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Abstract

Non-negative Matrix Factorisation (NMF) models decompose a non-negative data matrix into a product

of two low-dimensional non-negative matrices. This is done by discovering factors that represent the intrinsic

features of the data, and relating these to original features and samples. NMF models have been widely used in

practice in areas including audio signal analysis, computational biology and recommender systems. The Doubly

Sparse NMF (DS-NMF) model is an extension of NMF that imposes sparsity in both of the factored matrices

to increase the interpretability of the discovered factors. The goal of this research is to derive and implement

a structured stochastic variational inference algorithm for the DS-NMF model, and assess its performance on

simulated data.

1 Introduction

Non-negative Matrix Factorisation (NMF) aims to decompose an observed non-negative data matrix X into a

product of two low-dimensional non-negative matrices of factor loadings W and activations H. This is achieved by

identifying a set of latent variables called factors, which represent the intrinsic features of the data. Each observation

(column) in X can be viewed as a non-negative linear combination of the factors (columns of W), weighted by the

columns of H. Variants of NMF have been used in a wide range of tasks, including audio source separation (Liang

et al., 2013; Liang and Hoffman, 2014), analysis of gene expression in single cells (Stein-O’Brien et al., 2019), and

collaboratively filtered recommender systems (Bobadilla et al., 2018). A particular variant is Sparse NMF (S-NMF)

that poses sparsity on the activations H. In applications where only a subset of samples is associated with each

factor, S-NMF can improve the interpretability of the factors by capturing the sparse structure in H. Liang et al.

(2013) and Liang and Hoffman (2014) employ S-NMF in their audio source separation tasks. Doubly Sparse NMF

(DS-NMF) is an extension of S-NMF that imposes additional sparsity on the factor loadings W to capture the

potential sparse structure in W. Xuan et al. (2018) use this model for co-clustering of word-document data.

The focus of this research is to derive and implement Bayesian inference techniques for DS-NMF. Bayesian

inference aims to find the posterior distribution of model parameters from observed data. In this report, I used

Variational Inference (VI) (Blei et al., 2016) that casts the inference problem as an optimisation problem of finding

a variational distribution that closely approximates the posterior distribution. Mean-field VI (Blei et al., 2016;

Hoffman et al., 2013) approximates the posterior distribution using the variational distribution where the parameters

are mutually independent. This makes the computation process convenient but is a drawback for models where

breaking the dependency structure is critical. To address this issue, Hoffman and Blei (2014) developed Structured

Stochastic Variational Inference (SSVI) that restores the dependencies among parameters in the approximating

variational distribution using a stochastic optimisation approach. Liang and Hoffman (2014) derived an SSVI

algorithm for S-NMF. In this report, I will extend this work by developing an SSVI algorithm for DS-NMF, which,

to my knowledge, has not been developed before. I will assess the performance of the SSVI algorithm for DS-NMF
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and compare it with the SSVI algorithm for S-NMF where appropriate.

1.1 Related Work

There has been several related works that explore inference techniques for S-NMF and DS-NMF models. Liang

et al. (2013) developed a Laplace approximation variational inference algorithm for S-NMF to handle non-conjugate

models. But their work suffers from the independent assumption of VI. Liang and Hoffman (2014) improve on this

and provide an SSVI framework for S-NMF. Xuan et al. (2018) present a Bayesian inference framework for DS-NMF.

However, they use a sampling-based approximate Bayesian inference technique called Markov Chain Monte Carlo

(MCMC). Finally, Li et al. (2020) present a VI framework for DS-NMF. In contrast to my approach, they make

the independence assumption of parameters, and also make the sparsity controlling parameters shared between W

and H.

Statement of authorship. Under the direction of my supervisor, I conducted the literature review, derived

and implemented the methods, performed the simulation study, and wrote this report. My supervisor oversaw the

overall direction of this research project, checked my derivations, helped set up the simulation study, and proofread

this report.

2 The DS-NMF model

In this report, I work with the DS-NMF model with Poisson likelihood. Poisson likelihood is a natural choice as I

aim to analyse single-cell RNA-seq data which is count data, and it corresponds to the widely-used Kullback-Leibler

divergence loss function (Liang and Hoffman, 2014). The model is formulated as:

E[X] =
(
W � SW

) (
H� SH

)
,

Xft ∼ Poisson

(∑
k

WfkS
W
fkHktS

H
kt

)
(1)

where � denotes the Hadamard (element-wise) product. Here, X ∈ NF×T+ represents the input data of non-negative

counts, with rows and columns corresponding to features and samples respectively. W ∈ RF×K+ represents the

unmasked latent factor loadings where each column represents the relative weights of each feature for the factors.

SW ∈ {0, 1}F×K represents the binary mask for W. H ∈ RK×T+ represents the unmasked latent activations where

each row represents expression of the factors in each observation. SH ∈ {0, 1}K×T represents the binary mask for

H.

I adopt the prior specifications for S-NMF from Liang and Hoffman (2014) but with additional priors on the

elements of SW which are new in DS-NMF. Beta process priors are placed on SW and SH as they remove the need
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to set the precise number of factors K which is typically unknown (Paisley and Carin, 2009). Theoretically, this

allows the inference algorithm to find the appropriate number for K, given that a sufficiently large value of K is

inputted such that it is larger than the true K. I adopt the finite approximation to the beta process from Liang

et al. (2013):

SWfk ∼ Bernoulli(πWk ), πWk ∼ Beta

(
aW0
K
,
bW0 (K − 1)

K

)
SHkt ∼ Bernoulli(πHk ), πHk ∼ Beta

(
aH0
K
,
bH0 (K − 1)

K

)
In this formulation, πWk and πHk are factor-specific parameters that control the sparsity in factor loadings and

activations respectively. The rest of the priors are as follows:

Wfk ∼ Gamma(a, b), Hkt ∼ Gamma(c, d)

The choice of gamma priors for factor loadings W and activations H ensures the non-negativity constraint to be

satisfied. Figure 1 depicts the full model.

Figure 1: Graphical model representation of DS-NMF. Observed variable is shaded in grey. Hidden variables are

unshaded (white). A variable variable a depends on the value of another variable b if there exists an incoming

directed edge from b to a. The value in the lower right corner of each plate denotes the replication number.

I introduce auxiliary random variable Z ∈ NF×T×K+ similarly to Liang and Hoffman (2014).

Zftk ∼ Poisson
(
WfkS

W
fkHktS

H
kt

)
Xft =

∑
k

Zftk

This will enable the model to enjoy the convenient additive property of Poisson random variables and make the

derivation of SSVI inference algorithm more convenient.
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3 Bayesian Inference for DS-NMF

In this section, I will first review variational inference (Blei et al., 2016) and structured stochastic variational

inference (Hoffman and Blei, 2014), and then present a structured stochastic variational inference algorithm for

DS-NMF.

3.1 Variational Inference

Variational Inference (VI) refers to a framework for approximate Bayesian inference algorithms that approximate

posterior distributions using an optimisation approach (Blei et al., 2016). Let θ denote the model parameters and

X denote the data. VI approximates the target posterior distribution with the variational distribution q∗(θ) from

a specified family of distributions Q such that the Kullback-Leibler (KL) divergence between q∗(θ) and target

posterior p(X |θ) is minimised:

q∗(θ) = arg min
q(θ)∈Q

KL (q(θ) || p(θ|X)) = arg min
q(θ)∈Q

Eq [log q(θ)− log p(θ|X)]

The KL divergence cannot be computed directly. But, the problem of minimising the KL divergence is equivalent

to maximising the Evidence Lower BOund (ELBO):

L := Eq [log p(X,θ)− log q(θ)] (2)

The derivation of equation (2) can be found in the Appendix. The maximisation problem is often solved by the

Coordinate Ascent Variational Inference (CAVI) algorithm (Blei et al., 2016). However, CAVI is restrictive as it

requires two assumptions: First, the model is conditionally conjugate. Second, the choice of Q is the mean-field

variational family where the model parameters θ = {θi}mi=1 are mutually independent in q, that is, the variational

distribution is written as a product of independent variational factors:

q(θ) =

m∏
i=1

qi(θi).

However, the DS-NMF model is not conditionally conjugate. Moreover, it is desirable to capture the dependency

between W (H) and SW (SH) in q. Thus, I develop a structured stochastic variational inference algorithm for

DS-NMF.

3.2 Structured Stochastic Variational Inference

Structured Stochastic Variational Inference (SSVI) uses gradient-based stochastic optimisation to solve the problem

of maximising the ELBO, while allowing arbitrary dependencies between the global and local variables (Hoffman

and Blei, 2014). Here, global variables are model parameters that possibly govern any of the data, and local hidden
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variables are those only associated with specific unit of observation. The word stochastic comes from the fact that

SSVI only computes a noisy gradient of the ELBO, ∇L̂, such that:

Eq
[
∇L̂
]

= ∇L

and uses stochastic optimisation (Robbins and Monro, 1951). The word structured comes from the additional

structure that is posed on the mean-field variational family, thereby relaxing the independent assumption. Therefore,

it allows for an arbitrary dependency structure between local and global variables in the variational distribution.

3.3 Structured Stochastic Variational Inference for DS-NMF

Following the SSVI framework, I divide the model parameters of DS-NMF into local variables {Z, SW, SH} and

global variables {W, H, πW , πH}. The posterior distribution is approximated using the following structured

variational distribution:

p(Z, W, H, SW, SH, πW , πH |X) ≈ q(Z, W, H, SW, SH, πW , πH)

=

[∏
k

q(wk)q(hk)q(πWk )q(πHk )

]
q(Z, SW, SH|W, H, πH , πW )

where the variational distribution on global variables are fully factorised:

q(wk) =
∏
f

q(Wfk), q(hk) =
∏
t

q(Hkt)

with

q(Wfk) = Gamma(νWfk, ρ
W
fk), q(Hkt) = Gamma(νHkt, ρ

H
kt)

q(πWk ) = Beta(απ
W

k , βπ
W

k ), q(πHk ) = Beta(απ
H

k , βπ
H

k ).

The ELBO in equation (2) can be re-written as:

L = Eq
[
log

p(W,H,πW ,πH)

q(W,H,πW ,πH)

]
+ Eq

[
log

p(X,Z,SW,SH|W,H,πW ,πH)

q(Z,SW,SH|W,H,πW ,πH)

]
. (3)

The ELBO can be optimised by maximising the local ELBO, which is the second term in equation (3), for any

particular value of the global variables. The idea is to sample global variables from current variational distributions

and use them to maximise the local ELBO with respect to local variables. Then, I update variational parameters for

the global variables according to a gradient step. The local ELBO achieves the optimum if the conditional variational

distribution equals the exact conditional, i.e. q(Z,SW,SH|W,H,πW ,πH) = p(Z,SW,SH|W,H,πW ,πH). To

compute a noisy gradient for the global variational parameters, SSVI algorithm only requires a sample for local

variables from the conditional variational distribution. Thus, I use an MCMC algorithm called collapsed gibbs

sampler (Liu, 1994) to sample SW and SH by marginalising out Z from the exact conditional distribution.
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The full SSVI algorithm for the DS-NMF model is described in Algorithm 1. The derivations of the collapsed

gibbs sampler and global variational parameter updates can be found in the Appendix.

Algorithm 1: SSVI for the DS-NMF model

Input: X, a, b, c, d, aW0 , bW0 , aH0 , b
H
0 , K

Output: variational factors that approximate the posterior distribution for each global parameter

Randomly initialise global variational parameters: {νW , ρW , νH , ρH ,απ
W

, βπ
W

, απ
H

, βπ
W };

for i = 1, 2, . . . do

Sample W
(i)
fk ∼ Gamma(νWfk, ρ

W
fk);

Sample H
(i)
kt ∼ Gamma(νHkt, ρ

H
kt);

Sample πWk
(i) ∼ Beta(απ

W

k , βπ
W

k );

Sample πHk
(i) ∼ Beta(απ

H

k , βπ
H

k );

Sample SWfk
(i)

and SHkt
(i)

using collapsed gibbs sampler and compute φ
(i)
ftk =

W
(i)
fk S

W
fk

(i)
H

(i)
kt S

H
kt

(i)∑
lW

(i)
fl S

W
fl

(i)H
(i)
lt S

H
lt

(i) ;

Set step-size η(i) = i−0.5 and perform global variational parameter updates:

νWfk ← (1− η(i))νWfk + η(i)(a+
∑
t

Xftφ
(i)
ftk);

ρWfk ← (1− η(i))ρWfk + η(i)(b+ SWfk
(i)∑

t

H
(i)
kt S

H
kt

(i)
);

νHkt ← (1− η(i))νHkt + η(i)(c+
∑
f

Xftφ
(i)
ftk);

ρHkt ← (1− η(i))ρHkt + η(i)(d+ SHkt
(i)∑

f

W
(i)
fk S

W
fk

(i)
);

απ
W

k ← (1− η(i))απ
W

k + η(i)(
aW0
K

+
∑
f

SWfk
(i)

);

βπ
W

k ← (1− η(i))βπ
W

k + η(i)(
bW0 (K − 1)

K
+ F −

∑
f

SWfk
(i)

);

απ
H

k ← (1− η(i))απ
H

k + η(i)(
aH0
K

+
∑
t

SHkt
(i)

);

βπ
H

k ← (1− η(i))βπ
H

k + η(i)(
bH0 (K − 1)

K
+ T −

∑
t

SHkt
(i)

);

end

4 Simulation Study

I now compare the performance of my SSVI algorithm for the DS-NMF model, denoted DS-SSVI, with the existing

SSVI algorithm for the S-NMF model by Liang and Hoffman (2014), denoted S-SSVI. I focus on the performances

of algorithms in capturing the possible sparse structures in masked factor loadings W�SW and masked activations
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H � SH. It is expected that DS-SSVI would flexibly capture the sparse structures in both factor loadings and

activations, but S-SSVI would only be able to capture the sparse structure in activations. I perform a simulation

study where both masked factor loadings and masked activations are sparse.

4.1 A doubly sparse example

I compare the performances of DS-SSVI and S-SSVI on a doubly sparse example, where both masked factor

loadings and activations have true sparse structures. My goal is to verify that DS-SSVI is able to capture the

sparse structure in the new binary mask SW, in addition to SH. I expect DS-SSVI and S-SSVI to have similar

performance in inferring the masked activations H�SH, but DS-SSVI to outperform S-SSVI in inferring the masked

factor loadings W � SW.

The simulated dataset consists of F = 300 features over T = 300 samples, explained by K = 4 factors. The

sparsity parameters are set to πW = (0.3, 0.2, 0.3, 1) and πH = (0.4, 0.5, 0.45, 1), leading to the mix of sparse and

dense factors. Entries in W and H are independently generated from four different Gamma distributions with shape

parameters 1.6, 1.4, 1.2, 1 and scale parameter 1, according to their associated factor. This is to enable clusters

to be around different values in the mean matrix. The mean matrix, E[X], where dataset X will be simulated

from, is computed by
(
W � SW

) (
H� SH

)
. Figure 3 in the Appendix shows the true simulated structures. 10

independent datasets are generated from E[X], where 3 VI trials with different initialisations are run on each

observation. For each dataset, following Liang and Hoffman (2014), I select the VI trial with the highest local

likelihood p(SW, SH, Z, X|W, H, πW , πH) for inference. In VI trials, the sparsity hyperparameters (parameters

in the prior) for πW and πH are set to aW0 = bW0 = aH0 = bW0 = 1, corresponding to uniform priors. The gamma

entries are set to be dense with hyperparameters a = b = c = d = 5, to encourage the sparse structures to be

captured by the binary masks SW and SH, not by making entries in W and H tiny. Also, the true number of

factors K = 4 is inputted into the algorithm to verify that the algorithms work appropriately given the correct

number of factors. Finally, both algorithms are run for 100 iterations.

To quantitatively assess the performances of DS-SSVI and S-SSVI, I evaluate the accuracy of inferred binary

masks SW and SH using accuracy, defined as the proportion of correctly inferred entries. SW and SH are inferred

by taking the mean of samples generated from the collapsed gibbs sampler after Algorithm 1 has finished running,

and rounding the entries to 0 or 1. The accuracy of estimating masked factor loadings W � SW and masked

activations H� SH are evaluated using relative root mean squared error:

RRMSE(Â, A) :=

√∑
(Âij −Aij)2∑

A2
ij

Table 1 lists the median accuracy and RRMSE values obtained by DS-SSVI and S-SSVI with standard deviation

in the parenthesis. DS-SSVI yields much better (lower) RRMSE for masked activations W � SW than S-SSVI,

hence it verifies that DS-SSVI does better in estimating the true sparse structure of W � SW in a doubly sparse
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setting. Also, DS-SSVI does about as good as SSVI in estimating SH and H�SH in terms of accuracy and RRMSE.

Note that for S-SSVI there is no accuracy value obtained for SW as S-NMF does not have the binary mask SW in

its model. The inferred binary mask SW from DS-SSVI is shown in Figure 4 in the Appendix.

Table 1: DS-SSVI and S-SSVI results on a doubly sparse example.

Accuracy: SW RRMSE: W � SW Accuracy: SH RRMSE: H� SH

DS-SSVI 0.834 (0.041) 0.290 (0.041) 0.735 (0.053) 0.542 (0.272)

S-SSVI - 0.769 (0.055) 0.745 (0.052) 0.558 (0.075)

Figure 2 visually shows the inferred masked factor loadings by DS-SSVI and S-SSVI. S-SSVI fails to capture the

sparse structure in the true masked factor loadings. S-SSVI insufficiently shrinks the zero values compared with

DS-SSVI which captures the sparse structure of W� SW relatively well. Although with some noise, DS-SSVI can

identify the association between factors and features by interpreting the sparse entries as non-related.

Figure 2: True simulated masked factor loadings W�SW (left), estimated masked factor loadings from DS-SSVI

(middle), estimated factor loadings from S-SSVI (right).

4.2 Trials with larger values of K

I now compare the performances of DS-SSVI and S-SSVI when the input value of K is larger than the true number

of factors K = 4. According to their model specifications, the algorithms should attempt to silence insignificant

factors where the proportion of non-zero entries are close to 0. 10 trials of DS-SSVI and S-SSVI are run on both

the doubly sparse and sparse-activations examples, with input K = 5 and K = 10.
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4.2.1 Doubly sparse example

Table 2 shows the median RRMSE and standard deviation of estimated mean matrix ˆE[X] for DS-SSVI and S-SSVI

using K = 5 and K = 10 as the input number of factors. I use the RRMSE values of the estimation of mean matrix

ˆE[X] for comparison. I discuss the reason for using this evaluation metric in the Discussion section. For both inputs

of K = 5 and K = 10, DS-SSVI achieves lower RRMSE with lower standard deviation. Thus, DS-SSVI can be

considered more accurate and reliable than S-SSVI in the case of doubly sparse example, in the sense that it can

more closely estimate the true mean matrix.

Table 2: DS-SSVI and S-SSVI results with input K = 5 and K = 10 on the doubly sparse example.

Input K Algorithm RRMSE ˆE[X]

5 DS-SSVI 0.099 (0.017)

S-SSVI 0.180 (0.051)

10 DS-SSVI 0.669 (0.001)

S-SSVI 0.678 (0.003)

5 Discussion

In this section, I address the identified limitations of DS-SSVI, and provide possible directions for future work.

Capturing sparsity in masked activations. A common trend seen in the simulation study was that although

DS-SSVI obtained reasonable evaluation metric values for estimating the activations matrix, it did not seem to

successfully capture the true sparse structure in visual inspections. One reason could be that instead of the binary

mask SH capturing sparse entries by masking them out with 0’s, actually the unmasked activations H often tried to

capture the sparse pattern by putting small values in H where corresponding entries in SH would still have values

of 1. Figure 5 in the Appendix illustrates an example. Here, DS-SSVI failed to learn the sparse pattern of factors 1

and 2 in the binary mask SH, and instead, it placed very small values (between about 0.1 and 0.4) in the unmasked

activations H corresponding to those entries that should have been masked out. A possible resolution would be

to employ the spike and slab prior in modelling the relations between W with SW, and H with SH. This would

impose a more explicit dependency structure such that the entries in W (H) are non-zero only if corresponding

entries in SW (SH) are non-zero. This could improve the interpretibility and performance of the algorithm, but

the derivation could become trickier.

Multiple inferred factors representing one true factor. One advantage of the existing S-SSVI algorithm

presented by Liang and Hoffman (2014) was its ability to effectively silence insignificant factors and arrive at an
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appropriate number for K, even when an arbitrarily large K is inputted into the algorithm. In the simulation

study, it was seen that S-SSVI was not able to obtain the correct number of factors K = 4 when inputs of 5

and 10 were given. Neither was DS-SSVI able to appropriately reduce down to the correct number of factors. A

possible explanation is that two or more significant factors can be produced by the algorithm such that together

they estimate one true factor well. Hence, this results in the tendency to keep the larger number of K. Figure 6

in the Appendix shows an example where factors 4 and 5 in the estimated matrix from DS-SSVI seem to together

correspond to factor 4 in the true structure. This is why only the RRMSE of estimated mean matrix was used

for comparison, as the accuracy and RRMSE of binary masks, masked factor loadings and activations cannot be

computed when the values for K do not match between two matrices. Further work would be to investigate a way

to interpret the decomposed factors appropriately.

Using mean-field approximation instead of collapsed gibbs sampler. In DS-SSVI, the collapsed gibbs

sampler was used to sample SW and SH. This was to obtain an unbiased estimate of the conditional expectation

of natural parameters in the local likelihood (see the Global parameter updates section in the Appendix). Instead,

the mean-field approximation assumption between the local parameters can be posed, that is, SW,SH, and Z given

the global parameters are independent. This approach would still keep the dependency structure between local

and global variables, but possibly make the conditional expectation to be computed in closed-form (Hoffman and

Blei, 2014). Although the algorithm’s performance would likely be reduced compared to using the collapsed gibbs

sampler, there would be a significant reduction in running-time. The trade-off between run-time and performance

would could be considered for future work.

Laplace approximation variational inference. In this report, I focused on structured stochastic variational

inference for the DS-NMF model, which relaxed the independent assumption of variational factors in the mean-field

approximation. Another approach is to use Laplace approximation variational inference (Liang et al., 2013), where

non-conjugacy of the model is directly dealt by using the Laplace method to approximate variational factors. This

approach does not restore the dependency structure between global and local variables, but algorithm run-time

would likely be much faster than DS-SSVI. Again, the trade-off between performance and run-time would need to

be investigated.

6 Conclusion

In this report, I reviewed the DS-NMF model, an extension of NMF, where sparsity is imposed on both of the

factored matrices. This model is appropriate for use when the factors of the data are expected to be associated

with subsets of both the samples and features. Structured stochastic variational inference framework was used

in inferring the model parameters. Theoretically, the algorithm should flexibly adapt to different combinations

of sparse structures, and infer the matrices accordingly. The simulation study confirmed that DS-SSVI performs
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better than S-SSVI in identifying the underlying factors when both the true factor loadings and activations are

sparse.
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Appendix

Derivation of equation (2).

KL (q(θ) || p(θ|X)) = Eq [log q(θ)− log p(θ|X)]

= Eq [log q(θ)− log p(X, θ) + log p(X)]

= −Eq [log p(X,θ)− log q(θ)] + log p(X)

= −L+ log p(X)

Since log p(X) is constant with respect to q, minimising the KL divergence is equivalent to maximising the ELBO

(L).

Derivation of Algorithm 1.

Collapsed gibbs sampler.

The construction of the auxiliary variables Z makes it easy to calculate the conditional expectation of Zftk. Hence,

I marginalise Zftk out from p(SWfk, S
H
kt|X, W, H, πW , πH) and only sample SWfk and SHkt.

p(Zftk, S
W
fk, S

H
kt|X, W, H, πW , πH) ∝ p(SWfk, SHkt|X, W, H, πW , πH)

First, I derive the active (non-sparse entries) proportion of SWfk by computing the following quantities, using the

marginalised conditional distribution:

P(SWfk = 1|SWf,¬k,xf , wf , H, SH, πW , πH)

∝ P(SWfk = 1, SWf,¬k, xf , wf , H, SH, πW , πH)

∝ P(SWfk = 1|πW ) · P(xf |H, wf , S
W
f,¬k, S

W
fk = 1, SH)

∝ πWk ·
∏
t

WfkHktS
H
kt +

∑
m 6=k

WfmS
W
fmHmtS

H
mt

Xft

exp(−WfkHktS
H
kt) =: PW1

P(SWfk = 0|SWf,¬k,xf , wf , H, SH, πW , πH)

∝ P(SWfk = 0|πW ) · P(xf |H, wf , S
W
f,¬k, S

W
fk = 0, SH)

∝ (1− piWk ) ·
∏
t

∑
m6=k

WfmS
W
fmHmtS

H
mt

Xft

=: PW0

Now, I can sample SWfk ∼ Bernoulli(
PW

1

PW
0 +PW

1
) after some burn-in period. Similarily to above, I also derive the active
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proportion of SHkt:

P(SHkt = 1|SH¬k,t,xt, W, ht, SW, πW , πH)

∝ P(SHkt = 1|πH) · P(xt|W, ht, S
H
¬k.t, S

H
kt = 1, SW)

∝ πHk ·
∏
f

WfkS
W
fkHkt +

∑
l 6=k

WflS
W
flHltS

H
lt

Xft

exp(−WfkS
W
fkHkt) =: PH1

P(SHkt = 0|SH¬k,t,xt, W, ht, SW, πW , πH)

∝ (1− πHk ) ·
∏
f

∑
l 6=k

WflS
W
flHltS

H
lt

Xft

=: PH0

I can then sample SHkt ∼ Bernoulli(
PH

1

PH
0 +PH

1
) after some burn-in period.

I can calculate the conditional expectation of Zftk by utilising the property that the conditional of a Poisson

distribution is Multinomial. This conditional expectation can be used as a proxy for Zftk. I have:

zft|Xft, wf , ht, s
W
f , s

H
t ∼ Multi(zft;Xft, φft)

where φftk ∝ WfkS
W
fkHktS

H
kt. Hence, E[Zftk|Xft, Wfk, Hkt, S

W
fk, S

H
kt] = Xftφftk and I can use it as a proxy for

Zftk in the global update steps.

Global parameter updates.

In DS-SSVI, an unbiased estimate of the conditional expectation of natural parameters from the local likelihood

p(SW, SH, Z, X|W, H, πW , πH) needs to be computed. This computation becomes convenient as the introduc-

tion of auxiliary variables Z restores conditional conjugacy between parameters in the DS-NMF model in Eq.(1),

when conditioning on binary masks SW and SH. This leads to the posterior distribution for each global model

parameter being factorised as conjugate pairs with W, H, πW , and πH respectively. We have:

p(SW, SH, Z, X|W, H, πW , πH) = p(SW|πW )p(SH|πH)p(Z,X|W, H, SW, SH, πW , πH)

= p(SW|πW )p(SH|πH)p(Z|W, H, SW, SH, πW , πH)
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For the update of variational parameters for each Wfk, only the terms containing Wfk are considered:

p(zf |wf , H, sWf , SH) =
∏
t

∏
k

p(Zftk|wf , H, sWf , SH)

∝
∏
t

[
(WfkS

W
fkHktS

H
kt)

Zftk exp(−WfkS
W
fkHktS

H
kt)

×
∏
m 6=k

(WfmS
W
fmHmtS

H
mt)

Zftk exp(−WfmS
W
fmHmtS

H
mt)

]

∝
∏
t

[
(WfkS

W
fkHktS

H
kt)

Zftk exp(−WfkS
W
fkHktS

H
kt)

]
= (WfkS

W
fkHktS

H
kt)

∑
t Zftk exp(−WfkS

W
fk

∑
t

HktS
H
kt)

which is Gamma-distributed with natural parameters
[∑

t Zftk, S
W
fk

∑
tHktS

H
kt

]
. Here,

∑
tXftφftk is substituted

for
∑
t Zftk as an unbiased estimator. Now, plugging these, with the natural parameters for the prior on W , into

the standard Robbins-Monro stochastic optimisation update step (Hoffman et al., 2013) yields:

νWfk ← (1− η(i))νWfk + η(i)(a+
∑
t

Xftφ
(i)
ftk)

ρWfk ← (1− η(i))ρWfk + η(i)(b+ SWfk
(i)∑

t

H
(i)
kt S

H
kt

(i)
)

For the update of variational parameters for each Hkt, only the terms containing Hkt are considered:

p(zt|ht, W, SW, sHt ) =
∏
f

∏
k

p(Zftk|ht, W, SW, sHt )

∝
∏
f

[
(WfkS

W
fkHktS

H
kt)

Zftk exp(−WfkS
W
fkHktS

H
kt)

]
= (HktWfkS

W
fkS

H
kt)

∑
f Zftk exp(−HktS

H
kt

∑
f

WfkS
W
fk)

which is Gamma-distributed with natural parameters
[∑

f Zftk, S
H
kt

∑
f WfkS

W
fk

]
. Similarly to above, the update

steps become:

νHkt ← (1− η(i))νHkt + η(i)(c+
∑
f

Xftφ
(i)
ftk)

ρHkt ← (1− η(i))ρHkt + η(i)(d+ SHkt
(i)∑

f

W
(i)
fk S

W
fk

(i)
)

For the update of variational parameters for each πWk , only the terms containing πWk are considered:

p(SWk |πHW ) =
∏
t

p(SWfk|πWk )

=
∏
f

(πWk )S
W
fk(1− πWk )1−S

W
fk

= (πWk )
∑

t S
W
fk(1− πWk )F−

∑
t S

W
fk
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which is Bernoulli-distributed with natural parameters
[∑

f S
W
fk, F −

∑
f S

W
fk

]
. The update steps become:

απ
W

k ← (1− η(i))απ
W

k + η(i)(
aW0
K

+
∑
f

SWfk
(i)

)

βπ
W

k ← (1− η(i))βπ
W

k + η(i)(
bW0 (K − 1)

K
+ F −

∑
f

SWfk
(i)

)

For the update of variational parameters for each πHk , only the terms containing πHk are considered:

p(SHk |πHk ) =
∏
t

p(SHkt|πHk )

=
∏
t

(πHk )S
H
kt(1− πHk )1−S

H
kt

= (πHk )
∑

t S
H
kt(1− πHk )T−

∑
t S

H
kt

which is Bernoulli-distributed with natural parameters
[∑

t S
H
kt, T −

∑
t S

H
kt

]
. The update steps become:

απ
H

k ← (1− η(i))απ
H

k + η(i)(
aH0
K

+
∑
t

SHkt
(i)

)

βπ
H

k ← (1− η(i))βπ
H

k + η(i)(
bH0 (K − 1)

K
+ T −

∑
t

SHkt
(i)

)
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Figure 3: True simulated structures for: masked factor loadings W � SW (left), masked activations H � SH

(middle), and mean matrix E[X] = (W � SW )(H � SH) (right). Purple entries in the left and middle plots

correspond to sparse entries (with values 0).

Figure 4: True simulated structure for binary mask SW (left), inferred structure of posterior mean of SW from

DS-SSVI with the highest accuracy of 0.897 (right).
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Figure 5: True simulated binary mask SH (top-left), inferred binary mask for SH (top-right), true masked

activations H�SH (bottom-left), estimated masked activations obtained by taking an element-wise product between

posterior mean of H and inferred binary mask for SH (bottom-right).
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Figure 6: True simulated masked factor loadings W�SW (left), estimated masked factor loadings obtained from

DS-SSVI with K = 5 as input. Factors 4 and 5 on the right are together estimating the true factor 4 in the true

structure on the left.
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