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1 Abstract

In this work we present and implement the primal hybrid method as a numerical solver for Poisson’s equation.

The convergence rate of the L2 error was found to be two when using linear functions on the bulk of the domain

and constant functions on the boundaries. This work serves as the precursor to analysing multiscale finite

element solvers in the finite element fraamework Gridap. Further research into developing this method, and

applying it to Darcy’s equation is needed.
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2 Introduction

Some physical modelling problems, such as the extraction of oil through rocks, involve multiscale features.

Multiscale features occur when different areas of the domain have significantly different properties, particularly

when one area has much smaller features than the other, often called subscale features. When modelling the

extraction of oil, this might occur at the join between different types of rock. If one type is very porous, and

the other is not, then we are going to have significantly different properties in each area. In some cases, the

scale of the solution will be much smaller in one area when compared with the other. So it is desirable to have

a solver which can adapt to these scenarios, in order to provide an accurate and reliable numerical estimate.

Porous flow problems are usually modelled using the Darcy equation, which is a partial differential equation

(PDE). A modern approach to numerically solving a PDE is using the Finite Element Method (FEM). In

traditional finite element methods, we require that shape functions be continuous across cell boundaries. If this

requirement can be relaxed, we will have much more flexibility in the choice of shape functions, allowing us

to adapt the solver to multiscale features. In this work we will present the primal hybrid method, which is a

precursor to a multiscale method.

3 Statement of Authorship

Santiago Badia developed the outline of the project, and the theory underpinning the research. Jacob Vandenberg

and Alberto Martin developed the Julia implementation of the primal hybrid method. Jacob Vandenberg wrote

this report and conducted the numerical analysis. Santiago Badia and Alberto Martin supervised the project

and proofread the report.

4 Problem statement

4.1 Strong Form

We will consider the problem:

Given f, uD ∈ C0(Ω), find u ∈ C2(Ω) such that

−∆u = f

u|∂Ω = uD

4.2 Defining L2 and H1 spaces.

We will define the L2 norm ‖·‖L2 .

‖v‖L2 =

(∫
Ω

|v(x)|2 dx

)1/2

Then we can define the L2 Sobolev space.

L2(Ω) = {‖v‖L2 <∞}

2



The H1 norm ‖·‖H1 is defined as:

‖v‖H1 =

(∫
Ω

|∇v(x)|2 dx+

∫
Ω

|v(x)|2 dx

)1/2

Likewise we can define the Sobolev space H1.

H1(Ω) = {‖v‖H1 <∞}

The space H1
0 is the H1 space where all functions vanish on the boundary.

H1
0 (Ω) = {‖v‖H1 <∞; v|∂Ω = 0}

Similarly, H1
uD

is the H1 space where all functions which are equal to uD when restricted to the boundary.

4.3 Weak Form

To find an approximate solution, we will consider the weak form of the problem:

Given f ∈ L2(Ω), find u ∈ H1
uD

(Ω) such that:∫
Ω

∇u · ∇v dΩ =

∫
Ω

fv dΩ,∀v ∈ H1
0 (Ω). (1)

5 The Primal Hybrid Formulation

Decompose the domain Ω into R disjoint subdomains Ω =
⋃R

r=1 Ωr. We can define the facets ∂T as the set of

boundaries of the subdomains ∂Ωi, i ∈ {1, . . . , R}.

The primal hybrid formulation divides the previous problem into solving for both primal and dual unknowns.

The primal unknown u is defined on the bulk of the domain, and represents the solution to the problem, as

before. The dual unknown λ acts as a Lagrange multiplier to weakly enforce the continuity of the solution, and

is defined on the facets of the subdomains ∂T . Given the outwards unit normal n, λ can be expressed as

λ = ∇u · n.

Let M be the broken space of H−1/2 functions which exist on the boundaries of these subdomains. M is

broken in that elements of M only have to exist in H−1/2 when restricted to any facet ∂Ωi, i ∈ {1, . . . , R}.

This allows the functions to be discontinuous between cells. We will also define X as the broken space of H1

functions on the bulk of the domain Ω.

As shown by Raviart & Thomas (1977), (1) can be expressed as follows.

Given f ∈ L2(Ω), find u ∈ X, and λ ∈M such that

R∑
r=1

∫
Ωr

∇u ·∇v dΩ−
R∑

r=1

∫
∂Ωr

vλ d∂Ωr =

∫
Ω

fv dΩ

−
R∑

r=1

∫
∂Ωr

uµd∂Ωr =

∫
∂Ω

uDµd∂Ω,

for all v ∈ X, µ ∈M .
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6 Galerkin Method

6.1 Weak formulation

For any face E, we can assign the two adjacent cells to be K+ and K−. We can then define n+ to be the

outward normal of E with respect to K+. n− can be defined similarly. We can then define the jump operator

[·].

[v] = n+v+ + n−v−,

where v+ the value of v when approached from the n+ direction, and analogously for v−

The weak formulation is as follows:

Given f ∈ L2(Ω), find u ∈ X, and λ ∈M such that∫
Ω

∇u ·∇v dΩ +

∫
∂T

[v] · λn d∂T =

∫
Ω

fv dΩ, ∀v ∈ X∫
∂T

[u] · µnd∂T =

∫
∂Ω

uDµd∂Ω, ∀µ ∈M

for all v ∈ X, µ ∈M .

6.2 Dimension Reduction

We will replace the infinite dimensional spaces X and M with the finite vector spaces U and Λ.

U = span {u1, u2, . . . , un}

Λ = span {λ1, λ2, . . . , λk} ,

where n and k are the dimensions of U and Λ respectively.

6.3 Linear System

We can express our solution as

u =

n∑
i=1

αiui

λ =

k∑
i=1

βiλi.

Substituting this into the weak formulation results in the following block form linear system. A B

BT 0

 α

β

 =

 f

g

 ,
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where the entries are defined as follows:

Aij =

∫
Ω

∇ui ·∇uj dΩ, (2)

Bij =

∫
S

[ui] · λjn dS, (3)

fi =

∫
Ω

fui dΩ. (4)

gi =

∫
∂Ω

uDλi d∂Ω.

7 Finite Element Method

7.1 Finite elements on the bulk

We can define a simplicial mesh M of our domain Ω, and let our subdomains Ωr be the cells of M. We will

define our finite elements as done by Ciarlet (2002) as a set {K,P,Σ}. K = Ωr is a subset of RD, and is a cell

of the mesh. P is a vector space of functions defined on K. Σ is a set of linear functionals φi defined over P .

For the primal hybrid method P will be the space of order k polynomials. We will define a basis {p1, . . . , pN}

such that φi(pj) = δij .

7.2 Finite elements on the trace

We will also define a simplicial mesh S of the set facets ∂T . The finite elements are defined as a set {E,P,Σ}.

E is a subset of RD, and a facet of the meshM. E is a subset of RD, and a facet of the meshM. Q is a vector

space of functions defined on E. Ξ is a set of linear functionals ψi defined over P .

For stability, the order of polynomials defined on the facets should be k − 1 (Raviart & Thomas 1977). So

a basis of order k − 1 polynomials qi : RD−1 → RD will also be chosen such that ψi(qj) = δij .

7.3 Local-global mapping

Each shape function pi, will have a local ID 1 ≤ i ≤ N , where N refers to the dimension of P . We will also

assign each shape function a unique global ID 1 ≤ iglob ≤ Nglob, where Nglob is the total number of shape

functions from all finite elements. We will assign the global IDs such that the global ID of any shape function

λi is larger than the global ID any shape function uj , to ensure that equations (2) and (3) still hold for the

global matrix. Given a finite element {K,P,Σ}, let I be a local to global mapping, such that pi = uI(i). This

mapping is defined analogously for the trace finite elements, with qi = λI(i).

7.4 Reference Element

Instead of evaluating the shape functions on the physical domain Ω, we can define a reference finite element.

They will be defined as
{
K̂, P̂ , Σ̂

}
and

{
Ê, Q̂, Ξ̂

}
for the finite elements on the bulk and on the trace respectively.
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K1

• x = ξK1(x̂)

K2

K3

K4 K̂

• x̂

ξK1

ξK2

Figure 1: Figure depicting the mapping from a square reference element (right) to the physical finite elements,

using their respective cell maps ξK1 and ξK2

For each finite element in the physical space we will define a cell map. The cell map ξ is a geometrical mapping,

such that K = ξ(K̂). Now we can use the mapping to construct the element on the physical domain as follows.

K = ξ
(
K̂
)

P =
{
p̂i ◦ ξ−1 | p̂i ∈ P̂

}
Σ =

{
φ̂i ◦ ξ−1 | φ̂i ∈ Σ̂

}
Similarly, we can construct all physical finite elements defined on the model facets.

8 Integration

Since shape functions vanish outside of their respective cells, we can integrate cell-wise, rather than over the

whole domain. Furthermore, by using the cell maps, the number of times the shape functions have to be

evaluated is significantly reduced. The new integration rules are as follows, where J is the Jacobian of the cell

map. The geometrical map ζE : Ê → K̂ takes the reference face Ê to the reference cell K̂, and depends on the

face E.
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∫
Ω

∇uI(i) ·∇uI(j) dΩ =

∫
K̂

(
J−T∇φ̂i

)
·
(
J−T∇φ̂j

)
|J| dK̂∫

S

[
uI(i)

]
· λI(j)−nndS =

∫
Ê

[
φ̂i ◦ ζE

]
· λ̂jn |J| dÊ,∫

Ω

fuI(i) dΩ =

∫
K̂

(f ◦ ξ) φ̂i |J| dK̂.

We can utilise Gaussian quadrature of order 2k for each of these transformed integrals which will be exact for

polynomials. The integral (4) will be approximate for most choices of f , however an exact integration scheme

could be considered.

9 Results

This method was implemented in Gridap, an open source finite element framework written in Julia (Badia &

Verdugo 2020). We will analyse the error convergence using a two dimensional manufactured solution u, where

u(x, y) = sin(πx) sin(πy).

A comparison of the actual solution and the hybrid method approximation can be seen in figures 2 and 3. Using

k = 1, we obtain a convergence rate of 2 in the L2 norm of the error. This can be seen in figure 4
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Figure 2: The exact solution u(x, y) = sin(πx) sin(πy)
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Figure 3: Numerical approximation of the solution

using the hybrid finite element method

7



Figure 4: L2 error norm as the diameter of cells h approaches zero.

10 Extension to multiscale methods

Previously every finite element was constructed from the singular reference finite element. Because the continuity

of the solution is only weakly enforced with the test function µ, we can modify the primal hybrid method by

using different vector spaces in each finite element. We could even define a submesh within coarser cells, making

the vector space a finite element space. Not only would this allow for the solver to adapt to subscale features,

it would also allow for parts of the algorithm to be parallelised.

11 Conclusion

In this paper we implemented the primal hybrid method and analysed its performance. This solver differs

from the standard finite element method by allowing for discontinuities in the shape functions across the cell

boundaries, and allowing the shape functions to be non-zero at the boundary. The continuity of the solution

is only weakly enforced by the dual variable λ, which is defined on the boundaries of the cells. Relaxing

the constraints on the functions that can be defined in the cells means that this method directly leads to a

multiscale method. Future research should focus on implementing a multiscale method, which would utilise

different shape functions in different areas of the domain. This method would adapt to multiscale problems,

such as oil extraction, and also parallelise to a large extent.
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