restriction Un under identifying the involution (x, z)→ (−x, z).

Recall the defining equation (Equation 6.11) for Un is

k+2∑
i=1

piz
i +

k∑
i=0

qix
2zi = 0

The corresponding defining equation for Un can be constructed by letting (X,Z) = (x2, z). Then

Un = {(X,Z)|
k+2∑
i=1

piZ
i +

k∑
i=0

qiXZ
i = 0}

Using Lemma 5.2, we can prove the genus of Un is 0. Hence the genus of XφnS is also 0.
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7.3 Proof of theorem 7.1

We can summarise the result from section 7.1, section 7.2 and section 4 in the Figure 3.

We can see that there is a 1-to-1 (possible branched) cover between Xφn(S) and X(Mn). Hence X(Mn) is

birational to Xφn(S), which means that its genus is 0.

X(Mn) Xφn(S)

X(Mn) Xφn(S)

2:1

4:1 2:1

1:1

Figure 3: The Commutative Diagram bewteen SL2(C) and PSL2(C)

8 Further directions

Since we have a generically 2:1 map

r : X(Mn)→ Xφn(S)

we may recover the topology of X(π1Mφn) from the topology of Xφn(S). One possible way is to count the

number of branching points in the map. Recall in Lemma 4.1, we extend a matrix T = ρ(t) for irreducible

character Xρ. A character Xρ is a branching point if and only if trρ(t) = 0, trρ(ta) = 0, trρ(tb) = 0 and

trρ(tab) = 0 hold simultaneously.

Another direction is to find examples for once-punctured torus bundles such that the genera of their PSL2(C)

character varieties are nonzero. Both the previous result from Baker and Petersen and our example have a genus

zero PSL2(C) character variety.
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