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1 Abstract

Sequential Monte Carlo approaches to approximate Bayesian computation (SMC-ABC) offer an efficient means

to estimate posterior distributions in likelihood-free scenarios. Tolerance sequencing in SMC-ABC is critical to

the efficiency of the algorithm. We consider a method for adaptive tolerance selection for another particle filter

approach to ABC (PMC-ABC), which considers the gained distance between distributions between sequences.

We implement this to SMC-ABC, and reduce the computational cost of implementing this approach. We utilise

examples to demonstrate the computational efficiency improvements achieved.

2 Statement of Authorship

The workload was divided as follows:

• Abhishek Varghese implemented the SMC ABC algorithm (and other ABC algorithms); ran testing;

interpreted and reported results; and wrote the report.

• Chris Drovandi developed the SMC ABC algorithm used and supervised the work.

• Mitchell O’Sullivan helped adapt the SMC-ABC replenishment algorithm, proofread and tested code, and

supervised the work.
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3 Introduction

Since the advent of the 21st century, models have increased in complexity as our understanding of natural and

physiological processes has deepened, and the availability of computational resources and large datasets have

increased.

These complex models present significant challenges for parameter inference, as it may be intractable to evaluate

the likelihood function. Approximate Bayesian computation (ABC) is a likelihood-free inference technique that

enables parameter estimation and uncertainty quantification in scenarios where the likelihood is intractable[1].

ABC bypasses the likelihood function to generate approximate posterior distributions of parameters of interest

for models[2]. It has been used for a wide variety of applications, including network data, disease epidemiology,

medical imaging, ecology, cell biology, climate extremes and airport design[3].

Among the many approaches to ABC, particle filter methods such as Population Monte Carlo (PMC) and

Sequential Monte Carlo (SMC) are found to be effective at approximating the posterior distributions of model

parameters while leveraging computational resources economically [1]. Both methods iteratively approach the

posterior from the prior through a sequence of target distributions. At each iteration, these methods filter a

proportion of samples of the current distribution by a tolerance measure (α), and jitter particles through a

perturbation kernel to ensure iid (independent and identically distributed) samples.

In SMC-ABC, particles that do not meet the tolerance threshold are discarded and resampled from the remaining

particles to maintain the same population size [4]. A well-accepted classical SMC-ABC algorithm by Drovandi

and Pettit [1] set the tolerance threshold to be a proportion of the maximum particle discrepancy at each

iteration as the algorithm progresses.

This approach opens the possibility for the algorithm to keep poor proposals initially, and discard good proposals

as the algorithm approaches the posterior distribution. It is also important to note that resampling is generally

cheap when the algorithm starts, and becomes more expensive as the algorithm progresses - which can introduce

further computational inefficiencies.

Simola et. al [5] have recently proposed an adaptive tolerance selection approach to identify an optimal tolerance

for each iteration in an ABC-PMC algorithm, by leveraging the density ratio between current and target

distributions at each iteration. We adapt this approach to the replenishment algorithm in SMC-ABC and

further reduce the computational expense of this approach. We test our adaptive SMC algorithm on two toy

model scenarios, and evaluate the performance improvements achieved through this approach.
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4 Method

4.1 Approximate Bayesian computation

Model parameters φ may be inferred by its posterior density p (φ | y) given the observed dataset y . The

posterior density can be written by Bayes’ theorem as,

p (φ | y) =
π (φ) p (y|φ)

m (y)
(1)

where π (φ) , p (φ | y) and m (x) =
∫
π (φ) p (y|φ) dφ are, correspondingly, the prior density on the parameter

φ , the likelihood function, and the marginal likelihood. The prior density π (φ) enables a way to leverage the

learning of parameters from prior knowledge.

ABC bypasses the evaluation of the likelihood function by instead simulating data from the model to generate

an approximate posterior distribution. Due to the high dimensionality of the observed data, y , the data set

is often reduced to a set of summary statistics, S (y) [6]. Thus, ABC targets the posterior conditional on the

summary statistics:

p (φ|S (y)) ∝ (S (y) |φ) π (φ) (2)

However, this too requires the evaluation of a typically intractable likelihood, p (S (y) |φ) [6]. Therefore, ABC

approximates this intractable likelihood through the following integral:

pε(S(y)|φ =

∫
y

Kε(ρ(S(x), S(y)))p(x|φ).dx (3)

where ρ(S(x), S(y)) is a discrepancy function that compares the simulated and observed summary statistics,

and Kε(·) is a kernel weighting function with bandwidth ε that weights simulated summaries in accordance with

their closeness to the observed summary statistic [2]. While the integral in (3) is analytically intractable, it

may be estimated by taking n iid simulations from the model xi
n
i=1 ∼ p(x|φ) , evaluating their corresponding

summary statistics Si
n
i=1 where Si = S (xi) , and calculating the following ABC likelihood:

pε (S (y) |φ) ≈ 1

n

n∑
i=1

Kε (ρ (Si, S (y))) (4)
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The unbiased likelihood estimator described in (4) is generally sufficient to obtain a Bayesian algorithm that

targets the posterior distribution pε(φ|S(y)) ∝ pε(S(y)|φ)p(φ). The summary statistics, S(·), discrepancy

measure, ρ(·,·), and tolerance value, ε, utilised in the ABC method introduce approximation errors to the target

posterior distribution. In order to minimise these errors, these factors must be chosen and tuned carefully to

maximise accuracy while ensuring a computationally feasible operation [6].

The most basic implementation of ABC is known as rejection sampling [2]. In this algorithm, the parameter is

estimated by generating model realisations x corresponding to different parameter values φ promoted from the

prior. The summaries S (x) are computed and compared to S (y) through the discrepancy measure ρ (·, ·) .

If the discrepancy between the simulated and observed summaries is lower than the tolerance, ε , then the

corresponding φ is accepted as part of the approximate posterior distribution.

The pseudo-code for an ABC rejection sampling scheme is provided below [2]:

for i ∈ 1 : n do

Draw φ ∼ π(φ)

Draw x ∼ p (·|φ)

Accept φ if ρ (S (x) , S (y)) ≤ ε

end for

where n is the number of iid samples to be taken from the prior π (φ)

4.1.1 Likelihood-free Sequential Monte Carlo (SMC-ABC)

In SMC-ABC, the following sequence of distributions is defined:

πt(θ, x|y, ε) ∝ f(x|θ)π(θ)1(ρ(x, y) ≤ εt), (5)

for t = 1, . . .,T, with a non-increasing set of tolerances ε1 ≥ ε2 ≥ · · · ≥ εT . The algorithm traverses a set of N

particles through a sequence of target distributions by iteratively applying re-weighting, re-sampling and move

steps to each particle [1].

At each iteration, particles are sorted via the discrepancy measure and a proportion of the particles with the

largest distance are dropped (say 100 · α%). Then, new particles are resampled from the remaining particles

to replenish the entire population. Finally, resampled particles are moved according to an MCMC kernel using

the target discrepancy of the iteration, to ensure particle uniqueness in the population [1].

A step-by-step description of the SMC-ABC algorithm by Drovandi and Pettit [1] is provided below:
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1. Set Na as the integer part of αN

2. Draw N particles from prior and compute distance function for each particle. This produces a set of

particles {θi, ρi}Ni=1

3. Sort the particle set by ρ, so that ρ1 ≤ ρ2 ≤ · · · ≤ ρN , and set εt = ρN−Na and εmax = ρN . If εmax ≤ εT

then finish, otherwise go to next step

4. Compute the tuning parameters of the MCMC kernel qt(·|·) using the particle set {θi}N−Na
i=1

5. Resample {θj}Nj=N−Na+1 from the kept samples {θi}Na
i=1 and copy over corresponding discrepancy values

6. Perform S trial MCMC iterations on the j = N −Na+1 to N resampled particles using qt and εt. Record

the acceptance of this as pt.

7. Compute Rt = dlog(c)/ log(1 − pt)e. This is the estimated number of MCMC steps required for the

iteration.

8. Perform remaining Rt − S trial MCMC iterations on the j = N −Na + 1 to N resampled particles using

qt and εt. Record the overall acceptance rate of all Rt MCMC iterations as pt. If pt is too small then stop

the algorithm. Set S = bRt/2c and go to step 3.

4.2 Adaptive tolerance selection for SMC-ABC replenishment algorithm

We focus our efforts on adaptively selecting an optimal α for each iteration, to improve the computational

efficiency of the SMC-ABC replenishment algorithm.

Simola et. al [5] tackle a similar problem for ’population Monte Carlo’ (PMC) ABC. They propose to use the

estimated ABC posteriors to select a quantile to update the tolerance for the next iteration, and adjust the

next tolerance based on how slowly or rapidly the sequential ABC posteriors are changing. They compute the

following density ratio for each iteration t > 1:

R(θ) =
π̂εt(θ)

π̂εt−1(θ)

ct = sup
θ
R(θ)

(6)

Simola et. al [5] use proper densities for π̂εt(θ) and π̂εt−1(θ) such that ct = 1 when the two densities are exactly

the same, or there must be a point where π̂εt(θ) > π̂εt−1(θ), resulting in ct < 1.
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They use ct to inform the optimal ‘quantile to keep’ for each iteration as follows:

qt =
1

ct
(7)

Under this methodology, Simola et. al [5] assert that small values of qt imply that qt−1 led to a large improvement

between π̂εt(θ) and π̂εt−1
(θ), which subsequently results in a larger tolerance reduction for the next iteration.

Conversely, qt tends to 1 as π̂εt(θ) and π̂εt−1(θ) become more similar, and as the ABC posterior stabilises. The

supremum in (6) is calculated using an optimiser over the parameter space.

The optimisation procedure utilised by Simola et. al [5] to calculate the supremum of ĉt can be computationally

expensive. Instead, we reduce the computational expense of this approach by approximating ĉt. Firstly, we

approximate R(θ) by evaluating using an unconstrained Least-Squares Importance Fitting (uLSIF) algorithm

[7]. The uLSIF algorithm provide the approximate density ratio at samples of π̂εt−1(θ), such that:

R∗ = {R̂(x)| x ∈ {θti}Ni=1} (8)

We may use this to evaluate an approximation of ct as follows:

ĉt = arg maxR∗ (9)

We believe this is a reasonable approach as it can be expressed that:

P (ct 6= ĉt)→ 0 as N →∞ (10)

Thus, we may leverage ĉt to inform the tolerance threshold (α) in the SMC-ABC replenishment algorithm at

each iteration:

αt+1 = 1− 1

ĉt
(11)

4.3 Examples

This methodology was studied using several example model simulation scenarios to evaluate the performance

of this adaptive SMC-ABC approach (aSMC-ABC). A brief summary is provided for each model utilised in the

analysis.

4.3.1 Univariate g-and-k distribution

The g-and-k distribution is a quantile distribution which is defined by its inverse cumulative distribution func-

tion (cdf). These functions generalise the quantile functions for standard distributions, enabling the creation of
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a variety of probability distributions. The likelihood of these functions is expensive to calculate, due to an an-

alytically intractable cdf. Conversely, simulation from these distributions is computationally cheap. Therefore,

estimating the parameters for these set of functions is an amenable task for ABC [8].

The g-and-k distribution is governed by five parameters θ = (a, b, c, g, k), and is given by:

Q(p;θ) = a+ b

(
1 + c

1− exp(−gz(p))
1 + exp(−gz(p))

)(
1 + z(p)2

)k
z(p) (12)

It must be noted that c is held constant at 0.8 [8]. We use the robust summary statistics developed by Drovandi

and Pettit [8] for our testing, as they have been found to be effective at estimating parameters for this model.

Furthermore, we use a random walk multivariate Normal proposal with its parameters estimated adaptively

based on the particles satisfying the current target through the evaluation of a covariance matrix.

4.3.2 Banana Bunchy Top Virus (BBTV) network-based epidemiological model

Varghese et al. [9] develop a network-based epidemiological model to model the spread of BBTV in a plantation.

The model simulates the probability of a node being infected in time t in months from t ∈ [1 · · ·T ]. The model

is governed by six parameters θ = (θ00, θ01, θ01, θ10, θ11, θ12). Where:

• θ(0·) denote the probability of node recovery.

• θ(1·) denote the probability of a node infecting a neighbouring node.

• θ(2·) denote the probability of a node infecting a non-neighbouring node.

These three parameters are duplicated for summer (θ(·0)) and winter (θ(·1)), giving six in total. We use the

summary statistics developed by Varghese et. al [9] and apply the same adaptive multivariate normal random

walk proposal for the MCMC kernel in the aSMC-ABC algorithm.

5 Results and Discussion

We tested the performance of the aSMC-ABC algorithm against the SMC-ABC algorithm developed by Drovandi

and Pettit [8], by estimating the parameters for the two models mentioned in the previous section.

We generate a dataset with known parameter values, and treat this as our observed data for each model. We run

both ABC algorithms on the same observed data, and estimate the posterior distributions of the parameters.

This procedure enables a fair platform for benchmarking both algorithms.
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Our results demonstrate that both the benchmark SMC-ABC algorithm [8], and the aSMC-ABC algorithm

developed in this paper generally achieve the same posterior accuracy for both models. Therefore, these results

are not covered in this paper.

Algorithm performance is measured by the number of model simulations required by each algorithm to achieve

the target discrepancy, where the algorithm with the least model simulations is considered to be most efficient.

These results are provided in detail for each model in the following sections.

The results indicate that there is no perceivable improvement in required model simulations compared to the

benchmark SMC-ABC algorithm [8].

5.1 Parameter estimation of univariate g-and-k distribution

We create three different sets of observed data for the univariate g-and-k distribution, and estimate the param-

eters for each ‘dummy’ dataset three times.

The results for the SMC-ABC algorithm (seen in [8]) are provided in Table 1, and the results for aSMC-ABC

algorithm developed in this paper are in Table 2.

Parameter Set Trial #1 Trial #2 Trial #3 Mean Model Sims

1 1004260 1123971 1051168 1059800

2 986090 776656 876814 879853

3 807568 814246 853303 825039

Table 1: Model simulations required by SMC-ABC algorithm (seen in [8]) to estimate parameters for g-and-k

distribution. Three ‘true’ parameter sets were chosen at random, and parameters were estimated with each

ABC algorithm for three trial runs.

Parameter Set Trial #1 Trial #2 Trial #3 Mean Model Sims

1 907930 741466 861016 836804

2 946618 924025 807304 892649

3 886190 685879 838953 803674

Table 2: Model simulations required by the aSMC-ABC algorithm to estimate parameters for g-and-k distribu-

tion.

It may be noted that the aSMC-ABC algorithm required less model simulations on average for two out of
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the three parameter sets. The aSMC-ABC algorithm was most efficient for parameter set 1, with average

model simulation savings of 20% compared to the SMC-ABC algorithm by [8]. Modest savings are observed

in parameter set 3, with an efficiency improvement of 2.5% over the SMC-ABC algorithm by [8]. Finally, the

aSMC-ABC algorithm performs 1.5% worse that the benchmark algorithm in parameter set 2.

5.2 Parameter estimation of BBTV network-based epidemiological model

We create one set of observed data for the BBTV model, and estimate the parameters for this ‘dummy’ dataset

three times for each ABC algorithm.

The results for both algorithms are provided in Table 3.

Trial #1 Trial #2 Trial #3

aSMC-ABC 253966 8953* 38080*

SMC-ABC 232519 9262* 36620*

Table 3: Model simulations required by each ABC algorithm over 3 trials.

*ABC runs were stopped early due to an auxillary stopping rule.

It is hard to observe any perceivable improvement by the aSMC-ABC algorithm compared to the benchmark

SMC-ABC algorithm by [8] for the BBTV model parameter estimation scenario. While aSMC-ABC required

8.6% more simulations than the benchmark SMC-ABC algorithm in trial 1, it performed comparably on the

other two trials.

6 Future Research

The results demonstrate that our aSMC-ABC algorithm performance is inconsistent, with minimal efficiency

improvements overall. It is possible that the inconsistency in algorithm performance is induced by the ap-

proximation errors we create to improve computational efficiency. We recommend further research in exploring

adaptive resampling strategies for the SMC-ABC algorithm seen in [8].
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7 Conclusion

We implement an adaptive resampling approach to SMC-ABC, based on existing work that leverages the

density ratio between current and target distributions to identify an optimal quantile threshold for ABC-PMC.

Despite significantly reducing the computational expense of implementing this approach, minimal performance

improvements are achieved through this method. We recommend deeper study on adaptive resampling strategies

for SMC-ABC, and recommend this adaptive SMC-ABC algorithm as a starting point for future research.
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