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Abstract

In this report we extend on some of the limit theorems from Ellis and Newman [1978]. Namely, we study the

limiting distributions of the sum of spins, Sn, with respect to the Curie-Weiss model in the case when the

inverse temperature, β, is given by β = βn := 1/(1 +αn−γ). When γ > 1
2 and for all α ∈ R, Sn/n

3/4 converges

in distribution to a density proportional to exp(−x
4

12 ). Conversely, we obtain Gaussian behavior for Sn/n
γ
2 + 1

2

when γ ∈ [0, 1
2 ) and α > 0 and analogous results for when γ = 1

2 . We also obtain variance results for each of

these cases.
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1 Introduction

Consider a game where we have n coins placed on a table where we flip these coins and count the number of

heads we observe. Let a head correspond to observing the value 1 and a tail correspond to observing the value

−1. Then in counting the number of heads we observe, we can sum the observed values for each of these coins

with −n corresponding to no heads (all tails) and the sum of n corresponding to all heads (no tails). We note

that the outcome of one coin doesn’t affect the outcome of another and that each coin has the same distribution

where P(H) = P(T ) = 1
2 . Formally we would consider these coins to be independent and identically distributed

(i.i.d.) random variables.

In this situation the number of heads we observe (corresponding to a value between −n and n) follows what

is called a binomial distribution. Figure 1 shows this distribution for n = 40. It seems like the distribution is

Figure 1: Binomial distribution for the number of heads observed when n = 40

approaching a simple curve like the Gaussian curve (commonly known as a Normal curve or the bell curve).

This is true in a sense. If we correctly scale our distribution for the number of heads we do, in fact, converge

to a Normal curve. This is because of the Central Limit Theorem (see appendix). Because the coins are i.i.d.

random variables then the Central Limit Theorem tells us that the sum of these random variables (after ap-

propriate scaling) converges to a Normal distribution. What happens when we modify this situation so that

the coins are instead dependent on each other in a particular kind of way? The situation becomes a whole

lot more complex. The Curie-Weiss model is an example of such a situation. This report studies the limiting

distributions for sums of these random variables that are defined by the Curie-Weiss model.

The Curie-Weiss model is defined on a complete graph of n vertices where each vertex takes a spin value

ωi ∈ {−1, 1}. In physics, each of these vertices is taken to represent the magnetic dipole moment of an atom.

We let any such configuration of spins, ω, to be random such that
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P(ω) = exp
( β

2n

∑
i,j=1

ωiωj

)/ ∑
ω∈Ωn

exp
( β

2n

∑
i,j=1

ωiωj

)
(1.1)

where Ωn := {−1, 1}n is the set of all possible spin configurations for the n vertices and β is the inverse tem-

perature of the system. The value of β affects the distribution of spin configurations in a fundamental way.

We also define Sn =
∑
ωi∈{−1,1} ωi which is known as the magnetisation (analogous to summing the results of

the coin flips). Since each ωi is a random variable, the magnetisation is just the sum of n identically distributed

(but now dependent) random variables. Sn has a symmetric distribution and, in particular, E(Sn) = 0. A

crucial observation to make is that
∑
i,j=1 ωiωj = S2

n. This means we can change equation (1.1) to

P(ω) = exp
( β

2n
S2
n

)/ ∑
ω∈Ωn

exp
( β

2n
S2
n

)
. (1.2)

This makes analysing the magnetisation a much simpler task. The remainder of this report will be to develop

limit theorems for the magnetisation.

1.1 Statement of Authorship

The Curie-Weiss model has been heavily studied and so not all of the ideas in this report are original. Section

2 outline well known results by Ellis and Newman [1978] and Simon and Griffiths [1973]. Section 3 is work

that Tim, Eric and I did. Tim and Eric gave me a strong sense of direction for pursuing this work. They also

assisted me when in solving a few problems that arose. I was responsible for writing up the detailed arguments

and proofs, although they were very similar in flavour to those by Ellis [2006]. We are unaware if these results

have been obtained previously.

2 Limit Theorems for fixed β

Theorem 2.1 see e.g. Theorem V.9.4 [Ellis, 2006]. Fix 0 < β < 1 and define σ2(β) = (1 − β)−1. Then as

n→∞,

Sn
n1/2

→ N(0, σ2), in distribution.

We note that this is analogous to the Central Limit Theorem for i.i.d. random variables since E[ωi] = µ = 0.

We also observe that σ2(β) diverges when β = 1, thus we expect the central limit theorem type result to fail in

this case. The next theorem which was discovered by Simon and Griffiths [1973] gives us different limit theorem

for the case when β = 1.
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Theorem 2.2 see e.g. Theorem V.9.5 [Ellis, 2006]. Fix β = 1. Then there exists a random variable X

with density proportional to exp(− 1
12x

4) such that as n→∞,

Sn
n3/4

→ X, in distribution.

We call β = 1 the critical value for the Curie-Weiss model. In the case when β > 1 the dependencies are

too strong, and the above limit theorems fail. In the next section we will set β = βn := 1/(1 + αn−γ) which

converges to the critical value of β = 1 as n → ∞ and see how this effects the limiting distributions for the

magnetisation.

3 Limit Theorems when β = βn = 1/(1 + αn−γ)

Theorem 3.1 Let βn = 1
1+αn−γ be the inverse-temperature and Sn =

∑
ωi∈{−1,1} ωi be the magnetisation for

the Curie-Weiss model with n spins. For all γ > 1
2 and α ∈ R, there is a random variable X with density

proportional to exp(− 1
12x

4) such that,

lim
n→∞

Sn

n
3
4

→ X, in distribution

and

Var(S2
n) ∼ n 3

2

∫ ∞
−∞

x2 exp(− 1

12
x4) dx

/∫ ∞
−∞

exp(− 1

12
x4) dx.

This defines what we will call the Critical Scaling Window. To prove this, we will show that,

lim
n→∞

E
(

exp
(
r
Sn

n
3
4

))
=

∫ ∞
−∞

exp(rx− 1

12
x4) dx

/∫ ∞
−∞

exp(− 1

12
x4) dx := g(r). (3.1)

The theorem then follows from the MGF Continuity Theorem (see appendix). We will have that E
(

exp(r Sn
n

3
4

)
)
→

g(r) as n → ∞. Clearly limr→0 g(r) = g(0) = 1. This then tells us that Snn
− 3

4 converges in distribution to a

distribution defined by P (x) = exp(− 1
12x

4)
/∫∞
∞ exp(− 1

12x
4)). We will start by proving the following lemma.

Lemma 3.2 Let tn be an be any sequence and Sn be the magnetisation for the Curie-Weiss model. Then

for any β > 0,

E(exp(tnSn)) =

∫∞
−∞ exp(− 1

2
n
β t

2
n + xtnn

β − 1
2
n
βx

2 + n log(cosh(x))) dx∫∞
−∞ exp(− 1

2
n
βx

2 + n log(cosh(x))) dx
.

Proof Lemma 3.2. By definition of expected value.
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E(exp(tnSn)) =
∑
ω∈Ωn

exp(tnSn)
exp( β2nS

2
n)∑

ω∈Ωn exp( β2nS
2
n)

=

∑
ω∈Ωn exp(tnSn) exp( 1

2 (
√

β
nSn)2)∑

ω∈Ωn exp( 1
2 (
√

β
nSn)2)

.

We can then use the identity exp( 1
2x

2) = 1√
2π

∫∞
−∞ exp(yx− 1

2y
2) dy to replace the term exp( 1

2 (
√

β
nSn)2). From

this we obtain

E(exp(tnSn)) =

∑
ω∈Ωn

∫∞
−∞ exp((tn +

√
β
nx)Sn − 1

2x
2) dx∑

ω∈Ωn

∫∞
−∞ exp(

√
β
nxSn −

1
2x

2) dx
.

Next we use linearity of the integral and the definition of Sn to obtain

E(exp(tnSn)) =

∫∞
−∞ exp(− 1

2x
2)
∑
ω∈Ωn exp((tn +

√
β
nx)Sn) dx∫∞

−∞ exp(− 1
2x

2)
∑
ω∈Ωn exp(

√
β
nxSn) dx

=

∫∞
−∞ exp(− 1

2x
2)
∑
ω∈Ωn

∏n
i=1 exp((tn +

√
β
nx)ωi) dx∫∞

−∞ exp(− 1
2x

2)
∑
ω∈Ωn

∏n
i=1 exp(

√
β
nxωi) dx

=

∫∞
−∞ exp(− 1

2x
2)
∏n
i=1(exp(tn +

√
β
nx) + exp(−(tn +

√
β
nx)) dx∫∞

−∞ exp(− 1
2x

2)
∏n
i=1(exp(

√
β
nx) + exp(−

√
β
nx)) dx

.

Multiplying the numerator and the denominator by 1/2n then yields,

E(exp(tnSn)) =

∫∞
−∞ exp(− 1

2x
2 + n log(cosh(

√
β
nx+ tn)) dx∫∞

−∞ exp(− 1
2x

2 + n log(cosh(
√

β
nx)) dx

=

∫∞
−∞ exp(− 1

2
n
β t

2
n + xtnn

β − 1
2
n
βx

2 + n log(cosh(x))) dx∫∞
−∞ exp(− 1

2
n
βx

2 + n log(cosh(x))) dx

which holds for all β > 0.

�

Now we will prove Theorem 3.1 which involves many ideas used in the proof of Theorem 2.2. See e.g. Theorem

V.9.5 [Ellis, 2006].

Proof Theorem 3.1. From Lemma 3.2, letting β = βn we get
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E(exp(tnSn)) =

∫∞
−∞ exp(− 1

2n(1 + αn−γ)t2n + xtnn(1 + αn−γ)− 1
2αn

1−γx2 − 1
2nx

2 + n log(cosh(x))) dx∫∞
−∞ exp(− 1

2αn
1−γx2 − 1

2nx
2 + n log(cosh(x))) dx

=

∫∞
−∞ exp(− 1

2n(1 + αn−γ)t2n + xtnn(1 + αn−γ)− 1
2αn

1−γx2 − nG(x)) dx∫∞
−∞ exp(− 1

2αn
1−γx2 − nG(x)) dx

(3.2)

where G(x) = 1
2x

2 − log(cosh(x)). We observe that the Taylor series of G(x) around x = 0 is G(x) = 1
12x

4 +

G6(c)
6! x6 for some c ∈ (0, x) and for all |x| < A, where A is the radius of convergence. From this we can see that

nG( x

n
1
4

) = 1
12x

4 + G6(c)n− 1
2

6! x6 → 1
12x

4 as n→∞. We also notice for γ > 1
2 , − 1

2αn
1−γ( x

n
1
4

)2 = − 1
2αn

1
2−γx2 → 0

as n→∞. This motivates the change of variables x→ x

n
1
4

. Applying this to the numerator and the denominator

in (3.2) we get

E(exp(tnSn)) =

∫∞
−∞ exp

(
− 1

2n(1 + αn−γ)t2n + xtnn
3
4 (1 + αn−γ)− 1

2αn
1
2−γx2 − nG

(
x

n
1
4

))
dx∫∞

−∞ exp
(
− 1

2αn
1
2−γx2 − nG

(
x

n
1
4

))
dx

. (3.3)

To obtain a non trivial limit for the x term we then set tn = r

n
3
4

which gives

E
(

exp
(
r
Sn

n
3
4

))
=

∫∞
−∞ exp

(
− 1

2n
− 1

2 (1 + αn−γ)r2 + xr(1 + αn−γ)− 1
2αn

1
2−γx2 − nG

(
x

n
1
4

))
dx∫∞

−∞ exp
(
− 1

2αn
1
2−γx2 − nG

(
x

n
1
4

))
dx

. (3.4)

We notice that for the function G(x), there exist positive real numbers ε and A such that

a) G(x) ≥ εx4 for |x| ≤ A ⇒ exp(−nG( x

n
1
4

)) ≤ exp(−εx4) for |x| ≤ An 1
4 ;

b) G(x) ≥ εx2 for |x| > A ⇒ exp(−nG( x

n
1
4

)) ≤ exp(−εx2n
1
2 ) for |x| > An

1
4 .

from a) we define a sequence of functions fn(x) as the integrand in the numerator of equation (3.4) and let I

be the indicator function. Then we see that

fn(x)I(|x| ≤ An 1
4 ) := exp(−1

2
n−

1
2 (1 + αn−γ)r2 + xr(1 + αn−γ)− 1

2
αn

1
2−γx2 − nG(

x

n
1
4

))I(|x| ≤ An 1
4 )

≤ exp((1 + α)xr − εx4)

(3.5)

which is an integrable function over the real line. From b) we get

fn(x)I(|x| > An
1
4 ) := exp

(
− 1

2
n−

1
2 (1 + αn−γ)r2 + xr(1 + αn−γ)− 1

2
αn

1
2−γx2 − nG

( x

n
1
4

))
I(|x| > An

1
4 )

≤ exp((1 + α)xr − εx2n
1
2 ).

(3.6)
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The expression in equation (3.6) converges to 0 as n → ∞. We also see for γ > 1
2 , we get that fn(x) →

exp(rx − 1
12x

4),∀x ∈ R since An
1
4 → ∞. Using this alongside the results in (3.5) and (3.6) and Lebesgue’s

dominated convergence theorem (see appendix), then
∫∞
−∞ fn(x) dx →

∫∞
−∞ exp(rx − 1

12x
4) dx as n → ∞.

Applying this argument to the denominator in equation (3.4) yields the result in equation (3.1). We also get

from the MGF Continuity Theorem that for inside the scaling window

E
((Sn

n
3
4

)j)
→
∫ ∞
−∞

xj exp(− 1

12
x4) dx

/∫ ∞
−∞

exp(− 1

12
x4) dx.

Setting j = 2, then by linearity we obtain

E(S2
n) ∼ n 3

2

∫ ∞
−∞

x2 exp(− 1

12
x4) dx

/∫ ∞
−∞

exp(− 1

12
x4) dx

which yields asymptotics for the variance of Sn since E(Sn) = 0. This completes the proof.

�

Theorem 3.3 Let βn = 1
1+αn−γ be the inverse-temperature and Sn =

∑
ωi∈{−1,1} ωi be the magnetisation for

the Curie-Weiss model with n spins. For 0 ≤ γ < 1
2 and α ∈ (0,∞),

lim
n→∞

α
1
2Sn

n
1
2 + γ

2

→ N(0, 1), in distribution

and

Var(S2
n) ∼ n1+γ

α
.

Similarly to Theorem 3.2, we will show that

lim
n→∞

E
(

exp
(
r
α

1
2Sn

n
1
2 + γ

2

))
=

∫ ∞
−∞

exp(rx− 1

2
x2) dx

/∫ ∞
−∞

exp(−1

2
x2) dx. (3.7)

The result for theorem 3.3 will again follow from the MGF Continuity Theorem.

Proof Theorem 3.3. The proof of this is similar to that of Theorem 3.1. As such we will begin by looking

at equation (3.3). Since we observe a Central Limit Theorem (limn→∞ Sn/n
1
2 → N(0, 1

1−β )) for fixed β < 1

then we expect for small γ (slow convergence to the critical value β = 1) to again observe a Gaussian limiting

distribution. For 0 ≤ γ < 1
2 , the term 1

2αn
1
2−γx2 dominates the term nG(xn−

1
4 ) in (3.3). We then make a

change of variables x → xα−
1
2n

γ
2−

1
4 to make the x2 term have a non-trivial limit as n → ∞. This yields from

equation (3.3),
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E(exp(tnSn)) =

∫∞
−∞ exp

(
− 1

2n(1 + αn−γ)t2n + xtnα
− 1

2n
γ
2 + 1

2 (1 + αn−γ)− 1
2x

2 − nG
(

x

α
1
2 n

1
2
− γ

2

))
dx∫∞

−∞ exp
(
− 1

2x
2 − nG

(
x

α
1
2 n

1
2
− γ

2

))
dx

. (3.8)

We then pick tn so as to give a non trivial limit for the linear x term in equation (3.8). We set tn = rα
1
2n−

γ
2−

1
2

to obtain

E
(

exp
(
r
α

1
2Sn

n
1
2 + γ

2

))
= exp(−α

2
r2n−γ(1 + αn−γ))

∫∞
−∞ exp

(
rx(1 + αn−γ)− 1

2x
2 − nG

(
x

α
1
2 n

1
2
− γ

2

))
dx∫∞

−∞ exp
(
− 1

2x
2 − nG

(
x

α
1
2 n

1
2
− γ

2

))
dx

. (3.9)

We note that nG(xα−
1
2n

γ
2−

1
2 )→ 0 as n→∞ for all x ∈ R when 0 ≤ γ < 1

2 . Clearly exp(rx(1 + n−γ)− 1
2x

2 −

nG(xn
γ
2−

1
2 )) < exp(2rx− 1

2x
2) which is integrable over R. Using Lebesgue’s dominated convergence theorem,

we find in taking the limit of the result in equation (3.9) yields equation (3.7). Analogously to Theorem 3.1 we

get from the MGF Continuity Theorem

E
((α 1

2Sn

n
1
2 + γ

2

)j)→ ∫ ∞
−∞

xj exp(−1

2
x2) dx

/∫ ∞
−∞

exp(−1

2
x2) dx = 1

Setting j = 2, then by linearity we obtain

E(S2
n) ∼ n1+γ

α

which yields the expression asymptotics of the variance since E(Sn) = 0.

�

Finally we have a theorem for the case when γ = 1
2 . The case when 0 ≤ γ < 1

2 and α < 0 will be discussed in

the following sections.

Theorem 3.4 Let βn = 1
1+αn−γ be the inverse-temperature and Sn =

∑
ωi∈{−1,1} ωi be the magnetisation

for the Curie-Weiss model with n spins. For all γ = 1
2 and α ∈ R, there is a random variable X with density

proportional to exp(− 1
2αx

2 − 1
12x

4) such that,

lim
n→∞

Sn

n
3
4

→ X, in distribution

and

V ar(S2
n) ∼ n 3

2

∫ ∞
−∞

x2 exp(−1

2
αx2 − 1

12
x4) dx

/∫ ∞
−∞

exp(−1

2
αx2 − 1

12
x4) dx.
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The proof of this is analogous to that of Theorem 3.1 and 3.3. One just needs to analyse equation (3.4)

taking γ = 1
2 . This yields

E
(

exp
(
r
Sn

n
3
4

))
=

∫∞
−∞ exp(− 1

2n
− 1

2 (1 + αn−
1
2 )r2 + xr(1 + αn−

1
2 )− 1

2αx
2 − nG( x

n
1
4

)) dx∫∞
−∞ exp(− 1

2αx
2 − nG( x

n
1
4

)) dx
.

We can then use Lebesgue’s dominated convergence theorem in a similar way done in theorems 3.1 and 3.3.

The MGF Continuity Theorem will then give you the result.

4 Further Study

The one case that we have omitted from this report is the case when 0 ≤ γ < 1
2 and α < 0, outside the critical

scaling window but approaching the critical value β = 1 from above. This means we are in the low temperature

region. In the Law of Large Numbers scaling for Sn (taking Sn/n) we obtain a mixture of point masses in the

limit as n → ∞. This tells us not to expect a central limit theorem (In the case when β ≤ 1, Sn/n converges

to a single point mass and so a central limit theorem type result may be expected). From Figure 2, we can see

Figure 2: The distribution for Sn/n when n = 100 for β = 0.8 and β = 1.2, respectively. Figure from Friedli

and Velenik [2017]

that in the low temperature region we observe a bi-modal distribution for the magnetisation when n is large. In

a paper by Ellis et al. [1980], it was shown that, in the fixed β > 1 case, if you condition on the magnetisation

being near one of these positive peaks, then we again obtain a central limit theorem type result. More clearly,

when we condition on Sn/n ∈ [m− a,m+ a] where m is the value corresponding to the position of the peak of

the distribution in Figure 2, then we find that Sn/n
1/2 converges, in distribution, to a Gaussian.

In the first attempt at solving this for β = βn = 1/(1 + αn−γ), we attempted to utilise some of the tech-

niques that we developed by Ellis et al. [1980]. What we later realised was that because we are converging to to

the critical value β = 1, then the two peaks at m and −m were also converging to 0 (they are in fact sequences

8



of real numbers converging to 0 so can be denoted mn). This means that in a region of radius a around one of

these peaks, in the limit there will be a point where we are actually conditioning over 2 peaks. This ultimately

leads to an incorrect result. Part of some further study which we would like to tackle is refining some of the

techniques from Ellis et al. [1980] to enable us to limit our calculation to being conditioned around just a single

peak. To do this we will condition on Sn > 0 rather than centering around mn. This seems like an interesting

problem to tackle.

5 Conclusion

In modifying the Curie-Weiss Model to accommodate a βn that is asymptotic to the critical value β = 1 we were

able to obtain limit theorems that were in many ways analogous to those by Simon and Griffiths [1973] and Ellis

and Newman [1978]. With β = βn = 1/(1+αn−γ), we found that when γ > 1
2 that we obtained the same result

as for the fixed β = 1 case. This tells us that for fast convergence to the critical value, the modal is unable to

tell the difference between the asymptotic β = βn and the fixed value β = 1 when considering the distribution of

the magnetisation, Sn. With slower convergence (0 ≤ γ < 1
2 ), when we approach the critical value from below

we find that that the behaviour of the magnetisation is much like that for the high temperature case and obtain

a Gaussian limit for the magnetisation (after appropriately scaling). The low temperature scaling window is

considerably more difficult but a strategy for solving this problem has been outlined.
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Appendix

The Central Limit Theorem

See e.g. A.8.5 [Ellis, 2006].

Let {Xi: i = 1, 2, 3...} be a sequence of i.i.d. random variables and define Sn =
∑n
i=1Xi. If E(X1) = µ and

V ar(X1) = σ2 are finite and σ2 > 0, then

Sn − nµ
n1/2

→ N(0, σ2), in distribution,

where N(0, σ2) is a probability measure on R with density

(2πσ2)1/2 exp(−1

2
x2)

Moment Generating Function (MGF) Continuity Theorem

see e.g. A.8.7 [Ellis, 2006]. Let Pn be a sequence of Borel probability measures on R, M(R). Assume that

the moment generating functions gn(r) =
∫∞
−∞ exp(rx)Pndx are defined for all r in an interval C which has

nonempty interior and which contains the origin. Assume that for all r ∈ C the limit g(r) = limn→∞ gn(r)

exists and that g(r)→ g(0) = 1 as r ∈ C, r 6= 0, converges to 0. Then the following conclusions hold.

a) Pn converges weakly to some P ∈M(R) and g(r) =
∫∞
−∞ exp(rx)P dx

b) If in addition 0 ∈ intC, then for any j ∈ {1, 2, . . . },
∫∞
−∞ xjPn dx→

∫∞
−∞ xjP dx

Lebesgue’s Dominated Convergence Theorem

Suppose fn : R → [−∞,∞] are (Lebesgue) measurable functions such that the point wise limit f(x) =

limn→∞ fn(x) exists and is bounded by some integrable function g, then

lim
n→∞

∫
R
fn dµ =

∫
R
f dµ
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