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1 Prelude

1.1 Abstract

We outline the fundamental concepts in Additive Combinatorics and then look at the Cap-SET problem which

deals with arithmetic progression free sets in Fnq where n is large. The case for 3-term arithmetic progression is

well understood and we present the elegant proof by Tao.

Then we present new results building off Tao’s work that extend the Cap-SET problem. We consider sets that

contain some proportion of Arithmetic progressions as well as not allowing n points that satisfy some linear

equation.

We also prepared a paper [4], and submitted it to a peer-reviewed journal.

1.2 Statement of Authorship

The results, Theorem 5 and Theorem 6 are our (myself and my supervisor) own work and the rest of the results

presented are from various sources which are listed in the references.

1.3 Introduction to Additive Combinatorics

Additive Combinatorics is a relatively young field of mathematics (named by Tao and Vu in their 2006 book

of the same name) and has many links to other areas such as ergodic theory, graph theory, group theory and,

what is of interest to us, polynomial methods.

One of the core concepts in Additive Combinatorics is the notion of the “additive structure” of a set. Let us

have an additive group G which is abelian with the group action + (an example of such groups are (Zn,+) for

n ∈ N) and let X,Y ⊆ G.

An example of a set X that has weak additive structure would be a completely random subset of G with no

predefined internal mathematical structure.

However an example of a set with strong additive structure would be an arithmetic progression in G e.g. for

a, r ∈ G and N ∈ N,

Y = {a, a+ r, a+ 2r, . . . , a+Nr}.

Furthermore we can define operations on these sets that allow us to start asking interesting questions. We can

define the sum set and difference set operations quite naturally as,

Sum set:

A+B := {a+ b : a ∈ A, b ∈ B}.
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Difference set:

A−B := {a− b : a ∈ A, b ∈ B}.

The Cauchy-Davenport Theorem provides us with a lower bound on the size of such sum sets,

Theorem 1 (Cauchy-Davenport). If G = (Z/pZ,+) for some prime p and A, B ⊆ G,

|A+B| ≥ min{|A|+ |B| − 1, p}.

This is a famous theorem in Additive Combinatorics and represents one of the core stepping stones to under-

standing the nature of “additive structure”.

In this report we look at the Cap-SET problem which deals with sets without arithmetic progressions, which

is another kind of additive structure.

2 The Cap-SET problem

2.1 Origins

The Cap-SET problem has its roots in SET which is a real-time pattern matching card game. The deck has

34 = 81 cards where each card has 4 different attributes, each with three variations as listed in the table.

Shape Colour Shading Number

Rhombus Yellow Empty 1

Pill Red Striped 2

Squiggle Blue Filled 3

Table 1: Table of attributes for cards

We show the possible representations for each attribute in Figure 1 (note that these aren’t all the possible cards,

just the possible representations).

There is a single dealer and many players and the rules of SET are as follows,

• Single dealer, many players

• Dealer places 12 cards on the table

• Players call out ”SET!” when they see a SET and take the cards

– A SET is 3 cards where each of the attributes are all same or all different

– If there is no set the game moves on

3



Figure 1: SET of 3 cards showing all possible attributes individually

• Dealer adds another 3 cards till all 81 have been dealt

• Winner is the player with the most cards

In Figure 2 we have examples of collections of three cards, one of which is a set and another is not a set. Also

note that Figure 1 is also a set.

(a) This is a SET (b) This is NOT a SET

Figure 2: Collections of cards

In order to represent the cards in a more mathematical manner we can assign a number to each of the presen-

tations of the attributes thereby embedding each card in F4
3 ( 4-dimensional finite field with 3 elements).

So we can represent all 81 cards as the lattice below.

Figure 3: All the cards in SET represented in F4
3

We note that SET ’s actually correspond to lines in F4
3! As before we show examples of two SET ’s and one not
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SET in Figure 4

Figure 4: This is a SET

The question that we now ask is,

What is the maximum number of cards the dealer can put down without there being a SET in it?

A set of cards that doesn’t contain a SET is called a Cap-SET . For this case it turns out that the largest

possible Cap-SET s has cardinality 20 and an example is shown in Figure 5.

Figure 5: Example of a maximal Cap-Set with 20 cards

2.2 Mathematical Formulations

Formally the Cap-Set problem deals with the case where there are n attributes, each with 3 presentations (as

opposed to 4 attributes with 3 presentations in the card game). Furthermore, we note lines in F4
3 have three

distinct points, x, y and z which must satisfy x+ y + z = 0.

Therefore the classic Cap-Set problem can be stated as below,

5



Classic Cap-Set Problem

Let A ⊆ Fn3 such that A contains no lines, ie.

x+ y + z 6= 0 ∀x, y, z ∈ A (distinct).

How does the maximum size of A grow with respect to n?

The bound of O(2.76n) was achieved by Croot-Lev-Pach [1] and Ellenberg-Gijswijt [3] using “conventional”

polynomial methods.

In [6] Tao achieved the same bound with a symmetric version of the Classic Cap-Set Problem and we build on

the techniques that he laid out in this report.

In fact Ellenberg-Gijswijt proved the result for a stronger problem which we will refer to as the Cap-Set

Problem,

Cap-Set Problem

Let A ⊆ Fnq such that A doesn’t contain any three points (x, y, z) ∈ A3 that satisfy the following equation,

ax+ by + cz 6= 0 ∀x, y, z ∈ A (distinct).

Where are (a, b, c) ∈ (Fq \ {0})n are fixed coefficients that satisfy a + b + c = 0. How does the maximum

size of A grow with respect to n?

In fact, Tao’s approach can be trivially extended to this version of the problem ([6] Remark 3).

2.3 Slice-Rank and Tensors

The concept of slice-rank plays a key role in the work of Tao and is heavily used by us in our results.

Definition 1 (d-Tensor [5]). Let V be an n dimensional linear space over Fq with d ≥ 1. Then any multilinear

map T : V d → Fq is a d-Tensor and can be represented as,

T
(
x1, . . . , xd

)
=

∑
i1, ... id∈[n]

Ti1, ... idx
1
i1 , . . . x

d
id
.

Where [n] = {1, . . . , n} and xi =
(
xi1 . . . , x

i
n

)
∈ Fnq for i ∈ [d]. We can think of this tensor as a d-dimensional

array of the coefficients, Ti1, ... id

Definition 2 (Tensor Slice-Rank [5]). Let V denote a finite dimensional vector space over Fq. The slice rank

of a d-Tensor T : V d → Fq, is denoted as srank(T ).
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srank(T ) = 1 iff there exists a 1-Tensor G : V → Fq, a (d− 1)-Tensor H : V → Fq and some i ∈ {1, 2, . . . d} =

[d] such that

T (v1, . . . , vd) = G(vi)H (vj |j ∈ [d] \ {i}) .

srank(T ) ≤ k iff there is a sequence of k rank one functions on Ad, (Ti)i∈[k] such that,

T =

k∑
i=1

Ti.

Tao defines a nearly identical notion of slice-rank for functions Ad → Fq

Definition 3 (Tao Slice-Rank [6]). The Tao slice-rank of a function f : Ad → Fq, is denoted as T-srank(f).

T-srank(f) = 1 iff there exists a function f : A→ Fq, a function h : Ad−1 → Fq and some i ∈ [d] such that

f(x1, x2 . . . xd) = g(xi)h (xj |j ∈ [d] \ {i}) .

T-srank(f) ≤ k iff there are a sequence of k rank one d-Tensors, (fi)i∈[k] such that,

f =

k∑
i=1

fi.

Now with these notions of rank we can relate tensors over V 3 to functions over A3.

Lemma 1. For all functions F : A3 → Fq of the form,

F (x, y, z) =
∑

α, β, γ ∈ I

I ⊆ A3

δα (x) δβ (y) δγ (z) .

there exists a 3-Tensor TF : V 3 → Fq (on V = {A− Fq}) such that for all α, β, γ ∈ A3,

F (α, β, γ) = TF (δα, δβ , δγ).

Proof. We define the tensor TF as,

TF (f, g, h) =
∑

a,b,c∈A

F (a, b, c)f(a)g(b)h(c).

Clearly this is a 3-Tensor and for delta functions, we have,

TF (δα, δβ , δγ) =
∑

a,b,c∈A

F (a, b, c)δα(a)δβ(b)δγ(c)

= F (α, β, γ)

as required.

7



Theorem 2 (Tensor slice-rank bounds Tao slice-rank from below). For a function F : A3 → Fq and its

corresponding tensor TF : V 3 → Fq constructed from Lemma 1

T-srank(F ) ≥ srank(TF ).

In order to prove this bound we establish some basic properties of the slice-rank in both Tensor and Tao’s

form.

Lemma 2.

T-srank(F ) = 1 =⇒ srank(TF ) = 1.

Proof. T-srank(F ) = 1 means that we can express (WLOG),

F (α, β, γ) = G(α)H(β, γ).

From an elementary extension of Lemma 1 we can define tensors TG : V → F and TH : (V )2 → F. Obviously

we know, for all α, β, γ ∈ A3,

TF (δα, δβ , δγ) = TG(δα)TH(δβ , δγ).

We must extend this equality to all functions A→ F. We note that the set of delta functions {δa|a ∈ A} form

basis vectors for the vector space of functions A→ F. Therefore we can represent any function f : A→ F as,

f(x) =
∑
∆∈A
Cf∆δ∆(x).

where {Cf∆}∆∈A is a sequence of coefficients in Fq for each delta function. Ie f(a) = Cfa . Therefore we see,

TF (f, g, h) =
∑

a,b,c∈A

F (a, b, c)f(a)g(b)h(c)

=
∑

a,b,c∈A

F (a, b, c)CfaC
g
b C

h
c

=
∑

a,b,c∈A

G(a)H(b, c)CfaC
g
b C

h
c

=

(∑
a∈A

G(a)Cfa

)∑
b,c∈A

H(b, c)Cgb C
h
c


=

(∑
a∈A

G(a)f(a)

)∑
b,c∈A

H(b, c)g(b)h(c)


= TG(f)TH(g, h)

Therefore srank(TF ) = 1 as required.
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Proof (Tensor slice-rank bounds Tao slice-rank from below). This follows directly from Lemma 2, as a slice-rank

one decomposition of F is also a slice-rank one representation of TF which is an upper bound for the slice rank

of TF .

2.4 Caro-Wei Theorem and independent sets

Although Slice-rank is a very useful notion of rank it is quite hard do deal with as we see in Tao [6], finding the

slice rank of a diagonal matrix requires a complex inductive argument. Therefore, invoke the paper of Lovett

[5] to introduce the concept of an independent set.

Assume that T is a d-tensor on the space V = Fnq . By multilinearity of T we have:

T (x1, . . . , xd) =
∑
α∈[n]d

cαx
1
α1
. . . xdαd , for (x1, . . . , xd) ∈ V d,

where any vector v ∈ V is represented in the coordinates as v = (v1, . . . , vn), and α ∈ [n]d = {1, . . . , n}d has

coordinates α1, . . . , αd.

Definition 4 (Independent set). We define that a set I ⊂ {1, . . . , n} is an independent set for T if for any

α = (α1, . . . , αd) ∈ Id such that cα 6= 0 implies α1 = . . . = αd.

Theorem 3 (Lovett [5], Theorem 1.7). For any d-tensor T we have

srank(T ) & |I| ,

for any independent set I ⊂ {1, . . . , n}.

In our case we are dealing with {0, 1} valued 3-Tensors which can be interpreted as the adjacency matrix for a

3-Uniform Hypergraph. Hypergraphs generalise the concept of edges, as an “edge” can contain any number of

vertices (as opposed to 2). A 3-Uniform Hypergraph has exactly 3 vertices for every edge and we can represent

it as a {0, 1} valued 3-Tensor.

In fact the notion of an independent set also applies in the same way to 3-Hypergraphs, essentially corresponding

to the largest subset of vertices such that no two of them are adjacent. The Caro-Wei [2] Theorem provides us

with a lower bound on the size of the largest independent set in a graph and furthermore this was extended by

Dutta et. al. [2] for k-uniform Hypergraphs.

Theorem 4 (Caro-Wei Generalised). Let the maximal cardinality of an independent set for a k-uniform Hy-

pergraph G = (V,E) be denoted as I(G) and let dv be the degree of a vertex v ∈ V . Then,

I(G) &
∑
v∈V

1

(dv + 1)
1/k

.

From the concavity of the function we can easily get a weaker bound with respect to the average degree, dave

as,
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Lemma 3 (Caro-Wei Weak).

I(G) &
|V |

(dave + 1)
1/k

.

2.5 Our Contribution

First we extend this result in the case where we allow some proportion of solutions to the equation ax+by+cz = 0

with a + b + c = 0. As an application, we generalise the Ellenberg-Gijswijt Theorem to the multivatiable

case.

We define an Almost Cap-Set to be a set that allows some solutions to the equation ax + by + cz = 0 for

some a, b, c ∈ (Fq \ {0})3
that satisfy a+ b+ c = 0. We can formalise this notion by defining an (ε, δ)-Cap-Set

for some ε, δ > 0 such that there exists some A′ ⊂ A with |A′| > δ |A| where, for every element x ∈ A′, the

number of pairs (y, z) that are solutions to ax+ by + cz = 0 is less than |A|ε.

To aid in our proof, let us define the Aεa with respect to some ε > 0 and coefficients a = (a, b, c) ∈ (Fq \ 0) that

satisfy a+ b+ c = 0 as the set,

Aεa =
{
x ∈ A

∣∣ ∣∣{(y, z) ∈ A2|ax+ by + cz = 0}
∣∣ ≤ |A|ε}.

Theorem 5 (Almost Cap-Sets). There exist ε > 0 and cq < q such that for any δ > 0, A ⊂ Fnq with |A| > cnq

and a = (a, b, c) ∈ (Fq \ {0})3 for sufficiently large n we have

|Aεa| ≥ (1− δ)|A|.

In other words, there exists ε > 0 such that for any δ > 0, the (ε, δ)−cap sets A ⊂ Fnq satisfy that |A| ≤ cnq for

sufficiently large n.

This result shows that there are power-law bounds that also hold for these almost cap-sets. The work of Lovett

was crucial in this proof as it allowed us to bound the slice-rank of certain functions by the independent set.

Regardless, this allows us to obtain a similar power upper law for the Ellenberg-Gijswijt Cap-Set problem, now

extended to the multivariable case.

Theorem 6 (Multivariable Cap-Sets). Let us have a1, a2, . . . , ad ∈ Fq \ {0} ( d > 3) such that
∑d
i=1 ai = 0.

Then if |A| > cnq (for large enough n) implies that there exists distinct x1, . . . xd ∈ A such that

d∑
i=i

aixi = 0.

3 Proof of Almost Cap-Set bound (Theorem 5)

We can define the function,

F : A3 −→ Fq

x, y, z 7−→ F (x, y, z) = δ0n (ax+ by + cz) .
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In this proof we will find an upper and lower bound of the slice-rank of this function which will give our desired

result. Alternately we can write it as,

F (x, y, z) =
∑

α=(α1,α2,α3)∈A3

cαδα1
(x) δα2

(y) δα3
(z) , .

where,

cα =

1 if aα1 + bα2 + cα3 = 0

0 else

.

By Lemma 1 we construct the corresponding 3-Tensor,

TF (f1, f2, f3) =
∑
α∈A3

cαf1(α1)f2(α2)f3(α3)..

Since A is an (ε, δ)-Cap-Set there exists a subset A′ ⊂ A with |A′| ≥ δ|A| and such that for every x ∈ A′ there

are at most |A|ε pairs (y, z) ∈ A2 with

ax+ by + cz = 0.

Therefore we deduce,

δ|{cα 6= 0 |α ∈ (A′)3}| ≤ δ |A|ε |A′| ≤ |A′|1+ε
.

This follows from the fact that for each x ∈ A′ there are at most |A|ε additional solutions.

Now we can invoke the Caro-Wei lower bound on the independent set from Lemma 3. In this case the Tensor

represents a 3-Uniform Hypergraph with |A′| vertices. The degree of each vertex is, dx = |{cα 6= 0 |α1 = x, α ∈

(A′)3}|, therefore the average degree is dave ≤ δ−1 |A′|ε

Therefore,

|I| & |A′|

(δ−1 |A′|ε + 1)
1
3

≈ |A′|1−ε/3 .

Therefore by Theorem 3 we get the final bound,

srank(F ) & |A|1−ε/3.

We can shift our focus to obtaining an upper bound on the rank of F (x, y, z) by considering it as a polynomial

in the components of x, y, z.
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We can expand the delta function as,

δ0n(ax+ by + cz) =

n∏
i=1

(
1− (axi + byi + czi)

q−1
)
.

Expanding the RHS out we get a polynomial made of the monomials,

n∏
i=1

(axi)
ji(byi)

ki(czi)
li .

With ji, ki, li ∈ {0, . . . , q − 1} and
∑n
i=1 ji + ki + li ≤ (q − 1)n.

By the Pigeonhole principle, for each monomial one of the contributions from the x or y or z components to

the total degree must be less than (q−1)n
3 . Ie., ∃m ∈ {i, j, k} s.t.

n∑
i=1

mi ≤
(q − 1)n

3
.

Therefore, for each monomial we can “extract” the smallest contribution in one of the three variables giving us

the following representation in srank 1 functions,

δ0n(ax+ by + cz) =
∑

β = (β1 . . . βn) ∈ {0, . . . q − 1}n∑
βi ≤ (q−1)n

3

fβ(x)gβ(y, z) + fβ(y)gβ(z, x) + fβ(z)gβ(x, y),

where fβ(x) is the monomial with exponents being the components of β ie.,

fβ(x) =

n∏
i=1

xβii ,

and gβ represent the contributions dependent on the other two variables which also include the constants.

Let the number of possible monomials (fβ) be N . Therefore we have represented F (x, y, z) in 3N slice-rank

one functions. Using Cramers theorem from the theory of large deviation reveals that 3N ≤ bnq for some

bq < q.

Using the upper and lower bound for the rank of F we have,

|A|1−ε/3 . srank(F ) . bnq .

Then we choose some ε > 0 that satisfies,

b
1

1−ε/3
q < q,

and some cq, b
1

1−ε/3
q < cq < q. This directly implies |A| < cnq leading to the contradiction.
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4 Proof of the Multivariable Cap-Set Bounds (Theorem 6)

WLOG we can re-arrange the sequence of co-efficients in order to ensure that the partial sums are never 0 ie.,∑k
i=1 ai 6= 0 for k = 2, 3, . . . d− 2.

For the sake of convenience we define the co-efficients from the partial sums as,

bk =

k∑
i=1

ai.

Consider the following equation in three variables with coefficients bd−2, ad−1, ad for td−2, xd−1, xd ∈ A3

bd−2td−2 + ad−1xd−1 + adxd = 0.

By Theorem 5, for some δ > 0 and sufficiently large n there exists ε > 0 and a set Aεbd−2,ad−1,ad
= Ad−2 ⊂ A

with |Ad−2| ≥ (1 − δ) |A|. Recall, for any td−2 ∈ Ad−2 there are at least |A|ε pairs (xd−1, xd) ∈ A2 satisfying

the above equation.

Then we can apply Theorem 5 recursively on the equations indexed by k = {d− 3, d− 2, . . . 3, 2}, and

bd−3td−3 + ad−2xd−2 = bd−2td−2 (k = d− 3)
...

...

bktk + ak+1xk+1 = bk+1tk+1 (k)
...

...

b2t2 + a3x3 = b3t3 (k = 2)

and finally,

a1x1 + a2x2 = b2t2..

For example in the next step we apply Theorem 5 on the set Ad−2 with the equation corresponding to d − 3

giving us a set Ad−3 ⊂ Ad−2 such that for every td−3 ∈ Ad−3 there are at least |Ad−2|ε pairs (xd−2, td−2) ∈ A2
d−2

that satisfy bd−3td−3 + ad−2xd−2 = bd−2td−2.

Using such a method we can construct a chain of nested sets,

A ⊃ Ad−2 ⊃ Ad−3 ⊃ . . . ⊃ A2,

that satisfy the following properties for k ∈ {d− 2, d− 3, . . . 2}.

• |Ak−1| ≥ (1− δ) |Ak|

• For any tk ∈ Ak there exists at least |Ak+1|ε pairs (xk+1, tk+1) ∈ A2
k+1 that satisfy bktk + ak+1xk+1 =

bk+1tk+1.
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Now working our way down the chain we can construct a solution to the original multivariable equation using

the (|Ak+1|ε) abundance of solutions to our advantage.

Take a pair of distinct (x1, x2) ∈ A2
2 ⊂ A2 satisfying that a1x1 + a2x2 = b2t2 for t2 ∈ A2. Then there

exist at least |A3|ε pairs (x3, t3) ∈ A2
3 ⊂ A2 satisfying b2t2 + a3x3 = b3t3 for t2 that we already chosen.

Find (x3, t3) among these solutions such that x3 6∈ {x1, x2}. Assume that we already constructed distinct

{x1, . . . , xk} ∈ Ak satisfying that a1x1 + . . .+ akxk = bktk, for some tk ∈ Ak. Since there exist at least |Ak+1|ε

pairs (xk+1, tk+1) ∈ A2
k+1 satisfying

bktk + ak+1xk+1 = bk+1tk+1,

we can choose one of the solutions (xk+1, tk+1) ∈ A2
k+1 satisfying that xk+1 6∈ {x1, . . . , xk}. Notice that there

exists tk+1 ∈ Ak+1 such that the sequence (x1, . . . , xk+1) ∈ Ak+1 satisfies

a1x1 + . . .+ ak+1xk+1 = bk+1tk+1.

We continue this process till we reach distinct {x1, . . . , xd−2} ∈ A satisfying

a1x1 + . . .+ ad−2xd−2 = bd−2td−2

for some td−2 ∈ Ad−2. Since there are at least |A|ε pairs (xd−1, xd) ∈ A2 satisfying

bd−2td−2 + ad−1xd−1 + adxd = 0,

we can choose the solution (xd−1, xd) ∈ A2 such that xd 6= xd−1 and xd−1, xd 6∈ {x1, . . . , xd−2}. This finishes

the proof of Theorem 6.
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