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1 Abstract

There is an intimate connection between the geometry of a graph and its associated Leavitt path algebra and

monoid. In this note we explore these connections by investigating order unit structures within the graded

monoid. We demonstrate a simple proof on the free finitely generated graded-projective modules of LK(E).

We go on to introduce several order unit equivalence criteria, showing how these criteria may capture further

information on the algebraic structure of the associated Leavitt path algebras. These all suggest that the

talented monoid with its associated grading may be a crucial tool in finding a complete invariant for these

algebras.

2 Introduction

When considering the classification of graphs we may study how the geometry of the graph corresponds to an

associated algebra and additionally contemplate whether there exists a complete invariant for the the classifica-

tion of these algebras. The so called Leavitt Algebra, LK(1, n) corresponding to an integer n over a field K, was

defined in the 1960’s by W.G. Leavitt, being the universal class of algebras that fail to have the Invariant Basis

Number property. The recent identification of a graph criterion for when the associated algebra is simple in 2005

[1] alongside the description of the non-stable K-theory of these algebras [3] by a natural monoid associated to

their graphs has flourished into the study of the so called Leavitt path algebras. In this paper we expand upon

recent work by R. Hazrat and H. Li [5] investigating the correspondence between the geometry of the graph

and the graded monoid of the associated Leavitt path algebra.

Let E be a row-finite directed graph with vertices E0 and edges E1. The talented monoid is defined as

the free abelian monoid over the vertices E0 subject to identifying a vertex with the sum of vertices it connects

to, and indexing the vertices with a Z-action keeping track of the transformations:

TE = 〈v(i), v ∈ E0, i ∈ Z | v(i) =
∑
v→u u(i+ 1)〉.

The action of n ∈ Z on v(i) is defined by v(i+ n) and denoted nv(i). In [5], Hazrat and Li note that there are

Z-module isomorphisms:

TE ∼= ME
∼= V(LF (E)) ∼= Vgr(LF (E))

v(i) 7→ vi 7→ [LF (E)vi] 7→ [(LF (E)v)(i)]

Where Vgr(LF (E)) is the monoid of graded finitely generated projective modules of the Leavitt path algebra

LF (E). The group completion of TE then retrieves the graded Grothendiek group Kgr
0 (LF (E)). The non-graded

version of this group has been of significant use in the classification of C∗-algebras and graph C∗-algebras that

may be considered the analytic counterpart to Leavitt path algebras. We find that the action of Z on TE

corresponds to the shift operations on graded modules over the Leavitt path algebra LF (E) which is naturally

Z graded.
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In [4] Hazrat identifies a criterion for the graded isomorphism of Leavitt Path Algebras:

There is a graded module isomorphism Lkn(λ1, ..., λk) ∼=gr L
k′

n (γ1, ..., γk′) if and only if
∑k
i=1 n

λi =
∑k′

i=1 n
γi .

For a finite directed graph E, λ ∈ Z, we denote by 1E(λ) the element
∑
u∈E0 u(λ) ∈ TE . We say that x is an

order unit if for any a ∈ TE we have a ≤
∑k
i=1 x(λi), where λi ∈ Z. It is clear to see that 1E is an order unit

and that we have φ(1E(λi)) = [L(E)λi].

Our aim is to identify order unit equivalence criteria within the talented monoid of associated graphs to

illuminate the connections between the geometry of a graph E, the associated TE monoid and the corresponding

algebraic structure of LF (E).

We define an order unit equivalence for when the corresponding LF (E) algebra has the graded non-

invariant basis number property as well as defining an additional two novel criteria under which to consider

order unit equivalence within TE . We begin to analyse graph geometries attempting to identify conditions under

which these criteria hold, including some incomplete proofs as demonstration of the techniques involved. We

go on to prove a property concerning the graded-projective L(E)-modules to conclude the note.

The additional TE structure and relations to LF (E) identified within this paper provide further evidence

that the talented monoid and its associated grading contain crucial information when considering a complete

invariant for these algebras. This is of import due to the graded version of the algebraic Hirchsberg-Phillips

conjecture. It was conjectured in [4], that the graded Grothendiek group Kgr
0 along with its ordering and

module structure is a complete invariant for the class of finite Leavitt path algebras:

Conjecture 1. Let E1 and E2 be finite graphs and F a field. Then the following are equivalent:

1. There is a Z-module isomorphism φ : TE1
→ TE2

, such that φ(
∑
v∈E0

1
v) =

∑
v∈E0

2
v;

2. There is an order preserving Z[x, x−1]-module isomorphism:

Kgr
0 (LF (E1))→ Kgr

0 (LF (E2)),

[LF (E1)] 7→ [LF (E2)].

3. There is a graded ring isomorphism ψ : LF (E1)→ LF (E2).

For a comprehensive treatment of Leavitt path algebras and the monoid ME the reader is referred to the

2017 monograph [2], for many important results concerning the talented monoid TE the reader is referred to

the Hazrat and Li’s 2020 work [5].

2.1 Statement of Authorship

The initial question of order unit equivalence was conceived by Prof. Roozbeh Hazrat. Anthony Warwick

identified the equivalence criteria and worked with Prof. Hazrat on expressing these criteria in notation. Back-

ground work and proof for the confluence lemma has been summarised by Anthony Warwick from the literature
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though in some cases where the notation is quite succinct it has remained unchanged. All examples have been

developed, solved and where applicable proved by Anthony Warwick.

3 Graph Monoids

Here we introduce some notation on directed graphs, the concepts of the monoids ME , TE and the monoid of

the covering graph ME , along with the confluence lemma that shall be extensively used in solving examples

and proofs.

3.1 Directed Graphs

A directed graph E = (E0, E1, r, s) consists of two sets E0, E1 and two functions r, s : E1 → E0. The elements

of E0 are called vertices and the elements of E1 edges. If s−1(v) is a finite set for every v ∈ E0 then the graph

is called row-finite. A path µ in a graph E is a sequence of edges µ = e1, e2, ..., en such that r(ei) = s(ei+1)

for i = 1, ..., n − 1. In this case, s(µ) = s(e1) is the source of µ, r(µ) = r(en) is the range of µ, and n = |µ| is

the length of µ. If there is a path from a vertex u to a vertex v we write u ≥ v. Let µ = e1e2...en ∈ Path(E).

If n = |µ| ≥ 1, and if v = s(µ) = r(µ), then µ is a closed path based at v. A closed path µ = e1e2...e2 such

that s(ej) 6= v for every j > 1 is called a closed simple path. If µ = e1e2...en is a closed path based at v and

s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle based at v. We say that e is an exit for µ if there exists

an i(1 ≤ i ≤ n) such that s(e) = s(ei) and e 6= ei. A graph is strongly connected if u ≥ v for all u, v ∈ E0. We

say the graph satisfies condition L if every cycle in E contains an exit. We say the graph satisfies condition K

if and only if for each v ∈ E0 which lies on a closed simple path there exist at least two distinct closed simple

paths α, β based at v.

The covering graph E of E is defined by:

E
0

= {vn | v ∈ E0 and n ∈ Z}, E
1

= {en | e ∈ E1 and n ∈ Z},

s(en) = s(e)n, and r(en) = r(e)n+1.

3.2 The Graph Monoid

The monoid ME is defined as the free abelian monoid over the vertices in E0 subject to identifying a vertex

with the sum of vertices it is connected to:

ME = 〈v ∈ E0 | v =
∑
v→u u〉.

The talented monoid is defined as:

TE = 〈v(i), v ∈ E0, i ∈ Z | v(i) =
∑
v→u u(i+ 1)〉.

We define the algebraic pre-ordering on the monoid M by a ≤ b if b = a+ c for some c ∈ M . Notice the

similarity to the definition of a path in the graph E.
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Example 1. ME, TE and the Monoid Covering Graph

s t

x

E:
u v

F :

ME = 〈s,t,x〉〈 s = t

t = x

x = s+ t

〉
MF = 〈u,v〉〈

u = v
〉

TE = 〈s(i),t(i),x(i)〉〈 s(i) = t(i+ 1)

t(i) = x(i+ 1)

x(i) = s(i+ 1) + t(i+ 1)

〉 TF = 〈u(i),v(i)〉〈
u(i) = u(i+ 1) + v(i+ 1)

v(i) = v(i+ 1)

〉

E:

0−1−2 1 2... ...

......

s0

t0

x0

s1

t1

x1

s−1

t−1

x−1

s−2

t−2

x−2

s2

t2

x2

F :

0−1−2 1 2... ...

......

u0

v0

u1

v1

u−1

v−1

u−2

v−2

u2

v2

Notice that the covering graphs E,F are acyclic, stationary graphs that ”repeat” from ”level” i to ”level”

i + 1. We may refer to these levels as ”shifts”. ME is used extensively in proof constructions as the monoid

of the covering graph gives significant utility in keeping track of the number of vertices appearing within any

given shift.

3.3 The Confluence Lemma

The following lemma [3] is crucial to the topic as it is how we shall establish all equivalences within our graph

monoids.

Lemma 1. Let E be a row-finite graph, FE the free abelian monoid generated by E0 and ME the graph monoid

of E.
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(1) If a = a1 + a2 and a→ b, where a, a1, a2, b ∈ FE\{0}, then b can be written b = b1 + b2 with a1 → b1 and

a2 → b2.

(2) (The Confluence Lemma) For a, b ∈ FE\{0}, we have a = b in ME if and only if there is c ∈ FE\{0}

such that a→ c and b→ c.

The talented version of the monoid ME , denoted TE , is then defined to be the abelian monoid generated

by {v(i) | v ∈ E0, i ∈ Z} for every v that emits edges and i ∈ Z. Similarly to the ME case (see Appendix 1),

these relations define a congruence relation which also respects the action of Z, namely TE is equipped with a

Z action

nv(i) = v(i+ n) i, n ∈ Z.

Lemma 2. Let E be a row-finite directed graph. We have the following morphisms between the monoids, TE,

ME and ME:

1. There is a forgetful homomorphism of monoids ψ:

ψ: TE →ME,

v(i) 7→ v.

2. There is a Z-module isomorphism of monoids φ:

φ: TE →ME,

v(i) 7→ vi.

Proof. 1 Since ψ(u(i)) = u and ψ(w(i)) = w ∀u(i), w(i) ∈ TE
ψ(u(i) + w(i)) = u+ w = ψ(u(i)) + ψ(w(i))

ψ(eTE
) = ψ(0) = 0 = eME

hence ψ is a monoid homomorphism.

Proof. 2. Since φ(u(i)) = ui and φ(w(i)) = wi ∀(u(i), w(i) ∈ TE
φ(u(i) + w(i)) = (u+ w)i = ui + wi = φ(u(i)) + φ(w(i))

φ(eTE
) = φ(0) = 0 = eME

hence φ is a monoid homomorphism.

4 Leavitt Path Algebras

[2] Let E be an arbitrary directed graph and K any field. Define a set (E1)∗ consisting of symbols of the form

{e∗|e ∈ E1}. The Leavitt path algebra of E with coefficients in K, LK(E), is the free associative K-algebra

generated by the set E0 ∪ E1 ∪ (E1)∗, subject to the following relations:

• (V) vv′ = δv,v′v for all v, v′ ∈ E0,
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• (E1) s(e)e = er(e) = e for all e ∈ E1,

• (E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1,

• (CK1) e∗e′ = δe,e′r(e) for all e ∈ E1,

• (CK2) v =
∑
{e∈E1|s(e)=v} ee

∗ for every regular vertex v ∈ E0.

4.1 Leavitt Path Algebras: Three Primary Colours

The following three examples are quoted from [2] as they are fundamental.

An =

v1 v2 v3 vn−1 vn
...

e1 e2 en−1

oriented n-line graph

Let K be any field and n ≥ 1 any positive integer. Then

Mn(K) ∼= LK(An)

Matrix Algebras.

R1 =
v

e

rose with one petal

K[x, x−1] ∼= LK(R1)

The Laurent Polynomial K-algebra i.e. the group algebra of Z over a field K. (Polynomials with integer

coefficients).

Rn =
v

e1

e2

en

rose with n petals

Let K be any field and n > 1 any integer. The Leavitt K-algebra of type (1, n), LK(1, n) is the K-

algebra:

K〈X1, ..., Xn, Y1, ..., Yn〉/〈
∑n
i=1XiYi − 1, YiXj − δi,j1|1 ≤ i, j ≤ n〉.

LK(1, n) ∼= LK(Rn).
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4.2 The Z Grading

There is a natural Z grading on Leavitt path algebras that is induced by the lengths of paths.

Definition 1. Let G be a group and A an algebra over a field K. We say that A is G-graded if there exists a

family {Aσ}σ∈G of K-subspaces of A such that

A =
⊕

σ∈GAσ as K-spaces, and Aσ ·Aτ ⊆ Aστ for each σ, τ ∈ G.

An element x of Aσ is called a homogeneous element of degree σ. An ideal I of a G-graded K-algebra A

is said to be a graded ideal if I ⊂
∑
σ∈G(I ∩ Aσ), or equivalently if y =

∑
σ∈G yσ ∈ I implies yσ ∈ I for every

σ ∈ G. In general, not every ideal in a Leavitt path algebra is graded.

4.3 Ideals

Let H ⊆ E0. We say that H is hereditary if whenever v ∈ H and w ∈ E0, if v ≥ w then w ∈ H. We say that

H is saturated if whenever v ∈ Reg(E) has the property that {r(e)|e ∈ E1, s(e) ∈ v} ⊆ H then v ∈ H.

Every graded ideal I of LK(E) is generated by a hereditary and saturated subset of E0, specifically, I = I(I∩E0).

There is a lattice isomorphism from the lattice of Z-order ideals of TE to the lattice of graded ideals Lgr(LK(E))

of LK(E):

Φ : L(TE)→ Lgr(LK(E)

〈H〉 7→ I(H)

Where H is a hereditary and saturated subset of E0, 〈H〉 is the order-ideal generated by the set {v | v ∈ H}

and I(H) is the graded ideal generated by the same set.

4.4 The Graded non-IBN property in Leavitt Path Algebras

In [4] Hazrat identifies a criterion for the graded isomorphism of Leavitt Path Algebras:

Theorem 1. There is a graded module isomorphism Lkn(λ1, ..., λk) ∼=gr L
k′

n (γ1, ..., γk′) if and only if
∑k
i=1 n

λi =∑k′

i=1 n
γi .

it was shown in [5], Remark 5.8 that there are Z-module isomorphisms:

TE ∼= ME
∼= V(LF (E)) ∼= Vgr(LF (E)) 0.1

v(i) 7→ vi 7→ [LF (E)vi] 7→ [(LF (E)v)(i)]

In 0.1 we now have that there is a Z-graded isomorphism φ such that φ(1E(λi)) = [L(E)λi].

Theorem 2. Let E be a finite graph and TE its associated Z-graded graph monoid. Any finitely generated

graded-projective L(E)-module is free if and only if for any u ∈ E0, u(i) =
∑k
i=1 1E(λi).

Proof. The proof is immediate from correspondence (0.1).
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5 Order Units of the Talented Monoid TE

For a finite directed graph E, λ ∈ Z, we denote by 1E(λ) the element
∑
u∈E0 u(λ) ∈ TE . We say that x is an

Order Unit if for any a ∈ TE we have a ≤
∑k
i=1 x(λi), where λi ∈ Z. It is clear to see that 1E is an order unit.

Since we have φ(1E(λi)) = [L(E)λi] from 0.1, the conditions of equivalence for order units yields significant

information on the graded isomorphism critera for their corresponding Leavitt Path Algebras.

Definition 2. Let E be a graph, 1E ∈ TE and let λ, γ ∈ Z.

1. We say that 1E is a Fixed Order Unit if ∀
∑k
i=1 1E(λi) =

∑k′

i=1 1E(γi) =⇒ k = k′ and λ = γ.

2. We say that 1E is an Alternating Order Unit if ∀
∑k
i=1 1E(λi) =

∑k′

i=1 1E(γi) =⇒ k = k′,

and ∃
∑k
i=1 1E(λi) =

∑k′

i=1 1E(γi) such that λ 6= γ.

3. We say that 1E is a Replicating Order Unit if ∃
∑k
i=1 1E(λi) =

∑k′

i=1 1E(γi) such that k 6= k′.

Theorem 1 now reduces to study when 1E is a Replicating Order Unit.

It is important to note when solving examples that for any graph there are infinitely many solutions that

partially fall under the Fixed Order Unit equivalence criteria i.e. k = k′ and λ = γ. This is due to the fact

that for any sequence of transformations applied to the graph monoid TE there is a sequence of ”backwards”

transformations that will simply reverse the applied transformations back to the initial conditions.

For each kind of equivalence we include examples from five different graph types identified from test-

ing:

1. Strongly Connected Graphs

2. Graphs that are source free but not strongly connected:

(a) Loop subgraphs.

(b) Non-loop subgraphs.

3. Source containing graphs.

5.1 Fixed Order Unit

There do not appear to be any strongly connected graphs that are Fixed order units since strongly connected

graphs occur in two configurations, either Condition L or not Condition L, and these configurations are Repli-

cating order units and Alternating order units respectively.

The following is a demonstration of the beginnings of a rudimentary proof.
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Theorem 3. For a graph E and TE its associated Z-graded graph monoid, if 1E contains a sink then TE is a

Fixed Order Unit.

Proof. Suppose v ∈ E0 is a sink, then s−1(v) = 0 and there are no ”forward” transformations possible such

that v →1 c for some c ∈ E0. Suppose additionally that r−1(v) 6= 0 then v ∈ r(α), α ∈ Path(E), then there

exists some u ∈ α such that when passing to TE , u(i) ≥ v(j) =⇒ u(i) = v(j) +
∑
k∈Z a(k). We have either:

1. a(k) = 0 for all u ∈ E0, k ∈ Z and there exist no bifurcated vertices in E0 hence u(i) → v(j) for all

u ∈ E0 leaving the number of generators unchanged. Since there are no bifurcated vertices in E0 we also

have that there must exist some vertex u that is a source and r−1(u) = 0. Passing now to ME , in order

to consider a solution of the form
∑k
i=1 1E(λi) =

∑k′

i=1 1E(γi) we must arrange to have every vertex in

E0 present at every shift within our canonical presentation. Since we cannot modify the total number of

generators by any transformations, there exists a source vertex u where the only possible transformations

strictly increase the subscript and a sink vertex v where the only possible transformations strictly decrease

the subscript the only possible presentation of
∑k
i=1 1E(λi) =

∑k′

i=1 1E(γi) occurs when k = k′ and λ = γ

where all transformations from LHS ”undo” any transformations from RHS.

2. a(k) 6= 0 for some u ∈ E0, k ∈ Z. There exists some bifurcated vertex u ∈ α. Incomplete.

The case containing bifurcated vertices is more complicated than the case with no bifurcated vertices. This

reflects the complexity of working with the Confluence lemma where we must be able to pass elements both

”backward” and ”forward” while simultaneously keeping track of the shifts and the number of generators.

Example 2. Fixed Order Unit

E:

u v

TE =

〈
u(i),v(i)

〉
〈
u(i) = u(i+ 1) + v(i+ 1)

〉

1E(0) + 1E(1)︸ ︷︷ ︸
k=2,λ1=0,λ2=1

→1E(0) u(1) + v(1) + v(0) + u(1) + v(1)←u(0) u(1) + v(1) + v + u = 1E(0) + 1E(1)︸ ︷︷ ︸
k′=2,γ1=0,γ2=1

Example 3. Fixed Order Unit: No Sink

E:

u v w
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TE =

〈
u(i),v(i,w(i))

〉
〈 u(i) = u(i+ 1) + v(i+ 1)

v(i) = 2 · v(i+ 1) + w(i+ 1)

w(i) = w(i+ 1)

〉

1E(0) + 3 · 1E(1)︸ ︷︷ ︸
k=4,λ1=0,λ2=1

→1E(0) u(1) + 3 · v(1) + 2 · w(1) + 3 · 1E(1)

←u(0) u(1) + 3 · v(1) + 2 · w(1) + u(0) + 2 · u(1) + 2 · v(1) + 3 · w(1)

←v(0) u(1) + 3 · v(1) + 2 · w(1) + u(0) + 2 · u(1) + v(0) + 2 · w(1)

←w(0) 3 · u(1) + 3 · v(1) + 3 · w(1) + u(0) + v(0) + w(0) = 3 · 1E(1) + 1E(0)︸ ︷︷ ︸
k′=4,γ1=0,γ2=1

While this example may seem trivial as we simply ”undo” any transformations, this is the form that all

fixed order unit solutions take. Notice that the only possible transformations we can apply (either ”forward”

or ”backward”) to u leave the total number of u generators the same but change the shift level, while there are

transformations that increase the number of generators v and w. After the initial transformation step we still

have 4 u generators, while we have 6 v generators and 5 w generators. The form of the partial solution with

an ”incomplete” 1E then requires us to find these additional generators u (and w) such that we can achieve a

solution that can be completely expressed in terms of 1E .

While the number of generators u remains the same, any transformation of u will alter the number of v generators

effectively ”fixing” the possible shift level those u generators are capable of appearing at in the covering graph

monoid ME .

If it were the case that we were only required to find additional generators w we would not have this problem

since there are transformations w(i)→1 w(i+ 1)→k w(i+ k) so the shift of w could be arranged to appear on

any level in ME , we will see examples of graphs of this form when looking at alternating order units.

Example 4. Fixed order unit: Source Containing

F :

u v w

TE =

〈
u(i),v(i),w(i)

〉
〈 u(i) = 2 · u(i+ 1)

v(i) = u(i+ 1) + w(i+ 1)

w(i) = 3 · w(i+ 1)

〉

1F (0) + 4 · 1F (1)︸ ︷︷ ︸
k=5,λ1=0,λ2=1

= 4 · 1F (1) + 1F (0)︸ ︷︷ ︸
k′=5,γ1=1,γ2=0

For neatness the talented monoids for the remainder of the examples will be omitted as they are easy to

derive.
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5.2 Alternating Order Unit

Example 5. Alternating Order Unit: Strongly Connected

E:

u

v

w

x

1E(i)︸ ︷︷ ︸
k=1,λ1=i

→j·1E(i) u(i+ j) + v(i+ j) + w(i+ j) + x(i+ j) = 1E(i+ j)︸ ︷︷ ︸
k′=1,γ1=i+j

Theorem 4. For a graph E and TE its associated Z-graded graph monoid, if E is Strongly Connected and there

exists a cycle with no exit then 1E is an Alternating Order Unit.

Proof. Suppose E is strongly connected so H = {∅, E0} and u ≥ v for any u, v ∈ E0. In this case E is also

cofinal. Thus if there exist cycles in E0 then every vertex in E0 connects to a cycle. Additionally since the only

order ideals in E0 are trivial it must be the case that every vertex v ∈ E0 is contained within the cycle c0 else

there exists some hereditary and saturated proper subset H ⊂ E0 that is not empty.

Now since all v ∈ E0 are contained within a cycle with no exit it is the case that we have nv = v for all

v ∈ E0 and there is only one edge emitting from each vertex. Thus any transformations we apply to
∑k
i=1 1E(λi)

will leave the number of generators unchanged but we can apply transformations to arrange for every vertex in

1E(λi) to appear at any shift, hence k = k′ and there exists a solution where λ 6= γ.

Example 6. Alternating Order Unit: Source Free a)

F :

u v

1F (0) + 1F (2)︸ ︷︷ ︸
k=2,λ1=0,λ2=2

→1E(0) u(1) + v(1) + v(1) + u(2) + v(2)←u(1) u(1) + v(1) + u(1) + v(1) = 2 · 1E(1)︸ ︷︷ ︸
k′=2,γ1=1

For Source Free a) cases it appears the differentiating factor from other equivalence types is the existence

of a vertex v ∈ E0 that is not in the range of a vertex that can generate additional copies of itself while also being

”sufficiently close” to another vertex such that Z acts freely on that vertex, subsequently allowing backward

transformations that can be from any ”age”.

Example 7. Alternating Order Unit: Source Free b)
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E:

u v w x

1E(0) + 1E(1) + 2 · 1E(i) + 1E(i− 1)︸ ︷︷ ︸
k=5,λ={0,1,i,i−1}

= 1E(1) + 2 · 1E(2) + 1E(i− 2) + 1E(i− 1)︸ ︷︷ ︸
k′=5,γ={1,2,i−2,i−1}

Example 8. Alternating order unit: Source Containing

F :

u v w

1F (0)︸ ︷︷ ︸
k=1,λ=0

= 1F (1)︸ ︷︷ ︸
k′=1,γ=1

5.3 Replicating Order Unit

Example 9. Strongly connected graph

E:

u v w

1E(0) + 1E(3)︸ ︷︷ ︸
k=2,λ1=0,λ2=3

→1E(0) 2 · u(1) + 2 · v(1) + w(1) + 1E(3)

→u(1)
v(1) u(1) + v(1) + w(1) + 2 · u(2) + v(2) + w(2) + 1E(3)

←v(2)
w(2) u(1) + v(1) + w(1) + 2 · u(2) + 2 · v(2) + 2 · w(2) = 1E(1) + 2 ∗ 1E(2)︸ ︷︷ ︸

k′=3,γ1=1,γ2=2

Conjecture 2. For a strongly connected graph E, if E satisfies condition L then 1E is a replicating order unit.

Note that in this case we have u ≥ v ∀ u, v ∈ E0 which becomes, in TE , u(i) = v(i + j) +
∑
k∈Z β(k),

β(k) 6= 0 for some k ∈ Z. We can see that when we apply any transformation to any vertex within a graph

of this type that we will always increase the number of generators suggesting that we have a solution of type

k 6= k′. Similarly to the case of fixed order units with bifurcations the proof is non-trivial due to needing to

work both ”backwards” and ”forwards” with the confluence lemma as we can see in Example 9..

Example 10. Source Free Graph a)

F :

u v

1F (0) = u(0) + v(0)→u(0) 2u(1) + v(1) + v(0)

→v(0) 2 · u(1) + 2 · v(1) = 2 · 1F (1)
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Theorem 5. If |r−1(v)| = n for all v ∈ E0 then 1E ∈ TE is a Replicating Order Unit.

Proof. Suppose |r−1(v)| = n for all v ∈ E0. Apply a single →1 transformation to every v ∈
∑k
i=1 1E(λi). Since

the number of any given generator v(i) in ME increases by the |r−1(v(i))| and this equals n for all v ∈ E0 then

we have that
∑k
i=1 1E(λi) = n ·

∑k
i=1 1E(λi + 1) =

∑k′

i=1 1E(γi).

Example 11. Source Free Graph b)

E:

u v w

1E(0) + 1E(1) + 1E(2)︸ ︷︷ ︸
k=3

= 2 · 1E(1) + 2 · 1E(2)︸ ︷︷ ︸
k′=4

Example 12. Source containing graph

E:

u v w x

1E(0)︸ ︷︷ ︸
k=1

= 2 · 1E(1)︸ ︷︷ ︸
k′=2

Nam and Phuc [6] give a criterion for the (non-graded) IBN property for rings stating that after a process

of source eliminations if the source free graph Esf contains any isolated vertexes or source cycles then the

graph E has IBN property. To investigate the non-graded IBN property it appears that we may apply similar

method. As opposed to conducting repeated source eliminations and investigating structures within the isolated

sub-graphs we look for order unit equivalences within minimal ideals of the talented monoid, requiring each

minimal ideal to be a replicating order unit, though a specific proof has yet to be identified.

From examples studied it appears that there are conditions on the sub-ideals within E. After conducting source

eliminations we attempt to find a correspondence between the order units of each minimal ideal, where the

sub-graph of each minimal ideal must be a replicating order unit. I shall demonstrate this specifically in the

following examples.

Example 13. Source-Free

E:

y u v w x

1E(0)→ 4 · 1E(2)

13



Eminsf :

y u w x

Let I = 〈u, y〉 Let J = 〈w, x〉

1I(0)→ 2 · 1I(1)→ 4 · 1I(2)

1J(0) → 4 · 1J(2)

Example 14. Non-replicating Source Containing Graph

E:

u v w x

1E(0) + 3 · 1E(1)︸ ︷︷ ︸
k=4,λ1=0,λ2=1

= 1E(0) + 3 · 1E(1)︸ ︷︷ ︸
k′=4,γ1=0,γ2=1

Working: Start with 1E(0) alone to identify trends.

1E(0)→1E(0) 3 · u(1) + 3 · w(1) + 2 · x(α)→u(1)
w(1) 2 · u(1) + 2 · w(1) + 3 · x(α) + 2 · u(2) + 2 · w(2)

= 2 · 1E(1) + x(i)

Notice the shift action on x(α) can take any value.

u(i+ 1) + w(i+ 1)← v(i)

We appear to be generating additional x(α) over the other generators.

Having seen examples such as this before, these kinds of solution appear to require ”backwards”

transformations from other copies of 1E(i) to ”fill in the gaps” i.e. 1E(0)→ c and d←
∑k
i=1 1E(λi) such that

c+ d =
∑k′

j=1 1E(γj).

3 · 1E(i)←w(i−1) 3 · u(i) + 3 · v(i) + w(i) + w(i− 1) + 2 · x(i)←u(i−1)

u(i) + u(i− 1) + 3 · v(i) + w(i) + w(i− 1) + 2 · x(i)←v(i−1)

u(i− 1) + v(i− 1) + w(i− 1) + 3 · v(i) + 2 · x(i)←x(i−1)

1E(i− 1) + 3 · v(i) + x(i)

From above:

1E(0)→1E(0) 3 · u(1) + 3 · w(1) + 2 · x(α)

Setting the initial shift of our ”fill in the gaps” transformations to 1 and substituting into the equation:

1E(0) + 3 · 1E(1)→1E(0) 3 · u(1) + 3 · w(1) + 2 · x(1) + 3 · 1E(1)←

3 · u(1) + 3 · w(1) + 2 · x(1) + 1E(0) + 3 · v(1) + x(1) = 1E(0) + 3 · 1E(1)

14



The question then becomes whether all solutions for this particular graph appear in this form where k = k′

and λ = γ.

Breaking the graph E into minimal order ideals we have:

Eminsf :

u x

Let I = 〈u〉 Let J = 〈x〉

1I(0)︸ ︷︷ ︸
k=1,λ1=0

→ 2 · 1I(1)︸ ︷︷ ︸
k′=2,γ1=1

Replicating.

1J(0)︸ ︷︷ ︸
k=1,λ1=0

→ 1J(1)→ 1J(i)︸ ︷︷ ︸
k′=1,γ1=i

Alternating.

While this solution may be an indication that the order unit equivalence type of this graph is fixed, recall

that all graphs have infinitely many solutions of this form.

This highlights some of the problems with attempting to identify graph criteria for these equivalences. It

is possible to find ”apparently fixed” solutions for any graph. In many cases I have found that examples I had

previously classified as Fixed or Alternating order units were in fact Replicating under closer inspection. In most

of these cases I found this while attempting to provide an if and only if proof for an identified criteria.

6 Discussion and Conclusion

We identified a simple proof on the nature of free finitely generated graded-projective modules that relates the

structure of the talented monoid of a finite graph to its Leavitt path algebra through an order unit condition.

Additionally, we identify several order unit equivalence criteria suggesting that the talented monoid and its

associated grading capture significant structural information of the corresponding Leavitt path algebra. Both

of these results suggest that there is further work in this direction that may contribute to our understanding

of the Graded Hirchsberg-Phillips conjecture. Due to the complexity of working with these equivalence criteria

it would be advantageous to determine the graph criteria for fixed order unit equivalence first as this appears

to be the simplest case. We could then expand upon that work into determining the algebraic correspondence

for the fixed order unit condition which is unknown, and continue work on the more complicated equivalence

criteria.

Leavitt path algebras are an important tool for considering not necessarily linear systems while also having a

relatively simple presentation via the talented monoid, showing promise that further developments may provide

valuable insight into other domains of mathematics, computer science and physics.
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9 Appendices

9.1 The Confluence Lemma: Proof

Let ME be the free abelian monoid on the set E0. The nonzero elements of M can be written uniquely up to

permutation as
∑n
i=1 vi, where vi ∈ E0. For convenience we introduce the notation: For v ∈ E0, write

r(v) :=
∑

e∈E1 |s(e)=v

r(e) ∈M
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Now our relations in ME becomes v = r(v) for every v ∈ E0 that emits edges.

We define a binary relation→1 on M\{0},
∑n
i=1 vi ∈M , j ∈ {1, ..., n} such that vj emits edges (i.e. all vertices

i 6= j do not emit any edges) by
∑n
i=1 vi →1

∑
i 6=j vi + r(vj). Let → be the transitive and reflexive closure

of →1 on M\{0} i.e. α → β if and only if there is a finite string α = α0 →1 α1 →1 ... →1 αn = β. Let

∼ be the congruence on M generated by the relation →1 or →. Specifically, α ∼ α for all α ∈ M and for

α, β 6= 0 we have α = β iff there is a finite string of transformations α = α0, α1, ..., αn = β such that for each

i = 0, 1, ..., n− 1 either αi →1 αi+1 or αi+1 →1 αi. We call n the length of the string of transformations. Since

∼ is the congruence on M generated by the relations on ME we have ME = M\ ∼. The support of an element

γ in M supp(γ) ⊆ E0 is the set of basis elements appearing in the canonical expression γ.

Lemma 3. Let E be a row-finite graph, FE the free abelian monoid generated by E0 and ME the graph monoid

of E.

(1) If a = a1 + a2 and a→ b, where a, a1, a2, b ∈ FE\{0}, then b can be written b = b1 + b2 with a1 → b1 and

a2 → b2.

(2) (The Confluence Lemma) For a, b ∈ FE\{0}, we have a = b in ME if and only if there is c ∈ FE\{0}

such that a→ c and b→ c.

Proof. (1) By induction it is sufficient to show the result for the case a →1 b. There is an element u in the

support of a such that we may write a = (a − u) + r(u). Now if a →1 b we may write b = (a − u) + r(u).

Consider the case where u belongs either to the support of a1 or to the support of a2. Assume for instance that

u belongs to the support of a1. Then we simply set b1 = (a1 − u) + r(u) and b2 = a2.

Note that the elements b1 and b2 are not uniquely determined by a1 and a2 in general. This is due to the

possibility of u belonging to the support of both a1 AND a2.

Proof. (2) Assume a ∼ b. So there exists a finite string a = a0, a1, ..., an = b such that for each i = 0, 1, 2, ..., n−1

either ai →1 ai+1 or ai+1 →1 ai. By induction on n, if n = 0 then a = b and there is nothing to prove. Assume

the result is true for strings of length n− 1 and let a = a0, a1, ..., an = b be a string of transformations of length

n. By our induction supposition there is a d ∈ M such that a→ d and an−1 → d and there are now two cases

to consider. If b→1 an−1 → d and we are done. Assume that an−1 →1 b. There is an element x in the support

of an−1 and we can arrange such that an−1 = x+ a′n−1 where all of the vertices in E0 that emit edges appear

in the canonical expression of the element x. Now by the definition of →1 we have b = r(x) + a′n−1. By part

(1) of the lemma we can write d = d(x) + d′ where x→ d(x) and a′n−1 → d′. Now if the length of the string of

transformations from x to d(x) is positive we have r(x)→ d(x) and so b = r(x) + a′n−1 → d(x) + d′ = d and we

are done. In the case where the length of the string is zero i.e. x = d(x) we can select an element c such that we

have d = x+d′ →1 r(x)+d′ = c and so we have from earlier a→ d→1 c and also b = r(x)+a′n−1 → r(x)+d′ = c

concluding the proof.
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