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Abstract 

The purpose of data analysis using mixed model is to account both random and fixed effects 

in the observations. Traditional method for using generalized linear model (GLM) is not offering 

capability to look at clustered data (correlation in the data) and random factor that each cluster might 

have. However, under GLM, there is a large sample property that could give robust standard error. 

Then, one could think, “Is this idea could be implemented in the mixed model?”. This project goal is 

looking at applying the idea in the robust variance linear model to be implemented in the generalized 

linear mixed model (GLMM). However, based on the simulation, it is not fully transferable to apply 

the idea under GLM to get robust variance in GLMM. It would require a bit of adjustment in the 

formula to find the correct variance of fixed effects model to account for the random effects in the 

model, or approach differently with likelihood-based approach.   

 

1 Introduction 

The popular GLM has been widely used to analyze data to account fixed effects which is 

common across observations. However, analysis would be more sophisticated by incorporating 

random effect. Also, if one would like to have correlated observations in the data in a cluster, it would 

be feasible to use GLMM. One application of this would be to look at the Salamanders count 

throughout different sites. Each site would have common factor that could affect count output on 

Salamanders, for example, humidity, water temperature, season, etc., but each site could have 

random factor that could affect the count output of the Salamanders. For example, particular site 

might have higher population of Salamanders (or seen as ‘inherent ability’ of the sites) at the 

beginning before the observations. Thus, to account for this random factor, this random effect on 

each site is treated by taking a random draw from normal distribution with mean 0 and some variance 

value. 

Subsequently, generalized estimating equations (GEE) has been established that robust 

variance under GLM could be achieved by applying sandwich estimator. Thus, in a large sample, 

regardless family or distribution is correctly specified, it will specify the correct variance of the fixed 

effects. Motivated by this idea, one would like to produce the robust variance for model that considers 

both fixed and random effects. Aim of this project is to apply the idea of sandwich estimator from 

GEE to GLMM to account for the random effect (particularly count model under Poisson model) and 

get the robust variance of the fixed effects after incorporating extra information about the random 

effects. Furthermore, the model can be extended for dispersed counts specified by Conway-Maxwell 

Poisson (CMP) model. Numerical computation has been conducted using the software R Studio. 
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2 Statement of Authorship 

Alan Huang and Wilson Lorensyah developed an implementation of enhancement of existing 

project of generalized version of Poisson regression. Alan Huang explained the ideas, possible 

approach, demonstrate samples R code and proofread the report. Wilson Lorensyah wrote the 

report, R code, and conducting numerical experiments. The project was conducted during end of 

2020/ beginning of 2021. 

 

3 Background - Introduction and Model 

Linear Mixed Model (LMM) is a method for analysing non-independent, multilevel / 

hierarchical, or correlated data using mean model given response variables are distributed as 

Gaussian. This would be an extension of simple linear model (LM) to allow both fixed and random 

effects and response variables to be correlated. General form of the model is given by: 

LMM LM 

𝒚𝑵×𝟏 = 𝑿𝑵×𝒑𝜷𝒑×𝟏 + 𝒁𝑵×𝒒𝒖𝒒×𝟏 + 𝝐𝑵×𝟏 𝒚𝑵×𝟏 = 𝑿𝑵×𝒑𝜷𝒑×𝟏 + 𝝐𝑵×𝟏 

Fixed and Random effects Fixed effects 

where  

𝒚 is the column vector for outcome variables 

𝑿 is design matrix of 𝑝 predictor variables 

𝜷 is a column vector of fixed effects regression coefficients 

𝒁 is design matrix of 𝑞 random effects 

𝒖 is a column vector of random effects (random complement for fix 𝜷) 

𝝐 is column vector of residuals 
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Suppose one is shown a linear model from dataset of health risk against time: 

Chart 1: Population Model / Marginal Model         Chart 2: Subject-Specific Model (Within Clusters) 

 

From Chart 1 and Chart 2, the straight line shows that it uses the mean model. From Chart 1, the 

trend of the data is positive in the overall population. This model will depict how the mean response 

in population is related to the covariates. Now, suppose an additional information has arrived that 

the data is consisting points of measurements from the same subjects (denoted within same color 

in Chart 2). This will change the trend to become negative within each person. This means that each 

subject (or known as cluster) has their own intercept and slopes (direction shown in the red circle 

and arrow in Chart 2) which are drawn from population intercepts and slopes. Note that in this case 

variability within clusters are not independent, while observations across different clusters (groups) 

are independent. 

 

However, rather than modelling direct mean, often used in this case would be a link function. The 

generic link function relates the mean of outcome 𝒚 to the linear predictor 𝑿𝜷 + 𝒁𝒖. By using this 

idea, LMM would become generalized LMM (GLMM) which could be produced not only for Gaussian, 

but also for binary and count response. 

 

Marginal models are attractive because it could specify within cluster association without a 

probabilistic model to generate the association. This means, estimation methods can be done using 

estimating equations which will become underlying model for the data and is an alternative to 

likelihood-based methods. When dealing with correlated model – it cannot find likelihood function 

explicitly unless doing some numerical integration to integrate out the random effects in the model.   
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The marginal model of clustered data would have a form of observation 𝑌𝑗𝑖 which denotes 𝑗th cluster 

and 𝑖th observation. The standard error of the marginal models needs 3 things to be correctly 

assumed (Huang, 2020): 

- Condition of mean-model: this can be correctly specified mostly from the plots or residual 

analysis.  

For a given vector of covariates of explanatory variables 𝑿𝒋𝒊, the mean-model is given by  

𝔼(𝑌𝑗𝑖|𝑿𝒋𝒊) = 𝜇𝑗𝑖 = 𝜇(𝑿𝒋𝒊
𝑻𝜷) 

where the mean function 𝜇(∙) would be a link function on how 𝑌𝑗𝑖 depends on the covariates 

𝑿𝒋𝒊 which could be identity link= 𝑿𝒋𝒊
𝑻𝜷, log link= 𝑒(𝑿𝒋𝒊

𝑻𝜷), or logistic link= 1 + 𝑒(𝑿𝒋𝒊
𝑻𝜷) and the 

slope 𝜷 = (𝛽0, 𝛽1, 𝛽2, … )  

- Conditional variance for each 𝑌𝑗𝑖 often incorrectly specified due to various data structure, and 

it is given by: 

Var(𝑌𝑗𝑖|𝑿𝒋𝒊) = 𝜙𝑉(𝜇𝑗𝑖) 

where 𝜙 is a constant and 𝑉(∙) is some variance function (note that when 𝜙 = 1, 𝑉(𝜇𝑗𝑖) = 𝜇𝑗𝑖 

it will follow Poisson distribution since it has same mean and variance) 

- Association between two observations within same cluster 

Association(𝑌𝑗𝑖, 𝑌𝑗𝑘) = 𝜌(𝜇𝑗𝑖 , 𝜇𝑗𝑘; 𝛾) 

 where 𝜌(𝜇𝑗𝑖 , 𝜇𝑗𝑘; 𝛾) is some function that contains association parameter 𝛾 

In this case, association refers to relation of continuous and discrete variables, whereas correlation 

refers to the relation of 2 continuous variables. In addition, the association/correlation itself needs 

not to be specified correctly and can be adjusted for any initial correlation structure. 

 

After having these properties set up, estimation of the marginal models would be carried out using 

generalized estimating equations (GEE) was developed by Liang & Zeger (1986). This is an 

extension of GLM which only considers the fixed effect. This method is commonly used when 

underlying joint distribution cannot be explicitly written for the data. Thus, this idea is used as a 

starting point to be implemented for creating robust standard error for model with fixed and random 

effects. 

 

There are two main properties for the GEE estimator (𝛽̂GEE): 

1. 𝛽̂GEE is consistent estimator for 𝜷 even if working variance-covariance matrix 𝑊𝑗 is incorrectly 

specified. 
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2. For large sample sizes, 𝛽̂GEE distribution is approximately given by mean 𝜷 and covariance 

matrix: 

Var(𝛽̂GEE) = (∑ 𝐷𝑗𝑊𝑗
−1𝐷𝑗

𝑇
𝐽

𝑗=1
)

−1

(∑ 𝐷𝑗𝑊𝑗
−1Var(𝒀𝑗)𝑊𝑗

−1𝐷𝑗
𝑇

𝐽

𝑗=1
)(∑ 𝐷𝑗𝑊𝑗

−1𝐷𝑗
𝑇

𝐽

𝑗=1
)

−1

 

where for each cluster 𝑗, 

𝐷𝑗 is the “derivative matrix” of the mean-model  

𝐷𝑗 =
𝜕𝜇(𝑿𝒋𝒊

𝑻𝜷)

𝜕𝜷
 

𝑊𝑗 is the working variance-covariance matrix under the assumed model. 

𝑉𝑎𝑟(𝒀𝑗) is the true variance-covariance matrix for the responses 𝒀𝑗 which is unknown. This 

can be estimated using regression residuals 

Var(𝒀𝑗) = (𝒀𝑗 − 𝝁̂𝑗)(𝒀𝑗 − 𝝁̂𝑗)
𝑇
 

When this is substituted to the covariance matrix 𝑉𝑎𝑟(𝛽̂𝐺𝐸𝐸), the term will be: 

(∑ 𝐷𝑗𝑊𝑗
−1𝐷𝑗

𝑇
𝐽

𝑗=1
)

−1

(∑ 𝐷𝑗𝑊𝑗
−1(𝒀𝑗 − 𝝁̂𝑗)(𝒀𝑗 − 𝝁̂𝑗)

𝑇
𝑊𝑗

−1𝐷𝑗
𝑇

𝐽

𝑗=1
)(∑ 𝐷𝑗𝑊𝑗

−1𝐷𝑗
𝑇

𝐽

𝑗=1
)

−1

 

Which is so-called “sandwich estimator” of variance (it is thought of the first and third term 

as the “bread”, and the second term as the “meat”) 

 

Note that if the working variance-covariance matrix happens to be correctly specified (i.e. when 

𝑉𝑎𝑟(𝒀𝑗) = 𝑊𝑗). Then the covariance matrix 𝑉𝑎𝑟(𝛽̂𝐺𝐸𝐸) is given by: 

Var(𝛽̂𝐺𝐸𝐸) = (∑ 𝐷𝑗𝑊𝑗
−1𝐷𝑗

𝑇
𝐽

𝑗=1
)

−1

(∑ 𝐷𝑗𝑊𝑗
−1𝑊𝑗𝑊𝑗

−1𝐷𝑗
𝑇

𝐽

𝑗=1
)(∑ 𝐷𝑗𝑊𝑗

−1𝐷𝑗
𝑇

𝐽

𝑗=1
)

−1

 

                      = (∑ 𝐷𝑗𝑊𝑗
−1𝐷𝑗

𝑇
𝐽

𝑗=1
)

−1

(∑ 𝐷𝑗𝑊𝑗
−1𝐷𝑗

𝑇
𝐽

𝑗=1
)(∑ 𝐷𝑗𝑊𝑗

−1𝐷𝑗
𝑇

𝐽

𝑗=1
)

−1

 

                      = (∑ 𝐷𝑗𝑊𝑗
−1𝐷𝑗

𝑇
𝐽

𝑗=1
)

−1

…(∗) 

The sandwich estimator of variance is always true covariance of 𝛽̂ and consistent whether working 

variance-covariance model is correctly specified. GEE framework will offer asymptotically correct 

inferences for 𝛽. This property is robust for large sample property, so care needs to be taken in 

small/moderate sample size for choosing a good starting model for the data to get accurate variance. 

Hence, this idea of sandwich estimator is deemed as “robust adjustments” to variance. 

 

  



 

8 

 

4 Discussion / Findings 

In this application, the relevant model to use would be clustered count data for its marginal 

model. Then, suitable model to use would be (discrete) Poisson model which has some properties:  

𝑌~Poi(𝜆),  𝔼(𝑌) = Var(𝑌) = 𝜆,  where 𝜆 ∈ (0,∞) 

More generally, it can also use the Conway-Maxwell-Poisson (CMP) model which is the generalized 

version of Poisson distribution which allow dispersion parameter (𝜈) has some properties: 

𝑌~CMP(𝜆, 𝜈),  𝔼(𝑌) = ∑
𝑘𝜆𝑘

(𝑘!)𝜈𝑍(𝜆, 𝜈)
,

∞

𝑘=0
Var(𝑌) = [∑

𝑘2𝜆𝑘

(𝑘!)𝜈𝑍(𝜆, 𝜈)

∞

𝑘=0
] − [𝔼(𝑌)]2  

PMF = Pr(𝑌 = 𝑘) =
𝜆𝑘

(𝑘!)𝜈𝑍(𝜆, 𝜈)
 

𝑍(𝜆, 𝜈) = ∑
𝜆𝑘

(𝑘!)𝜈

∞

𝑘=0
,  where 𝜆, 𝜈 > 0 𝑜𝑟 𝜆 ∈ (0,1), 𝜈 = 0 

There is no closed form for the variance for CMP, and when 𝜈 = 1, the CMP distribution becomes 

Poisson distribution. Over (Under) dispersion would create greater (smaller) variability in a dataset 

given a statistical model. Note that when 𝜈 = 0 and 𝜆 < 1 it will follow geometric distribution starting 

at 𝑘 = 0. Also, when 𝑣 → ∞, the CMP model converges in distribution to Bernoulli distribution with 

mean 𝜆(1 + 𝜆)−1. 

 

To simulate this, glmmTMB package from R is simulated since it accommodates both Poisson and 

CMP distribution comparing to the other available options. Simulation will be based on Poisson 

model and will be generalized to CMP afterwards. 

 

The datasets used were from glmmTMB package which is called “Salamanders” data which consists 

of 644 observations with the following 9 variables and response variable “Count”: 

- Site: name of a location where repeated samples was taken 

- Mined: factor indicating whether the site was affected by mountain top removal coal mining 

- Cover: amount of cover objects in the stream (scaled) 

- Sample: repeated sample 

- DOP: Days since precipitation (scaled) 

- Wtemp: water temperature (scaled) 

- DOY: day of year (scaled) 

- Spp: abbreviated species name, possibly also life stage 

- Count: number of salamanders observed 
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In this simulation the call was to see the random effects, the mixed model was run depending on 7 

different species, sampled 4 times for each species (total of 28 observations in each site) with the 

random effect given by 23 sites (clusters). Under Poisson distribution, the hierarchical model for 𝑗th 

cluster and subject 𝑖th can be specified as: 

𝑌𝑗𝑖|𝑿𝒋𝒊, 𝛼𝑗~Poi(𝜆𝑖𝑗 = exp(𝑿𝒊𝒋
𝑻𝜷 + 𝛼𝑗)) 

𝜆𝑖𝑗|𝛼𝑖~exp(𝑿𝒊𝒋
𝑻𝜷 + 𝛼𝑗) 

𝛼𝑗~𝑁(0, 𝜎𝛼
2) 

where  

the number of sites 𝑗 = 1,… ,23, the number of species 𝑖 = 1,… ,7. (could have second digits 𝑘 =

1,… ,4 after 𝑖 to account for 4 times repetition). For each 𝕀(∙) will return 1 if (∙) is satisfied and 0 

otherwise: 

𝑿𝒋𝒊
𝑻𝜷 = 𝛽0 + 𝛽1𝕀(𝑖 = 2) + 𝛽2𝕀(𝑖 = 3) + ⋯+ 𝛽6𝕀(𝑖 = 7) 

𝑌𝑗𝑖𝑘|𝛼𝑗~Pois(exp(𝛽0 + 𝛽1𝕀(𝑗 = 2) + 𝛽2𝕀(𝑗 = 3) + ⋯+ 𝛽6𝕀(𝑗 = 7) + 𝛼𝑗)) 

each 𝛼𝑗 represent the random effect / inherent ability of each site as thought of coming from Normal 

distribution, but common through all measurements in 𝑖.  

 

Thus, the conditional expectation and conditional variance under Poisson model are given by: 

𝔼(𝑌𝑗𝑖|𝛼𝑗) = Var(𝑌𝑗𝑖|𝛼𝑗) = 𝑒(𝑿𝒋𝒊
𝑻𝜷+𝛼𝑗) 

In this structure, the mean model uses the log-link as this is considered as marginal model for 

clustered count data. The data structure would be shown as: 

(

 
 
 
 
 
 

𝑌111|𝛼1

𝑌112|𝛼1

𝑌113|𝛼1

𝑌114|𝛼1

𝑌121|𝛼1

𝑌122|𝛼1

⋮
𝑌174|𝛼1)

 
 
 
 
 
 

28×1

⋯    

(

 
 
 
 
 
 

𝑌2311|𝛼23

𝑌2312|𝛼23

𝑌2313|𝛼23

𝑌2314|𝛼23

𝑌2321|𝛼23

𝑌2322|𝛼23

⋮
𝑌2374|𝛼23)

 
 
 
 
 
 

28×1

 

 

To find the variance of 𝛽, there are two ways to obtain it: vcov output from glmmTMB package (which 

gives the “bread” part of the sandwich estimator denoted in notation (∗)) or create manually by finding 

𝑊𝑗 and 𝐷𝑗 matrix and assemble them. For variance matrix 𝑣𝑐𝑜𝑣 = Var(𝜷̂), it is defined as: 

𝑣𝑐𝑜𝑣 =

[
 
 
 
 

Var(β0̂) Cov(β0̂, β1̂) ⋯ Cov(β0̂, β6̂)

Cov(β1̂, β0̂) Var(β1̂) Cov(β1̂, β2̂) ⋮

⋮ Cov(β2̂, β1̂) ⋱ Cov(β5̂, β6̂)

Cov(β6̂, β0̂) ⋯ Cov(β6̂, β5̂) Var(β6̂) ]
 
 
 
 

7×7

= [∑ 𝐷𝑖7×28
𝑊𝑖28×28

−1 𝐷𝑖28×7

𝑇
23

𝑖=1
]
7×7

−1
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In order to find 𝐷𝑗
𝑇, it would require the expectation properties. The mean-model for site 1 is given 

by:    

𝜇𝑗𝑖 = 𝔼

(

 
 
 
 
 

𝑌111

𝑌112

𝑌113

𝑌114

𝑌121

𝑌122

⋮
𝑌174)

 
 
 
 
 

= 𝔼

(

 
 
 
 
 
 

𝔼(𝑌111|𝛼1)
𝔼(𝑌112|𝛼1)
𝔼(𝑌113|𝛼1)
𝔼(𝑌114|𝛼1)
𝔼(𝑌121|𝛼1)
𝔼(𝑌122|𝛼1)

⋮
𝔼(𝑌174|𝛼1))

 
 
 
 
 
 

= 𝔼

(

 
 
 
 
 
 

exp(𝛽0 + 𝛼1)

exp(𝛽0 + 𝛼1)

exp(𝛽0 + 𝛼1)

exp(𝛽0 + 𝛼1)

exp(𝛽0 + 𝛽1 + 𝛼1)

exp(𝛽0 + 𝛽1 + 𝛼1)
⋮

exp(𝛽0 + 𝛽6 + 𝛼1))

 
 
 
 
 
 

  

𝐷𝑗
𝑇 =

𝜕𝜇𝑗𝑖

𝜕𝜷
= (

𝜕

𝜕𝛽0

𝜕

𝜕𝛽1
…     

𝜕

𝜕𝛽6
) 

𝐷𝑗
𝑇 =

(

  
 

𝑒𝛽0𝔼(𝑒𝛼1) 0 ⋯ ⋯ 0

𝑒𝛽0𝑒𝛽1𝔼(𝑒𝛼1) 𝑒𝛽0𝑒𝛽1𝔼(𝑒𝛼1) 0 ⋯ ⋮

𝑒𝛽0𝑒𝛽2𝔼(𝑒𝛼1) 0 𝑒𝛽0𝑒𝛽2𝔼(𝑒𝛼1) ⋯ 0
⋮ ⋮ ⋱ ⋱ 0

𝑒𝛽0𝑒𝛽6𝔼(𝑒𝛼1) ⋯ 0 0 𝑒𝛽0𝑒𝛽6𝔼(𝑒𝛼1))

  
 

28×7

…(∗∗) 

For simplification, note that each row above is duplicated 4 times to make the matrix size becomes 

28 × 7. Also, the expected value 𝔼(𝑒𝛼1) = exp (
𝜎2

2
) due to log-normal distribution. 𝐷𝑗 can be found 

by transposing 𝐷𝑗
𝑇. Since observations between sites are independent, it would be repeatable for all 

23 sites and each matrix would have the same structure just changing the first index until 23. Then, 

it would require the working variance-covariance 𝑊𝑗 is given by: 

𝑊𝑗 =

(

 

Var(Y111) Cov(Y111, Y112) ⋯ Cov(Y111, Y174)

Cov(Y112, Y111) Var(Y112) Cov(Y112, Y113) ⋮

⋮ Cov(Y113, Y112) ⋱ Cov(Y173, Y174)

Cov(Y174, Y111) ⋯ Cov(Y174, Y173) Var(Y174) )

 

28×28

…(∗∗∗) 

In this case, one can find the pattern of the first few trials and can be generalized to other entry. The 

calculation can be found using the law of total variance: 

Var(Y111) = 𝔼(Var(Y111|α1)) + Var(𝔼(Y111|α1)) 

      = 𝔼(𝑒(𝛽0+𝛼1)) + Var(𝑒(𝛽0+𝛼1)) 

      = 𝑒𝛽0+(𝜎2/2) + 𝑒2𝛽0Var(e(α1)) 

                 = 𝑒𝛽0+(𝜎2/2) + 𝑒2(𝛽0) (e𝜎2
(e𝜎2

− 1)) 

Note that the variance of log-normal distribution 𝑉𝑎𝑟(𝑒(𝛼1)) = (e𝜎2
(e𝜎2

− 1)). Simplifying to the other 

variance entry, then it would just replace 𝛽0 with 𝛽0 + 𝛽𝑖′ ,  𝑖′ = 1,… ,6.  
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For covariance within the same Species, it can be found (𝑘′ = 2,3,4): 

Cov(Y111, Y11k′) = 𝔼(Cov(Y111, Y11k′|α1)) + Cov(𝔼(Y111|α1), 𝔼(Y11k′|α1)) 

= 0 + Covα1
(eβ0+α1 , eβ0+α1) = e2β0Var(e(α1)) = e2(β0) (eσ2

(eσ2
− 1)) 

For covariance within the different Species, it can be found (𝑖, 𝑖′ = 1,… ,7,  𝑖 ≠ 𝑖′, 𝑘 = 1,… ,4): 

Cov(Y1ik, Y1i′k) = 𝔼(Cov(Y1ik, Y1i′k|α1)) + Cov(𝔼(Y1ik|α1), 𝔼(Y1i′k|α1)) 

For example, comparing species 4 second observation and species 6 third observation would be: 

Cov(Y142, Y163) = 𝔼(Cov(Y142, Y163|α1)) + Cov(𝔼(Y142|α1), 𝔼(Y163|α1)) 

                              = 0 + Covα1
(eβ0+β3+α1 , eβ0+β5+α1) 

                           = 𝑒𝛽3𝑒𝛽5𝑒2𝛽0Var(𝑒(𝛼1)) = 𝑒𝛽3𝑒𝛽5𝑒2𝛽0 (e𝜎2
(e𝜎2

− 1)) 

Then, once we get the expression for 𝐷𝑗, 𝐷𝑗
𝑇 ,𝑊𝑗, one can apply the idea of (∗) and sum over all sites 

𝑗 = 1,… ,23, then inverse, to compare the output with the results given by ‘vcov’ function in glmmTMB 

package which is thought to output  

Var(β̂glmmTMB) = Var(β̂GEE) = (∑ 𝐷𝑗𝑊𝑗
−1𝐷𝑗

𝑇
𝐽

𝑗=1
)

−1

 

Then, after comparing the results for both methods (Appendix), it proves that all entries are correct 

(slightly off due to numerical rounding error) except first row, first column entry. Thus, it could be 

seen that  

Var(β̂glmmTMB) ≠ Var(β̂GEE) = (∑ 𝐷𝑗𝑊𝑗
−1𝐷𝑗

𝑇
𝐽

𝑗=1
)

−1

 

5 Conclusion and Further Research 

The idea of sandwich estimator from GEE cannot be directly applied to GLMM (requires some 

adjustment to account for the random-effects / different methods e.g. likelihood-based to get robust 

standard errors). There are some areas for further research: once replication from vcov matrix output 

can be replicated from glmmTMB, robust estimation could be obtained using modified version of the 

“Sandwich Estimator”. The results using Poisson model would then be applied to CMP model to 

account for dispersion in counts.  
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Appendix 

Algorithm to manual setup vcov or Var(𝜷̂𝑮𝑬𝑬):  

Output of manual setup: 

 
Output of vcov from glmmTMB: 

 

 
 
Any queries or development ideas are welcome email at w.lorensyah@uqconnect.edu.au 

  

- Run glmmTMB, count depending on the fixed effects of species and random effect of 

sites using the Poisson model 

- Extract the betas values (𝜷), Variance of the random effect model (𝜎2) 

- Set up 𝐷𝑗
𝑇 the transpose of derivative matrix with size (28 × 7) based on (∗∗) 

- Transpose 𝐷𝑗
𝑇 to get 𝐷𝑗 with size (7 × 28) 

- Find the 𝑊𝑗 matrix with size (28 × 28) based on (∗∗∗) 

- Do matrix multiplication 𝐷𝑗𝑊𝑗
−1𝐷𝑗

𝑇 with size (7 × 7) 

- Sum 𝐷𝑗𝑊𝑗
−1𝐷𝑗

𝑇  across all 23 sites, and inverse the result to get manual vcov 
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