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1 Abstract

The ever-growing field of machine learning has recently reckoned with the potential of quantum computing to

make strides in computational speedup. One such model is the Quantum Boltzmann Machine (QBM) which

is based on the classical analogue of the Classical Boltzmann Machine. We explore the structure of the QBM

as a probabilistic graphical model inspired by the physical Ising model, a framework which we use to intuit

the effect of the model parameters on training quality. As a proof of concept, we implement a simple QBM

on a quantum computer simulator and experiment its capacity for generative learning – one important task in

machine learning.
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2 Introduction

Many problems in machine learning, and particularly generative learning, reduce to the goal of approximating

some true, but inaccessible, probability distribution q(x) from which only a sampling set Dn may be obtained.

It is with this aim that any potential ML framework requires two objects (Watanabe 2009):

• A model, parametrised by model parameters ~θ, which produces a probability distribution p(x) ≡ p(x|~θ)

• An error function L(p, q) quantifying how closely p(x) fits q(x)

Given these, Figure 1 outlines what a generic ML procedure would look like. Of key importance is the distinction

that the independent variable is the model parameters ~θ whose effect we observe on the dependent variable, the

error. Training a model may then be formulated as an optimisation problem, in which the ideal set of model

parameters θbest is found satisfying L(p(x|~θbest), q) = min
~θ
L(p(x|~θ), q).

Figure 1: General procedure of statistical machine learning (Watanabe 2009)

The gamut of machine learning models spans widely, so much so that recently some classical models have

been adapted to a quantum framework (Biamonte et al. 2017). The Quantum Boltzmann Machine (QBM)

is one such model, whose model parameters are inspired by the Transverse Field Ising Model (Amin et al.

2018). Our research aims to evaluate the efficacy of the QBM, both theoretically, and practically as model to

be implemented on a quantum computer. It is highly recommended for the reader to first read sections 1.2-3 of

Nielsen and Chuang 2010 to understand quantum computing formulations mentioned in future sections.

We investigate how exactly the model parameters influence the capacity of the QBM for fitting a given q(x),

or mathematically, determine the topology of the error landscape which is critical for training. The results

indicated that the topology, in just low-dimensional space is prone to the occurrence of flat regions which may

interrupt conventional methods of training such as gradient descent.

Moreover, we set out to run a QBM on IBM’s superconducting quantum computing framework Qiskit and

test how it manages in generative learning of a simple probability distribution. While somewhat successful, it
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was found that the precision of learning was stymied by a few technical caveats.

3 Boltzmann Machines

3.1 Classical Boltzmann Machines

In its most generic form, a Boltzmann Machine (BM) is an undirected graph G = (V,E) such that each vertex

vi ∈ V represents a random binary variable Xi taking values in Λ = {0, 1}. In this way, a BM is recognised as

a probabilistic graphical model exhibiting a total of 2|V | states (Fischer and Igel 2014).

More specifically, the graphical model describing BMs may be classified as a Markov Random Field (MRF),

whose discrete probability distribution describing the state x ∈ Λ|V | satisfies the following form (Fischer and

Igel 2014):

p(x) =
1

Z
e−E(x). (1)

Here, Z =
∑

x∈Λ|V | e−E(x) is the normalisation constant and importantly, E(x) is the energy function. Due to

its correspondence to the same distribution that occurs in statistical mechanics, equation (1) is often called the

Gibbs Distribution, a convention which will be adopted from here onward.

Bar satisfying the conditions mentioned in Fischer and Igel 2014, the energy function E(x) may be defined

liberally, but for the case of the BM it is strictly based on the energy function introduced by the Ising Model.

Figure 2: The classical Ising model

The Ising Model describes the energy associated with spin- 1
2 configurations of a lattice of interacting dipoles

subject to a magnetic field. Already, this physical system is similar in structure to the MRF, with the dipoles

as vertices and spin as the random variable (0 :=↑ and 1 :=↓). For a given spin configuration state x, the Ising

Model ascribes the following energy

E(x |b,W) = −b · x− xᵀWx

= −
∑
i

bixi −
∑
i

∑
j

wijxixj .
(2)

Physically, the bias field bi represents the magnetic field acting on the ith dipole, inclining (biasing) its

spin towards whichever of the two directions it points in. The weight term wij then represents the magnetic

interaction between any two (neighbouring) dipoles, such that a large positive value would incline the spins of

the pair into alignment and vice versa.
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As a machine learning model, it is the set of biases and weights (b,W) that comprises the model parameters

of the BM, ~θ. Recalling the goal of generative learning, training the BM to learn some true discrete distribution

q(x), involves finding the best instance of the aforementioned physical variables that would minimise the distance

of the Gibbs distribution from it.

3.2 Quantum Boltzmann Machines

The classical Ising Model, and by extension, the BM, does not capture quantum phenomena such as entangle-

ment or superposition. For that, a reformalism is required.

Despite the infamous unpredictability of quantum systems, there are still many physical quantities that can

be measured from them. Such quantities are called observables, which mathematically correspond to Hermitian

operators, or matrices acting on a Hilbert space (Nielsen and Chuang 2010) and whose spectrum contains the

set of possible outcomes following measurement of that quantity.

If the Ising Model describing a lattice of n dipoles is reformulated as a quantum system, the energy of its

2n possible states must now be expressed in terms of the energy observable Ĥ, also known as the Hamiltonian.

For the simple case of the classical Ising model described in the previous section in which there is no account

of superposition nor entanglement, it is easy to see that Ĥ will have eigenstates X = {|0〉 , |1〉}n, with energy

spectrum {E(x)| ∀x ∈ X}, lending to the form

diag({E(x)| ∀x ∈ X}) = Ĥ

= −
∑
i

biσ
z
i −

∑
i

∑
j

wijσ
z
i σ

z
j .

(3)

Where σzi is the Pauli Z matrix acting on the ith spin, as described in further detail in (Amin et al. 2018)

In the last line of equation (3), the earlier contrived setup is replaced with an equivalent and much more

organic expression reminiscent of the classical Ising Model.

With this generalised definition of the energy in the Ising model as a Hamiltonian observable, a new quantum

mechanical variable may be introduced known as the transverse field Γ (Amin et al. 2018):

Ĥ = −
∑
i

Γiσ
x
i −

∑
i

biσ
z
i −

∑
i

∑
j

wijσ
z
i σ

z
j . (4)

Unlike the bias field bi, Γi is the magnetic field acting on the ith dipole in the direction transverse to the

spins. The effect of this is that it induces a spin superposition (Nielsen and Chuang 2010) within the dipole,

so that the eigenstates of the Hamiltonian are no longer simple computational basis states, but superpositions

thereof.

As with any ML model, it must be noted that the ultimate goal of extracting a Gibbs distribution p(x |b,W,Γ)

still remains. Conveniently, p(x) over the 2n computational basis states correspond to the diagonal entries of

the density matrix ρ (Nielsen and Chuang 2010) of the system

ρ =
e−H

Z
=

e−H

Tr[e−H ]
. (5)
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Figure 3: The Transverse Field Ising Model

4 Model Parameters

As mentioned in the introduction, the effect of the model parameters on generative learning can be quantified

through the error function L(p, q). One commonly used error function is the negative average log-likelihood,

which reads

L(p, q) = −
∑

x∈Λ|V |

q(x) log p(x) (6)

and is minimum wherever the model parameters ~θ yield p that best approximates q. The next few sections

observe the topology of this error (distance) landscape when conditioned on two model parameters. The true

distributions q(x) that are to be learned in subsequent sections are shown in Figure 4.

(a) (b)

Figure 4: True distributions being learned by the (a) Bias, Weight, and (b) Transverse models

4.1 Bias Field

To investigate the effect of the bias field on learning the true distribution q(x) shown in Figure 4a), the QBM

in Figure 5a was used.

Shown in green are the two bias parameters bi and bj that will be varied. All other parameters (in grey)

besides the pair of biases have been fixed to a value of 0. From here onward, unless otherwise stated, any

parameter that is not shown is set to 0.

The distance landscape as a function of these two bias fields can be seen in Figure 5b.
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(a) Bias model

(b)

(c) Weight model (d)

(e) Transverse model
(f)

Figure 5: The QBMs used (left column) and the respective distance landscape produced when two of their

model parameters are varied (right)
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The most notable feature of Figure 5b is that it is partitioned into four quadrants, with the quadrant of

minimum distance being the one in which both biases are positive. This is expected as under these conditions,

both dipoles have their spins biased in the positive (|↑〉) direction, and not in any other configuration - exactly

what is required by the true distribution. On the other hand, the opposite quadrant has neither dipole’s spin

biased in the desired direction, thus conferring it the highest distance away from q(x).

4.2 Weight

For the weight model, Figure 5c was used to model the same distribution shown in Figure 4a).

Note that there is now the inclusion of a hidden dipole, whose value is not recorded in the final readout of

the QBM state x. Instead, it serves as a linking dipole encoding dependencies between the visible nodes i and

j. This time the weight parameters between each visible and hidden dipole pair, wij and wjk, are being varied,

producing the distance landscape in Figure 5d.

Again, the first quadrant is that of the lowest distance from q(x). Here, both weights are positive, meaning

that dipoles i and j are coaxed into alignment with k. And since k is already biased upwards, the two visible

dipoles to which it is connected will be too. Notably, however, there is a plateau on the opposite quadrant as

well, albeit at a higher elevation. Although both weights being negative would incline the dipoles into anti-

alignment to k, the fact that they are the same sign means that there will still be some (small) probability of

the dipoles being in |↑↑〉, thus the somewhat higher distance. This is as opposed to the remaining quadrants, in

which i and j are in any case antiparallel to each other, and thus even further away from the true distribution.

The presence of flat plateaus for such a low-dimensional system might transfer over to the landscape of

larger QBMs, which would severely disrupt any training by gradient descent.

4.3 Transverse Field

This time, the distribution being learned is the maximally mixed state shown in Figure 4b), for which the QBM

model Figure 5e will be used.

Here, the transverse field Γi on i is varied, as well as the weight between the two dipoles wik, where k is once

again, a hidden node. The two most important loci in figure Figure 5f are when either parameter is 0. Note

when wik = 0, the visible node i is independent of k and so is in its naturally mixed state. Thus, the distance is

consistently at a minimum, producing a connected valley. Conversely, when Γi = 0, the visible node i remains

purely coupled to k which is already biased upwards, thus offsetting it from its mixed state and adding distance

away from q(x).

It is important to note two additional features of this graph. Firstly, it is symmetric about the Γi axis,

which reflects the fact that whether it be left or right, the effect of the transverse field remains the same on

the visible dipole as inclining it into superposition. Secondly, for any fixed weight, the distance decreases as

the transverse field increases in magnitude. In this case, the effect of the transverse field dominates over the

coupling on i, leading it to progressively resemble the true uniform distribution in Figure 4b).
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Figure 6: One cycle of training the QBM (Zoufal, Lucchi, and Woerner 2021)

5 Implementation

Thus far, only a conceptual investigation of QBMs has been conducted. The main goal of QBMs in practice is

implementing one on a real device and observing its performance. The procedure outlined in Figure 6 illustrates

the overall training process consisting of three main steps:

1. Physically simulate the Gibbs state ρ (and thus p(x)) from the Hamiltonian H(~θ) on a quantum computer.

2. Obtain the gradient of the distance function L(p, q) with respect to the model parameters ~θ.

3. Update ~θ and repeat until convergence

5.1 Gibbs State Preparation

In the previous section, the Gibbs distribution extracted to produce the loss landscape had been obtained

numerically by explicitly calculating the matrix exponential (Amin et al. 2018). This, of course, defeats the

purpose of the QBM as a model conferring some speed-up.

To forgo explicit calculation, the principle of Imaginary Time Evolution (ITE) may be used (McArdle et al.

2019). For a system in state |ψ0〉 with Hamiltonian Ĥ =
∑
p θphp where hp are Pauli terms as defined in (Zoufal,

Lucchi, and Woerner 2021), ITE propagates the state as,

|ψ(τ)〉 = C e−Ĥτ |ψ0〉 (7)

where the normalisation constant is,

C(τ) =
1√

Tr
[
e−2Ĥτ |ψ0〉 〈ψ0|

] .
Observe that when the initial mixed state is maximally mixed ρ0 = |ψ0〉 〈ψ0| = 1

dI, the propagated mixed state

at τ = 1
2 is the desired Gibbs distribution in (5) .

Equation (7) may be produced by means of an appropriate variational quantum circuit encoding an Ansatz
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state (Zoufal, Lucchi, and Woerner 2021),

|ψ(ω)〉 = Uq(ωq) . . . U1(ω1) |00 . . . 0〉

= V (~ω) |0̃〉
(8)

Then, the projection of |ψ(τ)〉 onto |ψ(~ω(τ)〉 may be obtained – which is hoped to be a close approximation –

by using McLachlan’s variational principle,

δ||(d/dτ +H − 〈ψ(~ω(τ))|H|ψ(~ω(τ))〉) |ψ(~ω(τ))〉 || = 0

which ultimately yields the system of equations (McArdle et al. 2019),

Aω̇ = C (9)

where

Aij = Re

(
Tr

[
∂ 〈ψ(~ω(τ))|
∂ω(τ)i

∂ |ψ(~ω(τ))〉
∂ω(τ)j

])
Ci = −

∑
p

θp Re

(
Tr

[
∂ 〈ψ(~ω(τ))|
∂ω(τ)i

hp |ψ(~ω(τ))〉
])

.
(10)

Solving (9) iteratively allows for the Ansatz parameters to be propagated by Euler’s method to τ = 1, yielding

the state parameters required to approximate the Gibbs state,

~ω(τ) = ~ω(0) +

τ/δτ−1∑
n=0

ω̇(nδτ)δτ.

5.1.1 Computing C

Note the entries of C can be rewritten as (Schuld et al. 2019),

Ci = −1

2

(
〈ψ(~ω)|H∂ωi |ψ(~ω)〉+ h.c.

)
= −1

2

(
〈0̃|V (~ω)†H∂ωiV (~ω)|0̃〉+ h.c.

)
.

Now, assuming only the gate Ui in V (~ω) = Uq(ωq) . . . Ui(ωi) . . . U1(ω1) depends on ωi,

∂ωiV (~ω) = Uq(ωq) . . . ∂ωiUi(ωi) . . . U1(ω1)

:= M∂ωiUiN

where the adjacent terms have been redefined as M and N respectively, and the independent variable wi is

implied by Ui for clarity. By conjugating H with M so that Q̂ := M†ĤM , and defining |ψ〉 := N |0̃〉, the

expression for Ci simplifies to,

Ci = −1

2

(
〈ψ|U†i Q̂∂ωiUi|ψ〉+ h.c.

)
. (11)

Moreover, further factorisation yields,

Ci = −1

4

(
〈ψ| (Ui + ∂ωiUi)

†Q̂(Ui + ∂ωiUi)|ψ〉

− 〈ψ| (Ui − ∂ωiUi)†Q̂(Ui − ∂ωiUi)|ψ〉
)
.

(12)
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(a) Computing Ci
(b) Computing Aij

Figure 7: Circuits for computing (a) C and (b) A

As shown in (McArdle et al. 2019), for a general unitary gate, ∂ωiUi can be decomposed to a linear combination

of unitary gates also, which means it is easily implementable on a quantum computer.

With the help of an ancilla, equation (12) can be computed using the circuit shown in Figure 7a). Let p0

and p1 be the probabilities of measuring 0 and 1 on the ancilla, and thus, having the main state collapse to |ψ′0〉

and |ψ′1〉 respectively. If E0 = 〈ψ′0|Q̂|ψ′0〉 and E1 = 〈ψ′1|Q̂|ψ′1〉 (Nielsen and Chuang 2010), it can be shown that

Equation (12) is equivalent to (Schuld et al. 2019)

Ci = −(p0E0 − p1E1). (13)

5.1.2 Computing A

Conveniently, the entries of A can be massaged into resembling those of C:

Aij =
1

2

(
〈∂ωjψ(~ω)|∂ωiψ(~ω)〉+ h.c.

)
=

1

2

(
〈0̃|U†1 . . . ∂ωiU

†
i . . . U

†
qUq . . . ∂ωjUj . . . U1|0̃〉+ h.c.

)
assuming i < j,

=
1

2

(
〈0̃|U†1 . . . ∂ωiU

†
i . . . U

†
j ∂ωjUj . . . U1|0̃〉+ h.c.

)
letting |ψ〉 := Ui−1 . . . U1 |0̃〉,

=
1

2

(
〈ψ| ∂ωiU

†
i . . . U

†
j ∂ωjUj . . . Ui|ψ〉+ h.c.

)
.

As mentioned in (McArdle et al. 2019), assuming U is a Pauli gate, ∂U = ασU where α is a known phase factor

and σ a Pauli gate such that [σ, U ] = 0,

=
1

2
αiαj

(
〈ψ|σ†iU

†
i . . . U

†
jUjσj . . . Ui|ψ〉+ h.c.

)
=

1

2
αiαj

(
〈ψ|σ†iU

†
i . . . U

†
j−1σjUj−1 . . . Ui|ψ〉+ h.c.

)
.

Now by labelling N := Uj−1 . . . Ui,

=
1

2
αiαj

(
〈ψ|σ†iN

†σjN |ψ〉+ h.c.
)
. (14)

Note that the form of (14) closely resembles that of (11), with the added simplification of Q̂ = I. It is no

surprise, then, that the entries may be computed with Figure 7b) following the same procedure as in (13).
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Figure 8: The Ansatz used to simulate ρ from Ĥ (Zoufal, Lucchi, and Woerner 2021)

Moreover, because Q̂ = I, the expectation values E0 = E1 = 1, so (McArdle et al. 2019)

Aij = αiαj(p0 − p1)

= αiαj(2p0 − 1).
(15)

5.2 Gradient Descent

While there exists an analytical method (Zoufal, Lucchi, and Woerner 2021) to computing the gradients ∂L(pθ , q)

∂~θ
,

a finite differences approach was adopted for simplicity:

∂θiL(p~θ , q) =
L(pθi+ε , q)− L(pθi−ε , q)

2ε
. (16)

This was repeated for all Hamiltonian parameters to build ∇L which was used to update ~θ accordingly:

~θ ← ~θ − η∇L.

5.3 Results

The Ansatz in Figure 8 was used to simulate the Gibbs distribution described by the following Hamiltonian

Ĥ(b,W,Γ) = b1σ
1
z + b2σ

2
z + w12σ

1
zσ

2
z + Γ1σ

1
x + Γ2σ

2
x (17)

One instance of VarQITE can be seen in Figure 9:

Figures 10 and 11 display the model’s performance in learning a simple Bell state distribution on a quantum

computing simulator.

6 Discussion

Using the Ansatz in Figure 8, the circuits in Figure 7 were implemented on the QISKIT statevector simulator

in order to reproduce the true probability distribution shown in Figure 10. While Figure 11 clearly shows that

the QBM is learning the desired distribution, tapering off beyond 4 steps, Figure 10 reveals how the trained

Gibbs distribution still exhibits inaccuracies, such as the nonzero values for the mixed spin states, and the

underestimation of the maximally excited state.
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Figure 9: State fidelity of Ansatz mixture to desired ρgibbs over ten steps of VarQITE

(a) (b)

Figure 10: Gibbs distribution p(x) a) before and b) after training

These inadequacies hint at the presence of multiple confounding factors, the most salient of which is that

the VarQITE package (Zoufal, Lucchi, and Woerner 2021) used to prepare the Gibbs states had an error which

disrupted the fidelity of the final mixture to the theoretical Gibbs distribution defined by the Hamiltonian.

The effect of this error can be observed in Figure 9, where despite there being a general increasing trend in

state fidelity, by the end of VarQITE, the simulator only caps at 0.96 which is lower than that produced by

Zoufal, Lucchi, and Woerner 2021. Apart from technical issues, there also remains the fact that VarQITE aims

to obtain the projection of the desired Gibbs state |ψ(τ)〉 onto the subspace spanned by the variational state

|ψ(ω(τ)〉, and depending on the (potentially limited) representational capacity of the Ansatz this could easily

reduce the maximum state fidelity reached. Much more research is needed in devising metrics that could assess

the adequacy of an Ansatz for this intrinsic setback to be potentially curbed.

The fact that training was successful in Figure 11 implies the distance landscape was smooth and not too flat

which would’ve otherwise lead to no significant decrease in the loss. However, no conclusion can be made about
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Figure 11: Loss (distance) over training steps

the general topology of the distance landscape, so whether this smoothness scales with size isn’t guaranteed.

In fact, research has shown that sufficiently parameterised variational circuits are prone to the occurrence of

plateau barrens in their distance function (Marrero, Kieferová, and Wiebe 2020), which would suggest training

quality gets worse with increasing size.

There also exist certain computational limitations in this implementation of the QBM. By having to solve (9)

at each step, Gibbs state preparation by VarQITE is very time-consuming. However, recent strides in quantum

machine learning have revealed efficient quantum algorithms to help with the exact problem of solving a linear

system of equations. Perhaps, this could be incorporated into the model to make VarQITE more efficient.

Additionally, the finite differences method used for gradient descent quickly becomes unfeasible for a large

number of Hamiltonian parameters - a standard which is expected for practical implementations in the future.

7 Conclusion

Having defined the QBM architecture as a Markov Random Field with an energy function based on the Ising

model, this project first set out to explore the effect of the different model parameters on the topology of the

distance landscape used in training. This led to the discovery of notable regions such as extremely flat plateaus

and valleys.

As an ML model, the QBM was implemented semi-classically on a quantum computer using the VarQITE

algorithm. While the model shows some potential in generative learning, its effectiveness is mostly set back

by lingering confounding factors. Theoretical issues include the representational (in)capacity of the Ansatz

used in VarQITE, as well as the occurrence of plateaus in the distance landscape which would render gradient

descent obsolete. Additionally, there is the practical issue of computational overhead with both VarQITE,
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and finite difference calculations, especially for larger systems consisting of highly parameterised Hamiltonians

and variational circuits. Future research should systematise the process of selecting an adequate Ansatz for

approximating a desired state. Moreover, currently classical subroutines in VarQITE (e.g. solving a system of

equations) could be replaced with quantum counterparts that have been shown to result in speedup.
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