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3 Abstract

Peter Stevenhagen has conjectured that the density of square-free d ≡ 5 (mod 8) for which the Pellian equation

x2 − dy2 = ±4 has no odd solutions is 1/3. There are many related problems where d = p is prime with no

known definite results. The principal aim of this research was to investigate whether a phenomenon similar to

Chebyshev’s Bias occurs in the case where d = p ≡ 1 (mod 4) and p is a prime, with fluctuations caused by

low-lying zeroes of an L-function. This was undertaken by defining a ψ function corresponding to the data set

being investigated and using the programming language Sagemath (commonly referred to as Sage) to determine

numerically the values of the ψ function for values of d = p ≡ 1 (mod 4) where p is a prime, up to 2×108. These

results were manipulated and had the Fourier transform applied, revealing that there was no clearly observable

associated L-function to describe the occurrences of primes congruent to 1 (mod 4) in the data set of numbers

considered.

4 Introduction

Peter Stevenhagen has conjectured that the density of square-free d ≡ 5 (mod 8) for which the Pellian equation

x2 − dy2 = ±4 has no odd solutions is 1/3 (Stevenhagen, 1996). Despite having proven some partial results for

this conjecture, there are some areas that remain unexplored. Where d = p is prime is one of these contexts,

and there are no definite results known. But the question is of relevance to periods of Ducci sequences and

multiplicative orders of Gauss periods in finite fields, in addition to other topics (Breuer, 2019).

A principal aim of the research was to investigate a specific case related to Stevenhagen’s conjecture, and

whether a phenomenon similar to Chebyshev’s Bias occurred. The set d = p ≡ 1 (mod 4) where p is a prime

was chosen and it was explored whether fluctuations caused by low-lying zeroes of an L-function were present.
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Chebyshev’s Bias is the phenomenon that most of the time there are more primes of the form 4k + 3 than

of the form 4k + 1, where k ∈ N ∪ {0}, up to the same limit (Granville & Martin, 2006), and an L-function

is a meromorphic function, that is, a single-valued function in all but a discrete subset on the complex plane

(Hutama, 2017).

Within the research, it was necessary to consider the Pellian equation x2 − dy2 = ±4 for a large data set of

values for d and determine the residue class of the fundamental solution (Jacobson & Williams, 2009). But in

this context, even small values of d produce extremely large integer solutions to x and y (Jacobson & Scheidler,

2014). As a result, in order to determine the residue class of the fundamental solution to x2− dy2 = ±4, where

d = p ≡ 1 (mod 4) and p is a prime without computing the solution itself, the project involved developing fast

algorithms in Sage.

Sage is a computational mathematics program that is an extension of Python, thus it has been devised

specifically for maths purposes. In particular, it is well-suited for the areas of number theory and algebra.

Through the use of Sage it was possible to create code that involved modifying the standard method of solving

x2 − dy2 = ±4 via the continued fraction expansion of
√
d. This was done by only determining whether the

numbers generated in each step of the process were congruent to 0 or 1 modulo 2, thereby greatly reducing the

size of the computer memory needed to store the numbers and increasing the speed of calculations. This also

applied to the fundamental solutions of the Pellian equation for each value of d.

5 Chebyshev Function

We begin by defining functions that are relevant to the process that is used to determine the results of the

research. The prime counting function is defined as the number of prime numbers p less than or equal to a

given number x:

π(x) =
∑
p≤x

1 (1)

There is an associated Chebyshev function ψ(x) which has a similar form to the prime counting function,

except that the counts of the number of prime powers pn less than x are weighted by ln(p):

ψ(x) =
∑
pn≤x

ln(p) (2)

There is also an explicit formula for ψ(x), denoted ψ0(x), that takes the value half way between the previous

and the subsequent unique values of ψ(x). It is defined by the expression:

ψ0(x) = x−
∑
ρ

xρ

ρ
− ln(2π)− 1

2
ln(1− x−2) (3)

where ρ ranges over the critical zeroes of the Riemann zeta function (Hutama, 2017). This explicit formula

provides a connection between the Chebyshev function and the zeroes of the Riemann zeta function, allowing

a method to be developed to determine the imaginary parts of the zeroes of the Riemann zeta function. It is

based on the Chebyshev function as explored in the following sections.
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6 The Riemann Zeta Function

The Riemann zeta function is a function of a complex variable s that analytically continues the sum of the

Dirichlet series. The formula below defines ζ(s) for <(s) > 1, but analytic continuation of the function ζ(s) can

be used to extend its applicability to the whole complex plane, except for a pole at s=1 (Breuer, 2013). It is

suited to the problem because the zeroes of the Riemann zeta function are related to the distribution of prime

numbers on the number line. It has the form:

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

1

1− p−s
(4)

such that in the product, p runs over all primes.

A property of the Riemann zeta function is that it possesses two types of zeroes: trivial zeroes and critical

zeroes. Both types of zeroes are shown within Figure 1. Trivial zeroes are those that occur on the negative

half of the real axis and are not of interest for this research. However, the critical zeroes are of much greater

importance within this project.

The critical zeroes are the zeroes of the Riemann zeta function that are governed by the Riemann Hypothesis

that all critical zeroes of ζ(s) lie on the critical line R(s) = 1
2 (Breuer, 2013). Therefore, these critical zeroes ρ

are all of the form ρ = 1
2 + it for various t ∈ R.

Figure 1: Phase plot of the Riemann zeta function (Breuer, 2013)
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7 Application of Fourier Transform

By rearranging the explicit formula for the Chebyshev function and assuming the Riemann Hypothesis to be

true (such that ρ = 1
2 + it for various t) then it is possible to obtain the expression:

ψ0(x)− x+ ln(2π) +
1

2
ln(1− x−2) =

∑
ρ

xρ

ρ
(5)

It is also known that the right-hand side of the above equation is approximately equal to a function with

the form of a Fourier series:

∑
ρ

xρ

ρ
≈
√
x
∑
t

1

t
sin
(
t log(x)

)
(6)

From these two equations it is found that:

ψ0(x)− x+ ln(2π) + 1
2 ln(1− x−2)

√
x

≈
∑
t

1

t
sin
(
t log(x)

)
(7)

By taking the Fourier transform of this expression it is possible to detect the values of t, revealing the imaginary

part of the critical zeroes of the Riemann zeta function. When this process was performed on the Chebyshev

function, the following graphs were generated:

Figure 2: Logarithmic Plot of
ψ0(x)−x+ln(2π)+ 1

2 ln(1−x−2)√
x

≈
∑
t
1
t sin

(
t log(x)

)
The logarithmic graph of the expression gives Figure 2, a plot which randomly oscillates around 0 and does

not appear to provide any relevant information. However, this changes when the Fourier transform is applied

to the data set.
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Figure 3: Fourier Transform of Chebyshev Function

The blue line in Figure 3 gives the Fourier transform of the expression
ψ0(x)−x+ln(2π)+ 1

2 ln(1−x−2)√
x

with the

peaks displaying the values of the imaginary parts of the critical zeroes of the Riemann zeta function, as

predicted by the outlined method. The red vertical lines are the known imaginary parts of the critical zeroes of

the Riemann zeta function. This graph shows that the predicted and actual values for the imaginary parts of

the critical zeroes match almost exactly.

8 The Dirichlet L-Function

The method outlined above has been shown to reveal the imaginary parts of the Riemann zeta function, but it

is unknown if it can be used to gain any information about the zeroes of other functions. Of particular interest

was whether this method could be used to determine the zeroes of L-functions since the primary goal of this

research is to identify whether the case where d = p ≡ 1 (mod 4) and p is a prime has an associated L-function.

Therefore, this method was applied to a Dirichlet L-function where the zeroes are already known to test the

method’s applicability to other functions, particularly those of the form of the data set that was of interest for

this research.

The following Dirichlet L-function was considered to determine if the outlined method was appropriate to

find the zeroes of the function. It had the form:

L(s, χ) =

∞∑
n=1

χ(n)

ns
(8)
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where

χ(n) =


1 if n ≡ 1 (mod 4)

0 if n ≡ 0 (mod 4) or n ≡ 2 (mod 4)

−1 if n ≡ 3 (mod 4)

(9)

We also define a function

ψχ(x) =
∑
pn≤x

χ(pn) ln(p) (10)

which has an associated explicit formula of

ψ0(x, χ) = −
∑
ρ∗

xρ∗

ρ∗
− L

′
(0, χ)

L(0, χ)
(11)

where ρ∗ ranges over the critical zeros of L(s, χ).

When the same process of rearrangement of the explicit formula and approximation to a Fourier series was

applied to this function as was applied to the Chebyshev function, then the plot on the logarithmic graph in

Figure 4 is generated. Like the logarithmic graph produced for the Chebyshev function, this plot randomly

oscillates around a certain value. In this case, it oscillates around the value of L′(0,χ)
L(0,χ) ≈ −0.783 rather than 0,

as occurred in the Chebyshev function.

Figure 4: Logarithmic Plot of
ψχ(x)√

x

When the Fourier transform is applied to the data set, Figure 5 was created. Like the Chebyshev function,

the blue plot gives the Fourier transform of
ψχ(x)√

x
with the peaks being the expected values of the zeroes of the
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Figure 5: Fourier Transform of Dirichlet L-Function

Dirichlet L-function defined above, and the red vertical lines are the known zeroes of the Dirichlet L-function.

The graph shows that the predicted and actual values for the zeroes match almost exactly.

This result indicates that the method can also be used for determining the zeroes of L-functions, and so can

be used in the case of the data set of d = p ≡ 1 (mod 4) where p is a prime to identify if there is an L-function

associated with this data set and, if so, determine the corresponding zeroes.

9 ψ-Function for Research

The ψ-function that arises from the set of numbers d = p ≡ 1 (mod 4) where p is a prime is the function of

main interest within the research. It has the form:

ψcomb(x) =
∑
pn≤x

χ(pn) ln(p) (12)

where p is a prime and:

χ(pn) =

−
1
2 if p ≡ 1 (mod 4) and x2 − dy2 = −4 has only even solutions

1 if p ≡ 1 (mod 4) and x2 − dy2 = −4 has only odd solutions

(13)

However, the form of the formula was changed to allow for implementation of a faster algorithm into Sage.

Specifically, separating the function into two different functions denoted ψeven(x) and ψodd(x).

ψeven(x) was defined as:

ψeven(x) =
∑
pn≤x

ln(p) (14)
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where the sum ranges over primes p ≡ 1 (mod 4) and x2 − py2 = −4 has only even solutions.

And ψodd(x) was similarly defined as:

ψodd(x) =
∑
pn≤x

ln(p) (15)

where the sum ranges over primes p ≡ 1 (mod 4) and x2 − py2 = −4 has only odd solutions.

A linear combination of these two functions can then be formed to reproduce the original function:

ψcomb(x) = ψodd(x)− 1

2
ψeven(x) (16)

When ψeven(x) and ψodd(x) are graphed separately over the data set of primes less than 2× 108, as shown

in Figure 6, the plots indicate that ψeven(x) grows at approximately double the rate of ψodd(x). It also gives

the impression that both ψeven(x) and ψodd(x) increase linearly. However, this is not the case because there are

slight variations within the increase of ψeven(x) and ψodd(x) as x increases, and it is only because of the large

size of the data set considered that these variations are comparatively small and so are not seen when plotted.

Figure 6: Plot of ψeven(x) and ψodd(x)

When ψcomb(x) is plotted over the same range, as in Figure 7, these slight variations become apparent. Also,

the value of the ψcomb(x) is much smaller than the values of the ψeven(x) and ψodd(x) functions at the same

value of x.

Using the same process for finding a Fourier series that approximates the function applied to the Chebyshev

and Dirichlet L-function, it is possible to plot this function on a logarithmic graph, as presented in Figure 8.

The plot of this function shows an asymptotic structure going to 0 as x increases. This is much different from

that of both the Chebyshev and Dirichlet L-function, which oscillated randomly around particular values. Since
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Figure 7: Plot of ψcomb(x)

the plot corresponding with ψcomb(x) has a different shape to functions where this method is known to work, it

gives an indication that there may not be an L-function associated with ψcomb(x).

The Fourier transform was applied to the data set to provide more conclusive evidence about the presence

of an L-function for the investigated function. Figure 9 shows that the plot exhibits an asymptotic structure

with the asymptote at zero. There are no obvious peaks, indicating that there are no observable zeroes of an

associated L-function. Therefore, there does not appear to be an L-function associated with the function and

data set corresponding to the numbers d = p ≡ 1 (mod 4) where p is a prime.
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Figure 8: Logarithmic Plot of ψcomb(x)√
x

Figure 9: Fourier Transform of ψcomb(x)√
x
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10 Conclusion and Further Research

The data shows that there is no clearly observable associated L-function to describe the occurrence of the

primes congruent to 1 (mod 4) less than to 2 × 108. Although from the data considered during the research

there appears to be no associated L-function, it is possible that if a larger data set is considered, evidence for

an L-function would become more apparent and so this could be an extension of the current research. To do

so would require developing a faster algorithm in Sage for calculating the ψcomb(x) function for each value of x

tested. Based on the data obtained, though, it seems unlikely that an L-function does exist for the data set of

interest.

Although the method in this research did not work for the particular data set considered, it is possible that

a different data set might be more successful. Therefore, further research could be done on other data sets of

prime congruences, such as those proposed by Stevenhagen of d = p ≡ 5 (mod 8) where p is prime.
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11 Appendix

The Sage code used to develop the results and graphs in the chapter 9 are presented here. The results of

chapters 7 and 8 were obtained by the same methods as in chapter 9, and so the code is almost identical and

will not be presented.

11.1 Sage Code for Finding the Fundamental Solutions of the Pellian Equation
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11.2 Sage Code for Calculating ψeven(x) and ψodd(x)
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11.3 Sage Code for Generating Figures 6 and 7
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11.4 Sage Code for Generating Figure 8

11.5 Sage Code for Generating Figure 9
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