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Abstract

This project explores the validity of using linear regression to model Limited Dependent Variable models,

in particular binary choice data. It is very common in Economics to use only the Linear Probability Model,

and it is also common to do so without investigating the required assumptions on the residuals. However,

if the likelihood function does not represent the data’s generative process, then the model may not be

correctly specified. We use Monte Carlo simulations to estimate the distribution of coefficients and marginal

effects, for different Binary Regression models, with proper and misspecified residuals. Surprisingly, for our

Monte Carlo models the Linear Probability Model coefficients and marginal effects are reasonably robust,

whereas the logit and probit models — although accurate when correctly specified — are not robust to

misspecification.
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1 Introduction

In Economics, we are frequently interested in considering whether a policy works or not, or understanding the

root causes of social phenomena. This is often done in econometrics by identifying causal channels or variables,

and then testing the size, significance, and direction of regression coefficients. When the outcome is binary, the

most common regression model used is the ”Linear Probability Model”. However, supposing the residuals of

the generative process are not as specified by the model, this has the potential to yield incorrect results. In this

research project we are interested in applying Monte Carlo simulation to test the robustness of estimators from

Limited Dependent Variable (LDV) models — particularly Binary Choice models — to misspecification of the

residuals. This project is interdisciplinary, combining the Economics and statistics literature.

There is significant research done into LDV which demonstrates that “the consequences of violation of

the normality assumption in LDV situations can be quite severe” as the MLE are inconsistent when they are

specified differently to the generative process (Jarque, Bera and Lee, 1984). There are a number of different

kinds of LDV models, each designed for differently censored or truncated variables. In this project we are

concerned with “binary choice data”.

In particular for binary choice data, there are trade-offs between using Linear Probability Models (LPM)

through a simple ordinary least squares (OLS) procedure, or using some nonlinear index function such as the

probit or logit model. LPM is arguably simpler and easier to interperet, whereas logit and probit are more

sophisticated but overcome some of the LPM difficulties, such as predicting results outside of the support.

Contentious debate surrounds the trade-offs of these approach, and their relative robustness. A popular econo-

metrics book concludes that “while a nonlinear model may fit the [Conditional Expectation Function] for LDVs

more closely than a linear model, when it comes to marginal effects this probably matters little. This optimistic

conclusion is not a theorem, but . . . it seems to be fairly robustly true.” (Angrist & Pischke, 2008, p. 80).

In this report we will first outline some of the motivation behind this project, and background on the

techniques used. Next, we will explore the two experiments: the first, a simulated cross-sectional model, and

the second, a simulated fixed effects panel model. I find in each case that the results are somewhat robust,

with the LPM generally performing better under misspecification, and all models performing worse in the fixed

effects panel case.

1.1 Statement of Authorship

A/Prof Leandro Magnusson, UWA, and Professor Inge Koch, UWA, formulated the project idea and super-

vised the research. I, Luke Thomas performed the simulations, and interpreted the results with support from

Magnusson and Koch. I would like to thank AMSI for their generous financial support.
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2 Background

In this section, I lay out the motivation for the project, the background econometrics, and outline the models

used.

2.1 Motivation

Economists and social scientists are often concerned with big causal questions. Their work often involves

evaluating and testing government policy, and using econometric techniques to isolate the impact of different

variables on one another.

These questions often involve assessing how a factor affects an outcome. While there are a range of econo-

metric techniques used to try and isolate causal channels of effect, the final model specification is often similar

to regressions seen in applied statistics.

For example, consider the following important economics questions:

• Does U.S. Food Aid cause civil conflict in developing countries? (AER, 2014)

• Do workplace smoking bans reduce smoking? (AER, 1999)

• Is medical care use sensitive to cost? (RAND Health Insurance Experiment)

For each of these cases, researchers were trying to isolate the impact of some variable — respectively, US

food aid, workplace smoking bans, and medical costs — on relevant outcomes. Also, for each of these cases, the

outcomes considered are binary variables. For example: whether or not a country is in conflict, whether or not

someone smokes, and whether or not someone uses medical care.

As a result, it is important that we understand the models used to assess these questions. In this Vacation

Research Project, we look at simulating the models commonly used, in order to assess how robust they are to

misspecification. That is, what if the models are specified incorrectly: would the results still hold?

2.2 Model Specification

There are three common types of binary regression models which we consider in this research. These are the

linear probability model, the probit model, and the logit model.

2.2.1 Linear Probability Model

Arguably the most common approach used in econometrics is the linear probability model (LPM). A linear

probability model is “any regression where the dependent variable is zero-one” (Angrist Pishcke, p. 36).

The model is of the form, with y being a binomial variable:

E[y|XXX] = P (y = 1|xxx) = β0 + β1X1 + β2X2 + . . .
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The coefficients here represent the change in probability of success based on a unit change of the covariate.

For binomial data, the following hold:

E[y|XXX] = β0 + β1X1 + β2X2 + . . . ,

and

V ar[y|XXX] = XXXβ(1−XXXβ).

This shows that the OLS regression produces “ unbiased estimators” of the coefficients (Wooldridge, 2002).

The variance of y depends on xxx however, which implies heteroskedasticity (by design, there is non-constant

variance).

Of course, the major flaw with the linear probability model is that it has limited predictive power, and for

some covariate values will produce estimates that are outside of the probabilistic bounds of [0, 1].

2.2.2 Probit Model

The probit and logit models are a nonlinear types of regression used in econometrics. They are termed “Index

Models” by modern econometrics texts, as they are reliant on a secondary nonlinear transformation.

That is, they can be thought of as:

P (y = 1|xxx) = F (β0 + β1X1 + β2X2 + . . .).

Where the function F (·) may take different forms. It must however be a Cumulative Distribution Function,

which is limited at 0 and 1. The motivation behind this approach relies on what is called a Latent Variable

Model. A Latent Variable model in econometrics is different to the Factor Analysis concept of the same name

in statistics, and instead refers to an underlying data generating process which is not observed.

We denote the unobserved latent variable as y∗, and the observed variable as y. To outline this concept, we

use the notation in Wooldridge, 2002.

A latent variable model in econometrics is slightly different to its Factor Analysis meaning in statistics.

Instead, Latent Variable Models are constructed to represent the underlying data generating process behind

binary observations.

The latent variable is a variable which determines the result of the observed variable. For example, consider

the case of the following possible observed binary data: whether or not a family chooses to have children. This

decision might be a result of a number of variables: income, age, country, and many others. We consider that

these variables might be related to an unobserved variable: “the utility (or internal cost-benefit analysis) of

having children”. If the utility of the decision is positive, an individual has children, and if it is negative, they

do not.

This process of an unobserved latent variable (such as utility) being transformed into an observed variable

(the decision or outcome), is the motivation behind the nonlinear models we consider.
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The latent variable is assumed to have some distribution based on observable indepedent variables (xxx) and

noise (e):

y∗ = xxxβ + e,

where the observed variable depends on whether that variable is above or below 0:

y = 1[y∗ > 0].

It can be shown that the probability of the observed variable, then, is linked to the predicted value of the

latent variable by the distribution of the error term.

P (y = 1|xxx) = P (y∗ > 0|xxx) = P (e > −xxxβ|xxx) = 1− F (−xxxβ) = F (xxxβ).

For the probit model, the CDF and residual distribution is that of the standard normal:

F (z) ≡ Φ(z) ≡
∫ z

−∞

1

2π
e

−t2

2 dt.

2.2.3 Logit Model

The logit model, also known as “Logistic Regression”, is commonly seen in statistics and machine learning as a

regression of covariates on the log-odds of an event. The model is often motivated differently in econometrics,

as an index function, but it is inherently the same model. That is, it has the same likelihood function and

estimators.

The logit model is an index model as above, but instead of the residual being distributed according to the

standard normal, it follows the “logistic distribution”. That is,

F (z) = Λ(z) ≡ ez

1 + ez
.

With a little massaging, it can be seen that the above approach leads to the same result as a log-odds

regression with the same statistics (Wooldridge, 2002).

2.3 Marginal Effects

The nature of Ordinary Least Squares (OLS) is that its coefficient estimates provide a simple interpretation of

how a unit change in the independent variables affects the dependent variable. For other regression techniques

including Generalised Linear Models (GLM) such as logit and probit, which involve a transformation on the

linear predictor, the impact of unit changes in independent variables is less immediately obvious.

In these cases, it is useful to consider the Marginal Effects. Stated simply, for a regression of the form:

ŷ = β0 + β1X1 + β2X2.

The marginal effect with respect to X1 is ∂ŷ
∂X1

= β1.
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There are a number of common ways to cite the marginal effects of nonlinear regressions. The three common

ways are the Marginal Effects at Means (MEMs), Marginal Effects at Representative Values (MERs) and

Average Marginal Effects (AMEs). The Marginal Effects at Means are found by taking the marginal effects

of each covariate at the mean of each covariate. The Marginal Effects at Representative Values is similar,

but instead of letting the covariates be means, they are set at specific important values. Finally, the Average

Marginal Effects are the most commonly used, and find the marginal effects at every value of X, and then take

the mean across these.

In this simulation, we calculate Average Marginal Effects using Thomas Leeper’s margins package in R

(Leeper, 2017). This package, similar to the STATA statistical software often used in econometrics, calculates

the partial derivates numerically:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

3 Case 1: Cross-Sectional Model

Now, we explore our first experiment. Here we are assessing the robustness of the coefficients and marginal

effects under a simple cross-sectional model.

3.1 Data Generating Process (DGP)

In order to isolate for the robustness of the regression techniques, we construct a unique Data Generating Process

which can be replicated. Binomial regression concerns itself with estimating the probability of a binary choice

(labelled 1 a success or 0 a failure), given some exogenous independent variables. As described, the underlying

process motivating the probit/logit model of such data, is the estimation of a “latent variable model”.

We simulate this in the following way:

y∗i = β0 + β1X1i + β2X2i + β3X3i + υi (1)

yi = 1{y∗
i≥0} (2)

For each y∗i , υi represents the residuals or noise, and is our primary object of interest. For these simulations

we set n = 100, and describe three independent variables and a constant. Note that we refer to independent

variables as analagous to the explanatory variables or covariates — they are not necessarily uncorrelated.

Equation (2) shows an indicator function representing censoring: if and only if the value of y∗ is positive will

the observed value will be a success.

As a result, for the particular DGP we investigate, we describe the above latent variable model in the linear

form:

(100×1)︷︸︸︷
y∗ =

(100×4)︷︸︸︷
X ′X ′X ′

(4×1)︷︸︸︷
β +

(100×1)︷︸︸︷
υ (3)
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Where the true parameter (β) of the latent variable model are:

β =


β0

β1

β2

β3

 =


−0.8

0.2

0.3

−0.5


Below in Figure 1 you can see an example histogram of the latent variable and its corresponding censored

observed variable.
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Figure 1: Histogram of Simulated y∗i and yi

In order to emulate the variety of independent variables that may be found in the real world, we simulate

three differently distributed independent variables as follows:

X0i = 1, A vector of 1’s

X1i ∼ N(1, 1)

X2i ∼ Poisson(λ = 1)

X3i ∼ Unif(−1, 1)

It should be noted that the parameters and independent variable distributions are arbitrary.

They are designed purely to provide a reproducible simulation of some data. It should also be noted that only

one set of independent variables is ever drawn from the above distributions. All further resimulations involve

resimulation of the residual and not of the whole model.
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3.2 Methodology

Our methodology involves two major steps: first, we simulate the data under the correct specification of the

model (using a standard normal distribution on the residual), and then we simulate it using residuals which are

autocorrelated. In each case we find the coefficients and the marginal effects, and then assess their deviation

from the true values.

For the first step, we model the residuals as independently and identically distributed (iid) standard normal,

which would mean that the probit model is properly specified.

Using the fixed independent variables, we simulate the residuals N = 10, 000 times to find the distribution

of estimators given the correct specification of the model as outlined.

Next, we are interested in the coefficients and marginal effects under misspecification. A key candidate for

misspecification, termed endogeneity in economics, is error autocorrelation. This is where the residuals may be

correlated with one another. In economics, this may be observed when a specified model is fitted with omitted

or simultaneously determined variables. For example, there may be two variables which are both correlated

with a single hidden variable, and hence the residuals may be autocorrelated.

To model misspecification, we choose to simulate residuals with an AR(1) structure (that is, autoregressive

with one lag), such that υi = ρυi−1 + νi.

We can demonstrate this through the following covariance matrix:

Ω = SS′︸︷︷︸
M×M

=



1 ρ ρ2 . . . ρM

ρ 1 ρ . . . ρM−1

ρ2 ρ 1 . . .
...

...
...

...
. . . ρ

ρM ρM−1 . . . ρ 1


where S′S is the Cholesky decomposition. It can be shown that Sυi, premultiplying residuals by the lower

triangular S, will embed this autocorrelation structure in the covariance matrix.

It can be shown that S′υ is the new residuals of interest.

V ar(S′υ) = S′V ar(υ)S (4)

= S′IS′ (5)

= S′S = Ω (6)

Here ρ represents the degree of correlation (the proportion of one residual explained by another), and υi are

the correctly specified residuals (standard normal).

Fortunately, we can use this covariance matrix to directly simulate random normal variables using the

mvrnorm() function from the MASS package in R.

We resimulate the noise using this structure, and then use this to construct the latent variable model. The

latent variable model is then censored to become binary choice data. We use this new data to test the robustness

of the estimators calculated.
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3.3 Results

Firstly, for the correctly specified simulations we can find the mean coefficients in Table 1.

Table 1: Mean Coefficients of Regression output

Estimator LPM probit logit

β̂0 0.22 -0.84 -1.39

β̂1 0.07 0.21 0.35

β̂2 0.11 0.32 0.53

β̂3 -0.18 -0.53 -0.88

The results from the nonlinear logit and probit in Table 1 clearly do not tell us much about the magnitude

of the change in probability caused by a unit change in each covariate. Between the LPM, logit, and probit

we can see the direction of the change in probability from a unit change in covariates is the same. However,

except for the linear probability model, the relative magnitude of that change is not clear. To find the more

comparable average marginal effects, see Table 2.

It can be seen that mean marginal effects across models are much more similar, with the probit model slightly

overstating the impact of a unit change in covariate. As expected, the coefficients of the LPM are equivalent to

the marginal effects.

Table 2: Mean Marginal Effects of Regression output

Estimator LPM probit logit

dydx X1 0.07 0.08 0.08

dydx X2 0.11 0.11 0.11

dydx X3 -0.18 -0.19 -0.20

We take density plot of these simulated coefficients under the correct specifiation, and now look at comparing

them to their misspecified counterparts. These resulting distributions can be seen in Figure 2 and Figure 3 for

coefficients and marginal effects respectively. Each of these only shows the coefficients and marginal effects on

the first covariate.

In the density plots shown in Figure 2 you can respectively find the distributions of the LPM, probit, and

logit under misspecifcation and different degrees of autocorrelation for the coefficients of X1. This exercise can

be repeated for each covariate, but for simplicity we chose to focus on X1. We consider this first correctly
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specified, and then with ρ increased to 0.5. A non-parametric kernel estimation technique is used to model the

density function of each distribution.

For each case we can see that the correctly specified model, without autocorrelation, tends to produce esti-

mators with a lower variance than the misspecified model. This suggests that the correctly specified coefficient

may converge more quickly to the mean. While only a small difference, the higher the autocorrelation, the

larger the difference between the correct and misspecified model estimates’ distributions.

The probit model, properly specified, correctly estimates the mean of its latent variable model coefficient

around 0.2. However, it is potentially concerning that the marginal effects of the probit model do not appear

to converge with the LPM. This could be an interesting question for further research.

For both the probit and logit model, the distribution of the marginal effects appears strongly influenced

by endogeneity. It not only appears to shift the central tendency of the distribution, but also induce peculiar

behaviour around the correctly specified means. While this behaviour seems more strong for the logit model,

which is misspecified from the beginning, this could just be due to random variation in sampling. The distribu-

tion of marginal effects at the tail (95th percentile) can be seen in Appendix III — while we had limited time

to investigate effects at the tails, it is an interesting area for future research.

Overall, for misspecification in the cross-sectional model, each of the LPM, probit and logit seem remarkably

robust.
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Figure 2: Simulated Distribution of X1 Coefficient Estimates under Different Autocorrelation Structures
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Figure 3: Simulated Distribution of X1 Marginal Effects Estimates under Different Autocorrelation Structures

4 Case 2: Fixed Effects Panel Model

In econometrics, statistical techniques have been designed to investigate panel data. Panel data are data where

particular observations are followed over time — a given unit, such as a country, an individual, or a business,

will have regular variables recorded. The data can be thought to have a two-unit index: unit and time.

Like other kinds of data, the variable of interest in a panel dataset may be binary choice. In this kind of

data, linear probability models and Index models such as the logit can be motivated as above.

4.1 Data Generating Process

As above, we simulate a panel dataset with a predictable Data Generating Process.

We reduce some of the complexity in the above model to form more predictable behaviour. We construct

our Latent Variable Model:
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y∗i,t = β0 + β1X1,it + φi + υit (7)

yit = 1y∗
i,t>0. (8)

y∗i,t is our unobserved Latent Variable Model, and yit is the observed variable. X1 is our only explanatory

variable, and is distributed:

Xit ∼ N(1, 1)

The true values of β used in our simulation are arbitrarily set as:

β =

β0
β1

 =

−0.8

0.2


Finally, φi is the individual-specific fixed effect. That is, an adjustment of the intercept depending on the

observation. We derive this from a random uniform distribution on [−1, 1] — again, set arbitrarily to generate

data.

We ignore the probit model in these simulations and focus on correctly specifying the logit model. As a

result, the residual of the latent variable model, υ is specified correctly with a standard logistic distribution.

4.2 Methodology

We follow a similar methodology as before: first simulating the binary data under the correct specification (in

this case, of the logit model), and then under residual autocorrelation.

First, we assume that we have a balanced panel dataset with 1,000 observations. These observations comprise

100 individuals across 10 time periods. The distributions of the explanatory variables over time is assumed to

remain the same.

Next, we pre-define φφφ, the vector of fixed effects across all individuals. To do this, we sample from a uniform

distribution on [−1, 1] 99 times, assuming that φ1 = 0. When the dataset is resimulated, we assume that these

φi remain constant.

Finally, for each individual i we sample X1,it 10 times, indexed by t = 1, . . . , 10, then simulate the residuals

from a logistic distribution and produce the y∗ and y as in equation (8). We gather all of the observations into

one dataset.

We then repeat this process 1,000 times to produce 1,000 datasets. Using the 1,000 simulated datasets, we

apply the linear probability model and logit model as earlier specified to derive coefficients.1

We now introduce a misspecification of the residuals in our simulations. That is, the residuals no longer

follow the logistic distribution as is assumed by the logit model. We consider two degrees of autocorrelation,

where ρ = 0.5 and 0.9.

1We use the plm package and cquad package respectively to model the linear panel models and the conditional logit models.

To understand the fixed effects more clearly, it can be useful to think of these packages as modelling a series of dummy variables

representing each individual. These variables “switch on” for each of the individuals, to provide a fixed adjustment of the intercept.
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We introduce this misspecification by pre-multiplying the residuals within individuals by the lower triangular

Cholesky decomposition of the previously seen AR(1) matrix. To summarise:

• Correct Specification: υ1 ∼ Logis(0, 1)2

• Misspecifiaction: υ2 ≡ Sυ1

Where:

V ar(Sυ1) = SV ar(υ1)S′︸ ︷︷ ︸
M×M

(9)

= S(
π2

3
I)S′ (10)

=
π2

3
SS′ (11)

=
π2

3



1 ρ ρ2 . . . ρM

ρ 1 ρ . . . ρM−1

ρ2 ρ 1 . . .
...

...
...

...
. . . ρ

ρM ρM−1 . . . ρ 1


(12)

For each of these misspecifications we resimulate as in the previous methodology, but using the new residuals.

4.3 Results

The means of the coefficients under each resimulation can be seen in Table 4. It can be seen then in Table

4 that in each the estimators move away from the unbiased or true result as misspecification increases. This

implies that the coefficients are not robust to this misspecification.

Table 3: Mean and Mean Standard Deviation of β̂1 Regression output

Estimator LPM logit

Mean 0.04 0.20

Mean Standard Deviation 0.02 0.07

Turning to Figures 4 and 5, we can see the distributions of these estimators under each condition. Inter-

estingly, the coefficients of the LPM model seem more robust to autocorrelation than the logit model. This

may be because of the natural lack of sensitivity in the LPM (as it calculates marginal effects), but it would be

2The Standard Logistic Distribution
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Table 4: Mean of Misspecified β̂1 Regression output

Estimator LPM logit

True Mean N/A 0.2

Mean (ρ = 0) 0.04 0.20

Mean (ρ = 0.2) 0.04 0.21

Mean (ρ = 0.5) 0.04 0.22

Mean (ρ = 0.9) 0.04 0.38

prudent to also find the marginal effects of the logit model and investigate how they change as a result of the

coefficients changing.

The marginal effects, calculated as described in Appendix I, are presented in Appendix II. This plot shows

that a similar trend is observed: the linear probability model seems significantly more robust.

In the logit model the mode reliably increases with autocorrelation, whereas the mode in the LPM appears

to adjust less predictably. The logit model coefficients are distributed with a larger standard deviation as the

autocorrelation increases, although this trend seems to be almost inverted for the LPM.
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Figure 4: Simulated Distribution of X1 Estimates (LPM)
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Figure 5: Simulated Distribution of X1 Estimates (logit)

In summary, the results appear as expected with more autocorrelation responding with a larger deviation

from the true coefficients. The logit model, correctly specified, returns a close approximation to the truth, but

when misspecified also appears the most sensitive.

Broadly speaking, the Fixed Effects Panel Model is markedly less robust to misspecification than the simple

cross sectional model.

5 Conclusion

In this project we were interested in how robust the coefficients are under model misspecification. This is an

important question, as it details the consequence of poorly fitted regressions when considering major social

science questions.

We use Monte Carlo simulations to estimate the distribution of coefficients and marginal effects, for different

Binary Regression models, with proper and misspecified residuals.

We find that the linear probability model tends to be more robust to specification, but is not as accurate

as a properly specified logit or probit model is. These effects are more pronounced for the fixed effects panel

model than the simple cross-sectional model.

These results are specific to the Monte Carlo simulations we have run, and it motivates interesting future

research into the behaviour of these coefficients and marginal effects under misspecification. It would be valuable

to consider these effects through a theoretical lense in future research.
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Appendix I: Calculating Marginal Effects

For the second case, it is not possible to use the margins package in R. Instead, take the following approach to

calculating the marginal effects:

Say

y∗i,t = β0 + β1X1,it + φi + υit (13)

yit = 1y∗
i,t>0 (14)

Therefore:

P (yit = 1|XXX) = P (y∗ > 0|XXX) (15)

= P (β0 + β1X1,it + φi + υit > 0|XXX) (16)

= P (υit > −(β0 + β1X1,it + φi)|XXX) (17)

= 1− Λ(−(β0 + β1X1,it + φi)) (18)

= Λ(β0 + β1X1,it + φi) (19)

Note that Λ refers to the CDF oof the logistic distribution, as described earlier. Therefore the marginal effects

of X1 are:

P (yit = 1|XXX)

∂Xit
=

∂

∂Xit
Λ(β0 + β1X1,it + φi) (20)

= λ(β0 + β1X1,it + φi) · β1 (21)

To find an estimate of the marginal effects, we take β0, φi to be the true values from the simulation. We take

β1 = β̂1. To find the Average Marginal Effects, we calculate this at each observation of X and then take the

mean:

AME =

∑
it λ(β0 + β̂1X1,it + φi) · β̂1

N
(22)
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Appendix II: Marginal Effects (Case 2)

Here you can see the marginal effects, calculated as in Appendix I, for case 2. It can be seen that where the

LPM stays fairly robust, the Logit model performs much worse under misspecification and appears to be biased

upwards.

Figure 6: Simulated Distribution of X1 Marginal Effects
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Appendix III: Marginal Effects at the Tails (Case 1)

These plots show the distribution of marginal effects, where we take the marginal effect of a change in the

covariate when X1 is at the 95th percentile instead of at the mean. We can see even at the tail the results are

fairly robust in case 1. We did look into tail phenomena in depth, but this is an interesting area for future

research.
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