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Abstract

We generalise the supersymmetric box-ball system devised by Hikami–Inoue for the

affine general linear Lie superalgebra using the Kirillov–Reshetikhin (KR) crystals con-

structed by Kwon–Okado. We prove solitonic behaviour for a certain class of solitons in

this generalised system.
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1 Introduction

The Kortweg–de Vries (KdV) equation is an non-linear partial differential equation used to

model shallow water waves moving through a narrow channel. In 1965, Zubusky and Kruskal

found that the solutions to this equation decompose into solitons, which are solitary waves

within the channel. The solitons are known to propagate with speed proportional to their

size and retain their shapes after collisions. There exists a ultradiscrete analogue to the KdV

equation called the Takahashi–Satsuma box-ball system (BBS) (Takahashi and Satsuma, 1990).

The BBS is a discrete integrable dynamical system that is composed of finitely many balls in
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an infinite line of boxes with an algorithm describing its time evolution. The ultradiscrete

analogue of the soliton solutions to the KdV equation in the BBS are packets of balls that

move together with speed corresponding to their number and are stable under propagation and

collision. The box-ball system has deep links with mathematical physics and representation

theory through Kashiwara’s crystal theory of quantum groups (Kashiwara, 1990).

It was realised that the BBS could be described using tensor products of Kirillov–Reshetikhin

(KR) crystals for Uq(ŝl2) (Fukuda et al., 2000; Hatayama et al., 2001) with the time evolution

is described by using the combinatorial R-matrix, the unique isomorphism that interchanges

tensor product of KR crystals. Utilising this crystal theory, it was natural to extend the system

to Uq(ŝln+1), producing a system often called the coloured BBS (Hatayama et al., 2001). This

was then further generalised by Yamada (Yamada, 2004) using the KR crystals Br,s rather than

B1,s.

A generalisation to the BBS was later devised by Hikami–Inoue (Hikami and Inoue, 2000)

using ideas from supersymmetry called the supersymmetric box-ball system (SBBS). Subse-

quently, Kwon–Okado (Kwon and Okado, 2020) constructed the analogue of KR crystals for

the generalised quantum group of type A, providing the structure in order generalise the SBBS

further. We define the structure of a single soliton within this generalised system (Theo-

rem 4.1). We then prove a certain class of solitons interact such that their shapes are preserved

after collisions (Theorem 4.2).

2 Background

2.1 Partitions and hook shape

A partition λ ofN ∈ N, is a set of positive integers {λ1 ≥ λ2 ≥ · · · ≥ λk} such thatN =
∑k

i=1 λi.

Young diagrams are used to represent these partitions as boxes pushed into the upper-left

corner.
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Example 2.1. The partition λ = (4, 3, 2, 2) has a Young diagram of

.

An (m|n)-hook shape it is a Young diagram such that λm+1 ≤ n. Pictorially, it means the

Young diagram fits inside the shaded area:

n

m

2.2 The Box-ball System

The Takahashi–Satsuma box-ball system (BBS) (Takahashi and Satsuma, 1990) is an ultradis-

crete analogue of Kortweg–de Vries (KdV) equation. The BBS is composed of a finite number

of balls in an infinite line of boxes, with the following algorithm to describe how these balls

propagate. Moving from left to right, every time a ball is encountered, unless it had already

been moved, place the leftmost ball in the strictly nearest right empty box.

The KdV equation admits soliton solutions, which are solitory waves that maintain their

shape under collision and exhibit speed proportional to their amplitude. Solitons in the context

of the BBS are the discrete analogue of this phenomena. A BBS soliton is a group of s balls

that exhibit the following behaviour:

• Move with speed s.

• Maintain shape under propagation and collision.
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2.3 The general linear Lie superalgebra

The generalised BBS we aim to construct obtains its structure in part from the general linear

Lie superalgebra gl(m|n) and its corresponding (Drinfeld–Jimbo) quantum group Uq(gl(m|n)).

Let I = IeventIodd be the indexing set of simple roots, where Ieven = {m− 1, . . . , 1, 1, . . . , n−1}

and Iodd = 0. Let P be the weight lattice

P =
⊕
b∈B

Zεb,

where B = B+ tB−, with B+ = {m, . . . , 1} and B− = {1, . . . , n}. We define an inner product

(εa, εa′) =


1 if a = a′ ∈ B+,

−1 if a = a′ ∈ B−,

0 otherwise.

The values in B+ are referred to as bosonic and values in B− as fermionic. The simple roots

indexed by I are then given by,

αi =


εa+1 − εa if i = a ∈ m− 1, . . . , 1,

ε1 − ε1 if i = 0,

εi − εi+1 if i ∈ 1, . . . , n− 1.

Let {hi}i∈I denote the simple coroots with the canonical pairing denoted by 〈hi, αj〉, which is

given by the Cartan matrix.

The fundamental representation V of Uq(gl(m|n)) is an (m+n)-dimensional representation.

Let V
⊗
k be the k-th tensor power of representation of V . It can be shown that all tensor powers

of representations for k ≥ 1 are completely reducible, of which the irreducible summands V (λ)

correspond to partitions λ of (m|n)-hook shape.
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m− 1 m− 2 1 0 1 n− 2 n− 1

Figure 1: Dynkin Diagram for gl(m|n) using the standard Borel.

2.4 Crystals

A Uq(gl(m|n))-crystal B is a set with mappings called the Kashiwara operators ei, fi : B →

B t {0}, for all i ∈ I, and weight function wt: B → P that satisfy the following axioms:

1. For all b ∈ B and i ∈ I, there exists k > 0 such that eki = fki = 0.

2. ei0 = fi0 = 0.

3. For b1, b2 ∈ B, then f2b2 = b1 and e1b1 = b2.

4. ϕi(b) = εi(b) + 〈hi,wt(b)〉 for all b ∈ B and i ∈ Ieven, where εi, ϕi : B → Z≥0, are the

statistics

εi(b) = max{k|eki (b) 6= 0}, ϕi(b) = max{k|fki (b) 6= 0}.

5. For all b ∈ B and i ∈ Iodd:

εi(b) + ϕi(b) =

0 if 〈hi,wt(b)〉 = 0,

1 otherwise.

We say element b ∈ B is highest weight if ei(b) = 0 for all i ∈ I.

For crystals B1, B2, . . . , BL we can define their tensor product B = BL ⊗ · · · ⊗ B2 ⊗ B1

as the set BL × · · · × B2 × B1 with the crystal structure given as follows. Fix an element

b = bL ⊗ · · · ⊗ b1 ∈ B and i ∈ Ieven. We define eib and fib using the signature rule (Benkart

et al., 2000). Reading left to right, we construct the signature as the sequence

sgni(b) = − · · ·−︸ ︷︷ ︸
ϕi(bL)

+ · · ·+︸ ︷︷ ︸
εi(bL)

· · · − · · · −︸ ︷︷ ︸
ϕi(b1)

+ · · ·+︸ ︷︷ ︸
εi(b1)

.

Then, successively removing +− pairs, we obtain the reduced signature

rsgi(b) = − · · ·−︸ ︷︷ ︸
ϕi(b)

+ · · ·+︸ ︷︷ ︸
εi(b)

.
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The operator ei (resp. fi) acts on the factor containing the rightmost − (resp. leftmost +). If

there is no such − (resp. +), we define eib = 0 (resp. fib = 0). The operators e0 and f0 have a

different algorithm (Kwon and Okado, 2020):

• If the first occurrence of 1 in word(x) is before the first occurrence of 1, then f0(x) replaces

the corresponding 1 in x with 1 and e0(x) = 0.

• If the first occurrence of 1 in word(x) is before the first occurrence of 1, then e0(x) replaces

the corresponding 1 in x with 1 and f0(x) = 0

For more information on crystals, we refer the reader to (Benkart et al., 2000; Bump and

Schilling, 2017).

2.5 Semistandard tableaux and crystals

A Young tableau is a filling of the boxes of a Young diagram with an element of B+ t Bi such

that rows and columns are weakly increasing with respect to the ordering m < · · · < 1 < 1 <

· · · < n. A semistandard Young tableau (SSYT) is a Young tableau such that the bosonic (resp.

fermionic) values strictly increase column-wise (resp. row-wise).

We define the reading word of a tableau by the Japanese reading word, reading right to left

and top to bottom. For example, consider the tableau

b =

t11 t12 · · · t1s

t21 t22 · · · t2s
...

...
. . .

...

tr1 tr2 · · · trs

.

Then the reading word of b is then given by

word(b) = t1s · · · trs · · · t12 · · · tr2 t11 · · · tr1,

where tensors are omitted for convenience.

As previously mentioned, the tensor powers of the fundamental representation of Uq(gl(m|n))

are completely reducible, where their irreducible summands V (λ) are indexed by partitions λ
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m m−1 · · ·

· · · 1 1 2 3 · · ·

· · · n−1 n

m− 1 m− 2

1 0 1 2 3

n− 2 n− 1

Figure 2: The crystal B( ) for Uq(gl(m|n)).

that have (m|n)-hook shape. The irreducible module V (λ) admits a crystal base denoted by

B(λ), which is described by semistandard tableaux of shape λ with the crystal structure given

by the reading word and signature rule (Benkart et al., 2000).

2.6 Affine crystals

Let U(ε) be the generalised quantum group for type A (Kuniba et al., 2015). It can be in-

terpreted as the affine analogue to the quantum group for the general linear Lie superalgebra.

There exists a irreducible U(ε)-module W r,s with crystal base, where we denote the corre-

sponding crystal Br,s called a Kirillov–Reshetikhin (KR) crystal (Kwon and Okado, 2020). As

a Uq(gl(m|n))-crystal, Br,s corresponds to (m|n)-hook semistandard Young tableaux of shape

sr, a partition of an r × s rectangle.

2.7 The combinatorial R-matrix

Consider two Uq(ĝl(m|n))-crystals Br1,s1 and Br2,s2 . Then, there exists a unique isomorphism

called the combinatorial R-matrix (Kwon and Okado, 2020)

R : Br1,s1 ⊗Br2,s2 → Br2,s2 ⊗Br1,s1 ,

which means it commutes with the Kashiwara operators ei and fi for all i ∈ I. We will focus

on the R-matrix when Br1,s1 = Br,s and Br2,s2 = Br,1.

In order to describe how the R-matrix acts, we introduce Robinson–Schensted–Knuth (RSK)

insertion. We denote column insertion of a tableau T2 into another tableau T1 as col(T2)→ T1.

We will often write this simply as T2 → T1. We do this by inserting word(T2) element-wise.

Let i ∈ word(T1) be the element being inserted. Beginning with column 1 of T1. The process
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is as follows:

1. For i ∈ B− (resp. i ∈ B+). If there does not exist any element j > i (resp. j ≥ i), then

place i in a box at the end of the column.

2. If there exists a topmost element j > i (resp. j ≥ i) then replace j with i and repeat

process (1) and (2) beginning with the next column.

3. Repeat process for each i ∈ word(T2) each time beginning at column 1 until all elements

have been inserted.

From Kwon–Okado (Kwon and Okado, 2020, Theorem 7.9), we have that R : Br1,s1 ⊗ Br2,s2

sends T1⊗ T2 → T̃2⊗ T̃1 if and only if T2 → T1 = T̃2 → T̃1. This means that we need not know

explicitly how the R-matrix acts if we know the result. We use this theorem extensively in our

proofs to avoid this explicit calculation.

Example 2.2. We perform column insertion on the following pair of tableaux T2 → T1:

4 4 3

3 1 3

1 2 3

→
3

1

2

=

4 4 3 3

3 3 1

1 2 3

1

2

.

The image of the R-matrix is

T̃2 =

4 3 3

3 1 2

1 2 3

, T̃1 =

4

1

3

,

and a direct computation shows that T̃2 → T̃1 = T2 → T1.

3 The Super Box-ball System

The super box-ball system (SBBS) is a generalisation of the Hikame–Inoue (Hikami and Inoue,

2000) BBS using the KR modules constructed by Kwon–Okado (Kwon and Okado, 2020).
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3.1 SBBS and Crystals

The SBBS is constructed using the Uq(ĝl(m|n))-crystal Br,s. The balls in this system are now

column tableaux of height r.

b = [x1 , x2 , · · · , xr]T ∈ Br,1,

where CT denotes a column and xi ∈ B+ t B−. The empty box, also denoted the vacuum

element v, is chosen to be the highest weight element with restricted indexing choice i for the

Kashiwara operators by removing i = m− r so that the vacuum remains unchanged. The

vacuum v is defined as follows:

v = [m,m− 1, . . . ,m− r + 1]T ∈ Br,1.

A state of the SBBS is constructed with v, bα ∈ Br,1, as follows,

b0 ⊗ b1 ⊗ · · · ⊗ bL ⊗ (v)⊗∞ ∈ (Br,1)⊗∞.

3.2 Carrier

We now introduce the carrier in order to describe time evolution in the SBBS. This is analogous

to the time evolution used in the generalised BBS for ŝln+1 given by Yamada (Yamada, 2004).

The empty carrier, denoted v`, is given as follows:

v` =

m m · · · m

...
...

. . .
...

m−r+1 m−r+1 · · · m−r+1

,

where ` is sufficiently large.

For a state p = v⊗∞ ⊗ b1 ⊗ · · · ⊗ bN ⊗ v⊗∞, we define the time evolution operator T`(p) by

T`(p)⊗ v` = R(v` ⊗ p)

given by the appropriate composition of R-matrices. This is well-defined because we have
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R(v` ⊗ v) = v ⊗ v` and eventually the carrier returns back to v`. More precisely, we can

represent this pictorially as

v v b1 bN v v v

v v b̃1 b̃N b̃N+1 b̃N+2 b̃N+3

v` v` v` u1 · · · uN−1 uN uN+1 uN+2 · · · v`,

where each crossing is an application of the R-matrix.

Example 3.1. Fix some r < m. Consider some b ∈ Br,1 such that b 6= v, and consider the

(truncated) state v⊗N ⊗ b⊗ v⊗L. The R-matrix acts as the identity on the vacuum, R(v`⊗ v) =

v ⊗ vl. Thus, the R-matrix acts on each vacuum, leaving it and the carrier unchanged, until

we reach the non-vacuum element b. Here, we have

R (v` ⊗ b) = v ⊗ v v · · · v b .

We see b has been replaced by a vacuum and picked up by the carrier in the rightmost column.

Now the carrier moves to the next vacuum

R
(

v v · · · v b ⊗ v
)

= v v · · · v ⊗ b.

We see the carrier unloads b and returns to its initial state. We then obtain the state

v⊗N+1 ⊗ b⊗ v⊗L−1.

Thus, we see that b has propagated to the right with speed 1.

4 Solitons

We say a state in the SBBS has solitonic behaviour if the following conditions are satisfied.

1. Groups of size s of adjacent column tableaux not equal to the vacuum v, move with speed

s when far apart. Such a group is called a soliton.
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2. Solitons maintain their sizes after collisions.

Note that the values in the columns are free to be exchanged between the interacting bodies.

4.1 Satisfying the speed condition

We now give the structural requirements for satisfying the speed condition.

Theorem 4.1. Consider

x =

x11

x21
...

xr1

⊗

x12

x22
...

xr2

⊗ · · · ⊗

x1s

x2s
...

xrs

∈ (Br,1)⊗s such that

x1s · · · x12 x11

x2s · · · x22 x21
...

. . .
...

...

xrs · · · xr2 xr1

is semistandard.

Then,

T t` (u
⊗c
1 ⊗ x⊗ u⊗∞1 ) = u

⊗(c+tmin{d,`})
1 ⊗ x⊗ u⊗∞1 .

In order to prove this theorem, first construct the highest weight semistandard group of

column tableaux. Using the insertion rule involving the R-matrix, then show how the carrier

and R-matrix operate on the system in a series of loading and unloading steps. Since crystal

(Br,1)⊗s is connected (Kwon and Okado, 2020) and the R-matrix commutes with the Kashiwara

operators. This proves the result for all semistandard groups of column tableaux.

4.2 Collision Stability

In order to describe the structural requirements for collision stability, we must specify structure

of every group of elements in the system. This is because no group of elements acts solitonically

universally. From extensive examples generated using SageMath (Developers, 2020), we ob-

serve a requirement of separation between values greater than or equal to m− r and less than

m− r among the interacting groups. Our current results are given in the following theorem.
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Theorem 4.2. Let r < m. Consider solitons of the form

x =

x11

x21
...

xr1

⊗

x12

x22
...

xr2

⊗ · · · ⊗

x1s

x2s
...

xrs

∈ (Br,1)⊗s

such that

xij < m− r for all j and for i < r,

xrj ≥ m− r for all j.

Then, these groups have solitonic behaviour.

In order to prove Theorem 4.2, we look at the highest weight system and operate the R-

matrix on the system until completion. If r < m − 1, we can reduce it to the proof given by

Yamada (Yamada, 2004). For the case r = m− 1, we perform a detailed technical analysis of

the evolution using similar ideas from (Yamada, 2004), where the details will be made available

in the subsequent paper.

Example 4.3. Consider system of height r = 2, with m = n = 3. Example of solitonic

behaviour

t = 0 2 1 1
2 2 3

t = 1 2 1 1
2 2 3

t = 2 2 1 1
2 2 3

t = 3 1 2 1
2 2 3

t = 4 2 1 1
2 2 3

t = 5 1 2 1
2 1 1
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Example 4.4. Example of non solitonic behaviour.

t = 0 2 1 1
1 1 1

t = 1 2 1 1
1 1 1

t = 2 2 1 1
1 1 1

t = 3 2 1 1 1
1 3 1 2

t = 4 1 1 2 1 1
3 2 3 1 2

t = 5 1 1 2 1 1
3 2 3 1 2

t = 6 1 1 2 1 1
3 2 3 1 2

5 Discussion and Conclusion

In this report, we described a discrete dynamical system known as the box-ball system, unveiling

its rich combinatorial and crystal structure. We then generalised the super box-ball system

devised by Hikami–Inoue using the KR crystals from Kwon–Okado in analogy to the generalised

BBS of Yamada (Yamada, 2004). We attempted to define the structure of solitons within this

system. Although we were unable to define a soliton generally within the system, we have

proved some cases in which solitonic behaviour occurs in Theorem 4.2.In the future, we wish to

prove the theorem for case m = r and such that there is a “split” at height k rather than height

r. Further research could be done into how to define rigged configurations for Uq(ĝl(m|n)) by

exploiting their relationship with soliton cellular automata from (Liu and Scrimshaw, 2019).

As well as comparing this system with its non-discrete counterpart, the super KdV equation.
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