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Abstract

We investigate the symmetry protection of topological phases in the q-deformed Affleck-Kennedy-Lieb-Tasaki model,

providing evidence that the Z2-classification is maintained in the deformation. We also propose a q-analogue of Rényi

entropy and demonstrate its ability to encode the full q-deformed entanglement spectrum of a spin chain with Uq[sl(2)]

symmetry.
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1. Introduction

One of the key ways to understand a physical system is to classify its states by their qualitative physical properties, or

in other words, to identify phases of the system. The consideration of symmetries is a useful tool for this classification

task: a familiar example would be the distinction between solids and liquids, which possess discrete and continuous

translational symmetries in their molecular arrangements respectively. Indeed, characterising phase transitions by

how symmetries form and break underpins the highly-successful Landau theory of phase transitions. One often refers

to Landau theory as identifying phase transitions by the presence of ‘spontaneous symmetry breaking’.

However, it was discovered that in some physical systems, there exist multiple phases with exactly the same sym-

metries. This prompted an exploration into alternative origins of phase transitions outside of the Landau symmetry-

breaking paradigm. One of the novel concepts that sprung up was that of symmetry-protected topological (SPT) phases

[Gu and Wen, 2009]. In this setting, whether or not two states belong to the same phase rests on the question of

whether they are path-connected by intermediate states satisfying certain properties.

In this project, we study one particular type of physical system: a one-dimensional infinite lattice with a quantum

spin on each site, also known as a quantum spin chain. The goals of this project are twofold, and extend the recent

work of Quella [2020]. Firstly, we address the question of whether the q-deformed AKLT ground states, a specific

family of states on quantum spin chains, can be classified into SPT phases. Secondly, we explore the entanglement

aspect of q-deformed spin chains and propose a q-analogue of the Rényi entanglement entropy, a powerful quantifier

of entanglement in a quantum system. These two avenues of the project encompass Sections 3 and 4 of this report.

Prior to this, we devote Section 2 to preliminary matters on the AKLT model and SPT phases.

This report assumes a rudimentary knowledge of quantum mechanics and in particular the theory of spin angular

momentum, which is reviewed in Appendix A. The formalism of matrix product states is also relied on heavily; we

give a surface-level overview of this in Appendix B.

2. Topological Phases in the AKLT Model

2.1. The AKLT Model

The Affleck-Kennedy-Lieb-Tasaki (AKLT) model, introduced by Affleck et al. [1987], is a model of great importance

in one-dimensional quantum spin chains. It is a spin-1 chain (i.e. each site of the lattice contains a quantum spin of

total spin 1), and for a chain of length L its Hamiltonian is a sum of nearest-neighbour interactions,

HAKLT =

L−1∑
`=1

S` · S`+1 +
1

3
(S` · S`+1)2, (1)

where ` indexes sites of the lattice. The ground state |AKLT1〉 of HAKLT is unique and gapped.1 Here, ‘gapped’ refers

to an energy gap between the ground state and the first excited state of HAKLT that remains strictly positive in the

thermodynamic limit L → ∞. Such a gap was conjectured by Haldane [1983] to exist for all integer-spin Heisenberg

chains, the AKLT model being one such instance. The AKLT model is perhaps most well-known for being one of

the first constructions to exhibit the ‘Haldane gap’, and its peculiar properties characterise it as belonging to the

so-called ‘Haldane phase’. In addition, it is also celebrated for admitting convenient analytic computations of physical

1The subscript 1 refers to the spin; we will soon generalise to arbitrary spin S.
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(i) · · ·
1/21/2 1/21/2 1/2 1/2 1/2 1/2

· · ·

(ii) · · ·
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· · ·

(iii) · · ·
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1/21/2 singlet

111

1/21/2 singlet

111

1/2 1/2 singlet

111

1/2 1/2
· · ·

Figure 1: Construction of |AKLT1〉.

parameters, as well as exemplifying the concept of symmetry-protected topological (SPT) phases, as we shall see soon.

The state |AKLT1〉 is obtained by a simple construction, illustrated in Figure 1. First divide each site of the lattice

(‘physical site’) into left and right subsites (‘auxiliary sites’), and place a spin- 12 on each auxiliary site. Next, induce

a singlet coupling between the right auxiliary spin on each physical site ` and the left auxiliary spin on its right-hand

physical site ` + 1. The physical spin, made of the two auxiliary spin- 12 s, is now a spin-(0 ⊕ 1) by the coupling rules

for spin angular momenta (Theorem A.11). To make the chain a spin-1 chain, the final step is therefore to project

each physical spin to the spin-1 sector.

The state |AKLT1〉 is also a matrix product state (MPS), with the MPS tensor for each site given by

A(S=1) =
1√
3

[
− |0〉

√
2 |1〉

−
√

2 |−1〉 |0〉

]
, (2)

where (|1〉 , |0〉 , |−1〉) is the orthonormal spin-1 basis [Schollwöck, 2011]. The scalar coefficients are related to SU(2)

Clebsch-Gordan coefficients; see Example B.4 in Appendix B for a derivation. In general, an MPS is a state that can

be specified by rank-3 tensors like the above. These tensors encode the data of the state and are particularly useful

for computations of the state’s physical properties. For this reason, we will only consider states that are MPSes, and

will refer to states by their MPS tensors where appropriate. The reader is welcome to refer to Appendix B for a brief

introduction to MPS representations.

Provided some injectivity condition is satisfied, every MPS |ψ〉 has a parent Hamiltonian, i.e. a Hamiltonian having

|ψ〉 as its unique ground state [Fernández-González et al., 2015]. For |AKLT1〉, this parent Hamiltonian is given by

(1) [Affleck et al., 1987].

2.2. Symmetry-Protected Topological Phases in Generalised AKLT States

The construction of |AKLT1〉 outlined in Section 2.1 can be easily generalised to arbitrary spin-S chains, where S is

an integer [Affleck et al., 1988]. Specifically, we place a spin-S2 on each auxiliary site, establish singlet bonds between

auxiliary spin-S2 s on neighbouring sites, and project each physical site to the spin-S sector. The result is a spin-S

AKLT state, denoted |AKLTS〉. Diagrammatically, this is just Figure 1(iii) with 1/2 replaced by S and 1 replaced by
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S. By the method of Example B.4, the MPS tensor for |AKLTS〉 has (vector-valued) matrix entries

[AS ]αβ = (−1)β+S/2
√

S + 1

2S + 1

〈
S

2
, α ;

S

2
,−β

∣∣∣∣ S, α− β〉 |S, α− β〉 , (3)

where

• 〈 j1,m1 ; j2,m2 | J,M 〉 denotes an SU(2) Clebsch-Gordan coefficient;

• the final term |S, α− β〉 is a spin-S basis state with spin-z eigenvalue α− β;

• upper and lower indices label rows and columns respectively;

• the indices α and β each run across S
2 ,

S
2 − 1, . . . ,−S2 in that order.

In essence, the states |AKLTS〉, S = 1, 2, . . . are distinguished by a degree of freedom for the dimension of the physical

spin, which mathematically translates into a choice of dimension for the representation of SU(2), and influences other

parameters such as the size of the MPS tensor. However, once a dimension has been chosen, the states |AKLTS〉 are

constructed identically. It is then natural to ask whether these states are equivalent in some physical sense, and if not,

whether a classification of these states into phases can be carried out.

Whilst the states |AKLTS〉 are all constructed to be SO(3) (i.e. rotationally) symmetric, the story of Section 1

demonstrates that we cannot immediately conclude that they all belong to the same phase. In fact, it has been shown

that |AKLTS〉 exhibits different physical properties depending on the parity of S, and the difference can be captured

by a topological invariant [Chen et al., 2013]. This traces back to the emergence of leftover spin-S2 s at the boundary,

which features among the AKLT states. The behaviour of a spin-S2 in the bosonic case (when S is even) vastly differs

from the behaviour in the fermionic case (when S is odd), and the difference propagates throughout the bulk of the

chain. Thus there exist at least two phases among the states |AKLTS〉, and no phase contains both even-S and odd-S

AKLT states.

There is now abundant evidence supporting the position that the above Z2-classification is terminal [Pollmann

et al., 2012]. That is to say, there are exactly two phases among the AKLT states and no more; all even-S AKLT

states belong to a phase called the trivial phase and all odd-S AKLT states belong to a distinct phase called the

Haldane phase. Furthermore, these phases are examples of symmetry-protected topological phases [Gu and Wen, 2009],

protected by SO(3) symmetry. We now define this term.

Definition 2.1. A symmetry-protected topological (SPT) phase P, protected by a symmetry group G, is a

collection of matrix product states for a physical system such that for all |ψ0〉 , |ψ1〉 ∈ P, their MPS tensors (M(0)

and M(1) respectively) are connected by a continuous path of MPS tensors M(t), 0 ≤ t ≤ 1, satisfying the following:

(SPT1) For all t, the state |ψt〉 represented by M(t) possesses G-invariance. That is, for every g ∈ G there exists a

phase θ with g |ψt〉 = eiθ |ψt〉.

(SPT2) The path incurs no phase transition: the dominant eigenvalue of the transfer matrix Et =
∑
σM(t)σ⊗M(t)σ,

i.e. the eigenvalue with largest modulus, is nondegenerate for all t.

Remark. Condition (SPT2) is exactly the statement that a finite correlation length must be maintained during the

path. Exactly why this translates into the absence of a phase transition is discussed in Wolf et al. [2006]. We elaborate

on the transfer matrix in the latter half of Appendix B. The need for (SPT1) is due to the fact that without imposing

a symmetry, all states are connected to each other in the sense of (SPT2), and all states would belong to a single

phase [Chen et al., 2011]. Therefore the imposition of a symmetry in (SPT1) ‘protects’ physical phases from blending

into one another.
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Figure 2: The trivial state |trivS〉.
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S/2 S singlet

S
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S
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S

S S/2 singlet

S

S/2 S

Figure 3: The blended state |blendS〉.

We present the approach of Pollmann et al. [2012] in showing that the even-S AKLT states belong to a so-called

‘trivial’ SPT phase. This involves constructing an interpolating path, satisfying (SPT1) and (SPT2), from any even-S

AKLT state to a certain separable state |trivS〉 on the spin-S chain, the trivial spin-S state. This suffices because all

separable states are connected by such paths regardless of any imposed symmetry.2 One then has a continuous path

|AKLTS1
〉 → |trivS1

〉 → |trivS2
〉 → |AKLTS2

〉

on the level of MPS representations, satisfying (SPT1) and (SPT2) for any even S1, S2. Below we define |trivS〉, as

well as a third state |blendS〉 which will be used to construct the path.

The trivial spin-S state |trivS〉

The state |trivS〉 is a dimerised state depicted in Figure 2. Each dimer comprises two sites with auxiliary spins

(0, S, S, 0), and neighbouring pairs of spin-S auxiliary spins are coupled into singlets. As each physical site contains

a spin-0 and a spin-S, the total physical spin is S, making |trivS〉 a valid state on the spin-S chain. Because all

entanglement is localised to disjoint pairs of sites, the state is separable (when viewing every pair of sites as a two-site

unit), hence is ‘trivial’ in this sense. The MPS tensors for |trivS〉 are

TS,L =
1√

2S + 1

[
|−S〉 − |−S + 1〉 |−S + 2〉 · · · |S − 2〉 − |S − 1〉 |S〉

]
, TS,R =


|S〉
|S − 1〉
. . .

|−S〉

 . (4)

where the kets are spin-S eigenstates labelled by their spin-z eigenvalue. Again these are derived using the method of

Example B.4. There are two tensors since |trivS〉 is two-site translationally invariant.

The blended spin-S state |blendS〉

The state |blendS〉 is also two-site translationally invariant, but unlike |trivS〉 each pair of sites consists of auxiliary

spins (S/2, S, S, S/2); see Figure 3. The remainder of the construction is identical to that of |AKLTS〉: singlet bonds

are established between neighbouring pairs of auxiliary spins with same total spin, then the auxiliary spins S/2 and S

belonging to each physical site are projected to the spin-S sector. The MPS tensors for |blendS〉 are given by matrix

2It is easy to see this when defining SPT phases using Hamiltonians; see e.g. Tasaki [2020].
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entries

[BS,L]αβ = (−1)β+S
√

S + 1

2S + 1

〈
S

2
, α ;S, β

∣∣∣∣ S, α− β〉 |S, α− β〉
[BS,R]γδ = (−1)δ+S/2

〈
S, γ ;

S

2
,−δ

∣∣∣∣ S, γ − δ〉 |S, γ − δ〉 (5)

where we adopt the same notational conventions as in (3). Here the indices α and δ run across S, S−1, . . . ,−S in that

order, while the indices β and γ run across S
2 ,

S
2 − 1, . . . ,−S2 in that order. Therefore BS,L is an (S + 1) × (2S + 1)

matrix, while BS,R is a (2S + 1)× (S + 1) matrix. For instance, if S = 2 then the MPS tensors for |blend2〉 are

B2,L =


1√
5
|−1〉 −

√
3
10 |0〉

√
3
10 |1〉 − 1√

5
|2〉 0√

2
5 |−2〉 − 1√

10
|−1〉 0 1√

10
|1〉 −

√
2
5 |2〉

0 1√
5
|−2〉 −

√
3
10 |−1〉

√
3
10 |0〉 − 1√

5
|1〉

 , B2,R =



1√
3
|1〉 −

√
2
3 |2〉 0

1√
2
|0〉 − 1√

6
|1〉 − 1√

3
|2〉

1√
2
|−1〉 0 − 1√

2
|1〉

1√
3
|−2〉 1√

6
|−1〉 − 1√

2
|0〉

0
√

2
3 |−2〉 − 1√

3
|−1〉


.

(6)

An interpolating path from |AKLTS〉 to |trivS〉 for any even S

As mentioned above, we will construct a path of MPS tensors MS(t), 0 ≤ t ≤ 1, satisfying (SPT1) and (SPT2).

Given the one-site and two-site translational invariance of |AKLTS〉 and |trivS〉 respectively, we use a two-site trans-

lationally invariant MPS ansatz. In other words, for each t we specify two tensors LS(t) and RS(t) for the repeating

two-site unit, and set MS(t) = LS(t)RS(t).

First consider what happens on the left physical spin of each two-site unit as t increases from 0 to 1. When t = 0

(the AKLT state), the auxiliary spins on this site both have total spins S
2 . When t = 1 (the trivial state), the total

spins are 0 and S. Therefore the auxiliary spins must be able to coexist in different representations of SU(2) during the

path. More specifically, let us denote by Vj the spin-j representation of su(2) (i.e. the (2j+ 1)-dimensional irreducible

representation). For all t, the left auxiliary spin should belong to VS
2
⊕V0, while the right auxiliary spin should belong

to VS
2
⊕ VS . Fix ordered bases for these two vector spaces:3(∣∣∣∣S2 , S2

〉
,

∣∣∣∣S2 , S2 − 1

〉
, . . . ,

∣∣∣∣S2 ,−S2
〉
, |0, 0〉

)
for VS

2
⊕ V0,(∣∣∣∣S2 , S2

〉
,

∣∣∣∣S2 , S2 − 1

〉
, . . . ,

∣∣∣∣S2 ,−S2
〉
, |S, S〉 , |S, S − 1〉 , . . . , |S,−S〉

)
for VS

2
⊕ VS .

(7)

We will then express the left MPS tensor L(t) in terms of these ordered bases:

LS(t) =

|S2 ,S2 〉 |S2 ,S2−1〉 ··· |S2 ,−S2 〉 |S,S〉 |S,S−1〉 ··· |S,−S〉


|S2 ,S2 〉 ? ? · · · ? ? ? · · · ?

|S2 ,S2−1〉 ? ? · · · ? ? ? · · · ?
...

...
...

. . .
...

...
...

. . .
...

|S2 ,−S2 〉 ? ? · · · ? ? ? · · · ?

|0,0〉 ? ? · · · ? ? ? · · · ?

(8)

where the question marks are vector-valued entries specified below. This is a (S + 2) × [(S + 1) + (2S + 1)] matrix,

3Since the basis vectors are now labelled with their total spin |j,m〉 instead of just |m〉, we choose to omit the otherwise-necessary ‘0⊕’
and ‘⊕0’ terms.
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and by the exact same reasoning R(t) is an [(S + 1) + (2S + 1)]× (S + 2) matrix. We set

LS(t) =

|S2 ,S2 〉 |S2 ,S2−1〉 ··· |S2 ,−S2 〉 |S,S〉 |S,S−1〉 ··· |S,−S〉


|S2 ,S2 〉

(1− t)AS t(1− t)BS,L
|S2 ,S2−1〉

...

|S2 ,−S2 〉
|0,0〉 0 tTS,L

, (9)

RS(t) =

|S2 ,S2 〉 |S2 ,S2−1〉 ··· |S2 ,−S2 〉 |0,0〉



|S2 ,S2 〉

(1− t)AS 0
|S2 ,S2−1〉

...

|S2 ,−S2 〉
|S,S〉

t(1− t)BS,R tTS,R
|S,S−1〉

...

|S,−S〉

, (10)

where the submatrices are defined in (3), (4) and (5). It follows that the two-site MPS tensor is

MS(t) = LS(t)RS(t) =

|S2 ,S2 〉 |S2 ,S2−1〉 ··· |S2 ,−S2 〉 |0,0〉


|S2 ,S2 〉

(1− t)2(AS)2 + t2(1− t)2BS,LBS,R t2(1− t)BS,LTS,R
|S2 ,S2−1〉

...

|S2 ,−S2 〉
|0,0〉 t2(1− t)TS,LBS,R t2TS,LTS,R

. (11)

When t = 0, only the upper-left submatrix is nonzero, and the two-site MPS tensor is MS(0) = LS(0)RS(0) =

(AS)2 ⊕ 0. This precisely corresponds to the two-site MPS tensor for |AKLTS〉, as the trailing zero matrix has no

effect on the induced state. When t = 1, only the bottom-right submatrix is nonzero, and the two-site MPS tensor

is MS(1) = 0 ⊕ (T LS T RS ), which represents |trivS〉. For 0 < t < 1, the MPS tensors for |blendS〉 are embedded into

(9) and (10), which roughly corresponds to the state being mixed into the path. Note that this is not a true mix in

terms of a superposition because there exist off-diagonal interactions between |blendS〉 and |trivS〉 in (11). Rather,

this serves as a heuristic argument to justify this particular choice of MS(t).

We now verify that the path MS(t) satisfies (SPT1) and (SPT2). For (SPT1), one can check that for the tensors

C ∈ {AS ,BS,L,BS,R, TS,L, TS,R}, the equivariance properties

Sz . C = SzC − CSz, S± . C = S∓C − CS∓ (12)

are satisfied. Here Sz, S+ and S− are the generators of the Lie algebra su(2). The symbol . denotes an action on the

physical spins, while matrix multiplication on MPS tensors acts using the appropriate representation for the auxiliary

spins. It follows by a simple calculation that these equivariance properties also hold for C ∈ {LS(t),RS(t)}, 0 ≤ t ≤ 1.
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Figure 4: Eigenvalues (by modulus) of the transfer matrices along the path for S = 2, 4, 6, 8, normalised so that the
dominant eigenvalue has constant modulus 1. The AKLT state is at t = 0; the trivial state is at t = 1. The dominant
eigenvalue is always nondegenerate. Note that at t = 0, the spectral gap narrows for increasing values of S.

Using the coproduct

∆ : Sz 7→ Sz ⊗ I + I⊗ Sz, S± 7→ S± ⊗ I + I⊗ S± (13)

which lifts the representations to the tensor product space (i.e. the state space for multipartite spin systems) iteratively,

the properties (12) are also met for C = (MS(t))L, 0 ≤ t ≤ 1, L ∈ N. If we denote by |pathS(t)〉 the state on a

length-L chain represented by the MPS tensors MS(t), then the above implies that

Sz . |pathS(t)〉 = tr
[
Sz . (MS(t))L

]
= tr

[
Sz(MS(t))L − (MS(t))LSz

]
= 0, (14)

which translates into invariance under the action of Sz. Replacing Sz with S± yields the same calculation, so |pathS(t)〉
is SO(3)-invariant. This shows that (SPT1) holds.

The situation for (SPT2) is somewhat different; to our knowledge, analytic expressions of the transfer matrix

spectrum of MS(t) for generic even-valued S and t ∈ [0, 1] have yet to be discovered. Nevertheless, existing evidence

points towards the affirmative. Figure 4 plots the eigenvalue moduli along the pathMS(t) for S = 2, 4, 6, 8, normalised

so that the dominant eigenvalue has constant modulus 1. In all cases, the dominant eigenvalue has multiplicity one,

and is separated by a spectral gap from the second-largest eigenvalue by modulus at all points along the path. This

confirms, at least at a numeric level, that (SPT2) is satisfied for small values of even S. For general even-valued S,

the graphs in Figure 4 do not preclude the possibility that this spectral gap ceases to exist, especially since there is a

clear pattern of the second-largest eigenvalue at t = 0 approaching the dominant eigenvalue as S increases. However,

we note the following analytical result regarding the t = 0 transfer matrix.

Proposition 2.2. For all positive integers S, the transfer matrix for the state |AKLTS〉 has real eigenvalues

λj = (−1)j
(
S + 1

j + 1

)(
S + j + 1

S

)−1
, j = 0, 1, . . . , S, (15)

where
(
n
k

)
is a binomial coefficient. Each λj has multiplicity 2j+ 1. In particular, the eigenvalues satisfy |λ0| > |λ1| >

· · · > |λS |, so the dominant eigenvalue λ0 is nondegenerate.

A proof can be found in [Santos et al., 2012b], which gives the result in terms of Wigner 6j-symbols. In view of the

decreasing second-largest eigenvalue with respect to t near the beginning of the path (as seen in Figure 4), Proposition

2.2 suggests that the spectral gap remains positive as long as S is finite, and hence (SPT2) should hold true for generic

even S.
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3. Topological Phases in the q-deformed AKLT Model

We begin to consider a q-deformation of the AKLT model (or the qAKLT model for short), which is based on a Uq[sl(2)]

quantum group symmetry. We will first outline the mathematical details of Uq[sl(2)], then turn to the question of

whether a Z2-classification of qAKLT states can also be achieved, as with the undeformed case (i.e. in the limit q → 1).

3.1. The Quantum Group Uq[sl(2)]

There are plenty of comprehensive accounts on quantum groups and their representations. The interested reader may

refer to Klimyk and Schmüdgen [1997], for example. We only present the essentials here.

If x is a number or an operator, the q-number (resp. q-operator) corresponding to x is

[x]q =
qx − q−x

q − q−1
, (16)

where q ∈ C\{−1, 0, 1}. Note that [x]q → x as q → 1. We define the quantum group Uq[sl(2)], following the convention

of Quella [2020]. First recall that su(2) is generated by three elements S+,S−,Sz satisfying the commutation relations

[Sz,S±] = ±S± and [S+,S−] = 2Sz. (17)

We obtain Uq[sl(2)] by deforming the right-hand relation to

[S+,S−] = [2Sz]q. (18)

The resulting structure is a Hopf algebra, and the Lie algebra su(2) is recovered in the limit q → 1. Being a Hopf

algebra, Uq[sl(2)] is endowed with the structure maps of unit η : C → Uq[sl(2)], counit ε : Uq[sl(2)] → C, coproduct

∆ : Uq[sl(2)]→ Uq[sl(2)]⊗ Uq[sl(2)] and antipode S : Uq[sl(2)]→ Uq[sl(2)]. These are defined by

η(1) = I,

ε(Sz) = ε(S±) = 0,

∆(Sz) = Sz ⊗ I + I⊗ Sz, ∆(S±) = S± ⊗ qS
z

+ q−S
z

⊗ S±,

S(Sz) = −Sz, S(S±) = −q±1S±,

(19)

where I is the multiplicative identity in Uq[sl(2)]. As seen for su(2) in (13), ∆ lifts the operators and defines the

actions of S± and Sz in the tensor product space. We further define an involution ∗ : Uq[sl(2)]→ Uq[sl(2)] by setting

(Sz)∗ = Sz, (S±)∗ = S∓. (20)

This gives a notion of the adjoint of an operator, and turns Uq[sl(2)] into a Hopf-∗ algebra.

When q is not a root of unity, the representation theory of Uq[sl(2)] mimics that of su(2).4 For every nonnegative

integer or half-integer S there exists, up to isomorphism, one irreducible representation of Uq[sl(2)] with dimension

2S+ 1. As in the case for su(2), the number S is referred to as the ‘spin’. The Casimir element of Uq[sl(2)] is given by

C = S+S− + [Sz]q[Sz − 1]q, (21)

4The representation theory becomes much subtler when q is a root of unity.
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which can be checked to commute with the generators. The (2S + 1)-dimensional representation of Uq[sl(2)] has an

orthonormal eigenbasis (|S, S〉q , |S, S − 1〉q , . . . , |S,−S〉q) with respect to the operators Sz and C. We have

Sz |S,m〉q = m |S,m〉q and C |S,m〉q = [S]q[S + 1]q |S,m〉q . (22)

In terms of physics, there is an additional complication. We would like to think of Sz and C as being analogues of

the spin-z and total spin operators from the representation theory of su(2), which means the eigenvalues appearing in

(22) should ideally be real-valued. We will therefore only consider positive real values of q, where this is guaranteed.5

3.2. Symmetry-Protected Topological Phases in Generalised qAKLT States

The AKLT states |AKLTS〉 from Section 2.2 were constructed using SU(2) singlets between adjacent auxiliary spins

on neighbouring physical sites. By using Uq[sl(2)] singlets in the construction of the ground state instead, one obtains

the q-deformed AKLT (qAKLT) model [Batchelor et al., 1990, Klümper et al., 1993]. The qAKLT states |AKLTS〉q
have an identical pictorial representation as Figure 1(iii), although the singlets are now from Uq[sl(2)]. For any S, the

MPS tensor for |AKLTS〉q is given by matrix entries

[A(q)
S ]αβ = (−1)β+S/2q−β

√
[S + 1]q
[2S + 1]q

〈
S

2
, α ;

S

2
,−β

∣∣∣∣ S, α− β〉
q

|S, α− β〉q , (23)

where 〈 j1,m1 ; j2,m2 | J,M 〉q is a Uq[sl(2)] Clebsch-Gordan coefficient (which generally depends on q), and α, β =
S
2 ,

S
2 − 1, . . . ,−S2 in that order. Observe that (23) reduces to (3) as q → 1.

Quella [2020] showed that despite the q-deformation, the S = 1 qAKLT state retains all properties of the undeformed

S = 1 AKLT state, and by extension the Haldane phase. We will see an example of this in Section 4.3. It was then put

forward as a natural conjecture that the qAKLT states also admit a Z2-classification into SPT phases, now protected

by Uq[sl(2)] symmetry, similar to what we have seen in Section 2.2 for the undeformed case. We address this conjecture

below by giving numerical evidence that the even-S qAKLT states belong to the trivial SPT phase. To this end, we

construct an MPS pathM(q)
S (t), 0 ≤ t ≤ 1, which starts from an even-S qAKLT state |AKLTS〉q, ends at a trivial state

|trivS〉q, preserves Uq[sl(2)] symmetry, and satisfies (SPT1) and (SPT2) for all t (Definition 2.1). The construction

is exactly the same as that from Section 2.2, except all SU(2) singlets are replaced with Uq[sl(2)] singlets. The final

MPS tensor for the path is

M(q)
S (t) =

|S2 ,S2 〉q |S2 ,S2−1〉q ··· |S2 ,−S2 〉q |0,0〉q


|S2 ,S2 〉q

(1− t)2(A(q)
S )2 + t2(1− t)2B(q)S,LB

(q)
S,R t2(1− t)B(q)S,LT

(q)
S,R

|S2 ,S2−1〉q
...

|S2 ,−S2 〉q
|0,0〉q t2(1− t)T (q)

S,LB
(q)
S,R t2T (q)

S,LT
(q)
S,R

, (24)

5It is also guaranteed for q = eiθ where θ ∈ R, but since the representation theory becomes subtle at roots of unity, which are dense in
the unit circle, we shall omit complex-valued q from our discussion altogether.
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where the inner matrices are given by

[B(q)S,L]αβ = (−1)β+Sq−β

√
[S + 1]q
[2S + 1]q

〈
S

2
, α ;S,−β

∣∣∣∣ S, α− β〉
q

|S, α− β〉q

[B(q)S,R]δγ = (−1)δ+S/2q−β
〈
S, γ ;

S

2
,−δ

∣∣∣∣ S, γ − δ〉
q

|S, γ − δ〉q

[T (q)
S,L] =

1√
[2S + 1]q

[
|−S〉q − |−S + 1〉q |−S + 2〉q · · · |S − 2〉q − |S − 1〉q |S〉q

]

[T (q)
S,R] =


|S〉q
|S − 1〉q
. . .

|−S〉q

 .
(25)

Like in (5), the indices α and δ run across S, S − 1, . . . ,−S in that order, while the indices β and γ run across
S
2 ,

S
2 − 1, . . . ,−S2 in that order. To check that the path M(q)

S (t) satisfies (SPT1), we may use the equivariance

properties

Sz . C = SzC − CSz, S± . C = S∓Cq−S
z

− q∓1q−S
z

CS∓ (26)

in place of (12) for C ∈ {A(q)
S ,B(q)S,L,B

(q)
S,R, T

(q)
S,L, T

(q)
S,R}. The remaining steps follow similarly as above, although we need

to use the fact that for q-deformed systems the MPS tensors are related to their corresponding state vectors by

|ψ〉q = tr
[
q2S

z

C1C2 · · · CL
]
. (27)

The property (SPT2) is again verified numerically. Figure 5 shows the eigenvalue spectrum for different values of even

S and q ∈ (0, 1) along the path.6 It is again seen in each case that a positive spectral gap is maintained between

the dominant eigenvalue and the one beneath it. This confirms (SPT2) numerically for small even values of S. As in

the undeformed case, there is a pattern in which the spectral gap for t = 0 (the qAKLT state) narrows for increasing

values of S. The following proposition, which is the q-analogue of Proposition 2.2, suggests that the spectral gap never

closes completely. See [Santos et al., 2012b] for a proof.

Proposition 3.1. For all positive integers S and for all q ∈ (0, 1), the transfer matrix for the state |AKLTS〉q has

real eigenvalues

λj = (−1)j
(
S + 1

j + 1

)
q

(
S + j + 1

S

)−1
q

, j = 0, 1, . . . , S, (28)

and each λj has multiplicity 2j + 1. Here
(
n
k

)
q

is a q-binomial coefficient, defined by(
n

k

)
q

=
[n]q[n− 1]q · · · [n− k + 1]q

[k]q[k − 1]q · · · [1]q
.

In particular, the eigenvalues satisfy |λ0| > |λ1| > · · · > |λS |, so the dominant eigenvalue λ0 is nondegenerate.

It follows from these experiments that the q-deformed AKLT states likely permit a Z2-classification into SPT

phases, like what we have seen in the undeformed case. However, a formal proof has yet to be discovered.

6It suffices to consider q ∈ (0, 1) instead of the entire positive real line since q-numbers are invariant under the substitution q 7→ q−1.
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Figure 5: Eigenvalues (by modulus) of the transfer matrices along the path for S = 2, 4, 6, 8 (rows) and q =
0.2, 0.4, 0.6, 0.8 (columns), normalised so that the dominant eigenvalue has constant modulus 1. The qAKLT state
is at t = 0; the trivial state is at t = 1. The dominant eigenvalue is always nondegenerate. For larger values of S,
Proposition 3.1 suggests that the nondegeneracy remains.

11



4. A q-deformed Rényi Entropy

4.1. Overview of Entanglement Entropies

Quantifying the entanglement of a state is a task of central importance in quantum information science. We review

how this is done in a bipartite system with subsystems R and L (standing for right and left, but this applies to any

bipartite system). If the combined system is in a pure state |ψ〉, then its density matrix is given by ρ = |ψ〉 〈ψ|. One

then obtains the reduced density matrix ρR = trL(ρ) for subsystem R by taking the partial trace over subsystem L.

We state two well-known measures of quantum entanglement.

Definition 4.1. The von Neumann entanglement entropy of subsystem R with respect to subsystem L is

S(ρR) = −trR(ρR log ρR).

Definition 4.2. The Rényi entanglement entropy of subsystem R with respect to subsystem L is a family of

entropies defined in terms of a parameter α by

Sα(ρR) =
1

1− α
log trR(ραR), α > 0, α 6= 1.

Rényi entanglement entropy is a one-parameter generalisation of the von Neumann entanglement entropy, in the

sense that the latter is recovered from the former in the limit α → 1. These entropies are readily calculable if a

Schmidt decomposition of the state into its subsystems’ states is available:

Proposition 4.3. Let {|uj〉R}
m
j=1 and {|vk〉L}nk=1 be orthonormal bases for the state spaces of subsystems R and L

respectively, and assume without loss of generality that m ≤ n. If

|ψ〉 =

m∑
j=1

λj |uj〉R ⊗ |vj〉L , λj > 0,

m∑
j=1

λ2j = 1

is a Schmidt decomposition of the system’s state, then the von Neumann and Rényi entanglement entropies are given

respectively by

S(ρR) = −
m∑
j=1

λ2j log(λ2j ) and Sα(ρR) =
1

1− α
log

 m∑
j=1

λ2αj

 .

Proof. We compute

ρ =

m∑
j=1

m∑
k=1

λjλk |uj〉R |vj〉L 〈uk|R 〈vk|L ,

ρR =

m∑
j=1

λ2j |uj〉R 〈uj |R .
(29)

So the λ2j are the eigenvalues of ρR, and the result follows from Definitions 4.1 and 4.2.

From the above calculation, it is apparent that S(ρR) = S(ρL) and Sα(ρR) = Sα(ρL), so we will simply refer to

von Neumann and Rényi entanglement entropies of the bipartite system as a whole. We make one more definition:

Definition 4.4. Let the Schmidt decomposition for |ψ〉 be as in Proposition 4.3. The entanglement spectrum is

the set of numbers {− log(λ2j )}mj=1, i.e. the negative logarithm of the eigenvalues of ρR.
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As the entanglement spectrum corresponds directly to the Schmidt decomposition coefficients λj , it controls exactly

how the state is entangled. While the von Neumann entanglement entropy is convenient as a single-number measure

of entanglement, it cannot be used to recover the entanglement spectrum and therefore does not encode the full

entanglement structure. However, this is possible for the Rényi entanglement entropy, making it a powerful measure:

Proposition 4.5. If the Rényi entanglement entropies Sα(ρR) are known for all α, then the entanglement spectrum

can be fully recovered.

Proof. [Riedel, 2019] Suppose the entanglement spectrum is {− log(λ2j )}mj=1. Then the eigenvalues of ρR are λ2j by

definition. Since Sα(ρR) is known for all α, we have a known function

f(α) := exp{(1− α)Sα(ρR)} =

m∑
j=1

λ2αj , (30)

using Definition 4.2 in the second equality. Applying the inverse Fourier transform, we get

f̂(ω) :=

∫ ∞
−∞

f(it)e−iωtdt =

m∑
j=1

∫ ∞
−∞

ei(log(λ
2
j )−ω)tdt =

m∑
j=1

δ(log(λ2j )− ω). (31)

Hence the entanglement spectrum {− log(λ2j )}mj=1 can be read off the peaks of f̂ with their degeneracies encoded in

the coefficients of the Dirac delta functions.

4.2. Measuring Entanglement in Quantum Spin Chains

For one-dimensional infinite quantum spin chains, the standard procedure is to make an imaginary cut in the chain

between two physical sites, splitting the chain into two semi-infinite halves. The entanglement between the halves is

measured. This is easily done in the MPS framework for spin chains with one-site translational invariance, so long as

the MPS is written in canonical form:

Definition 4.6. Let M be an MPS tensor. We say that M is right-canonical if
∑
σMσ(Mσ)† = I. We say that

M is left-canonical if
∑
σ(Mσ)†Mσ = I.

Definition 4.7. Let |ψ〉 be a state in a one-site translationally invariant infinite spin chain. The state |ψ〉 is said to

be written in canonical form if there exists a rank-3 tensor Γ (represented as a vector-valued matrix) and a diagonal

scalar matrix Λ such that ΓΛ is right-canonical, ΛΓ is left-canonical, tr(Λ2) = 1, and |ψ〉 = · · ·ΛΓΛΓΛΓΛ · · · .

It can be shown that the entries λi of Λ are precisely the Schmidt decomposition coefficients of |ψ〉 when thinking of

the chain as two semi-infinite halves [Vidal, 2007]. Thus we can obtain the entanglement spectrum using the definition,

and the von Neumann and Rényi entanglement entropies using Proposition 4.3. For instance, it is easy to check that

the MPS tensor A(S=1) for the spin-1 AKLT state, defined in (2), is right-canonical. We can turn this into canonical

form by finding Γ and Λ that satisfy ΓΛ = A(S=1) as well as the above properties. This is done by setting

Γ =
√

2A(S=1), Λ = diag

(
1√
2
,

1√
2

)
. (32)

It follows that there is a two-fold degeneracy in the entanglement spectrum. The von Neumann entangement entropy is

log 2, while the Rényi entropy is also a constant value of log 2 with respect to the parameter α. The same computations

may be repeated for any generalised AKLT state |AKLTS〉, defined in (3). This reveals a (2S + 1)-fold degeneracy in

the entanglement spectrum, and the von Neumann and Rényi entanglement entropies evaluate to log(2S + 1).
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Equations (30) and (31) enable recovering the entanglement spectrum from Rényi entropies. Let us make another

comment regarding this formula in the context of quantum spin chains and MPS. A generic spin state is a vector

in V0 ⊕ V 1
2
⊕ V1 ⊕ · · · ⊕ VS , where Vj is the spin-j representation of su(2) and S is finite. A basis for this space

is |0, 0〉 , | 12 ,−
1
2 〉 , |

1
2 ,

1
2 〉 , . . . , |S,−S〉 , . . . , |S, S〉. Now consider a spin chain state |ψ〉 where on each physical site the

auxiliary spins belong to this space. Then the MPS tensor should be expressed in the basis just stated, and in canonical

form we write the matrix Λ as Λ = diag(λ|0,0〉, λ| 12 ,−
1
2 〉
, λ| 12 ,

1
2 〉
, . . . , λ|S,−S〉, . . . , λ|S,S〉). Once a cut in the chain is made

into left and right halves, Λ induces the Schmidt decomposition

|ψ〉 =

S∑
j=0

′
j∑

m=−j
λ|j,m〉 |j,m〉L ⊗ |j,m〉R , (33)

where |j,m〉L and |j,m〉R are orthonormal basis states on the left and right halves labelled by the states of auxiliary

spins adjacent to the cut, and the primed sum
∑ ′

indicates increments by 1/2 instead of 1 in the index. Now suppose

the Rényi entropies Sα(ρR) are known. To recover the entanglement spectrum {− log(λ2|j,m〉)}, we would follow (30)

and (31) by computing

f(α) := exp{(1− α)Sα(ρR)} =

S∑
j=0

′
j∑

m=−j
λ2|j,m〉,

f̂(ω) =

S∑
j=0

′
j∑

m=−j
δ
(

log
(
λ2|j,m〉

)
− ω

)
.

(34)

For each value of total spin j = 0, 12 , 1, . . . , S, there are 2j+ 1 delta functions in the inner sum. This number coincides

with the dimension of Vj . Although not a particularly astute observation, this will resurface in the setting of a

q-deformed Rényi entropy we propose in Section 4.3.

4.3. q-deformed Entanglement Entropies

Full degeneracy in the entanglement spectrum is characteristic to the AKLT states, but the results of Santos et al.

[2012a] show that the deformation into qAKLT states does not preserve this degeneracy. On the other hand, Couvreur

et al. [2017] suggested that the classical definitions of reduced density matrices and entanglement entropies are not

suitable for systems with quantum symmetries in the first place, and proposed more general definitions applicable to

systems with Uq[sl(2)] symmetry in particular:

Definition 4.8. Given a density matrix ρ(q) = |ψ〉q 〈ψ|q representing a pure state |ψ〉q in a spin chain with Uq[sl(2)]

symmetry, the q-deformed reduced density matrix is

ρ
(q)
R = trL(q−2S

z
Lρ(q)),

where SzL is the action of Sz on the left part of the chain, with respect to a virtual cut made in the chain.

Definition 4.9. The q-deformed von Neumann entanglement entropy of the state |ψ〉q is the number

S(q)(ρ
(q)
R ) = −trR(q2S

z
Rρ

(q)
R log ρ

(q)
A ).

Definition 4.10. The q-deformed entanglement spectrum of |ψ〉q is the negative logarithm of the eigenvalues of

the q-deformed reduced density matrix ρ
(q)
R .

Using these definitions, Quella [2020] showed that each q-deformed spin-S AKLT state |qAKLT〉S , where S is a

positive integer, exhibits full (2S + 1)-fold degeneracy of the value log(q2S + q2(S−1) + . . .+ q−2S) = log([2S + 1]q) in
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its q-deformed entanglement spectrum. The q-deformed von Neumann entanglement entropy was also shown to equal

log([2S + 1]q). This mirrors exactly the situation for the undeformed case as we saw in Section 4.2.

We now propose a definition of q-deformed Rényi entanglement entropy to complete the picture:

Definition 4.11. Given a q-deformed reduced density matrix ρ
(q)
R , we define the q-deformed Rényi entanglement

entropies to be the parametrised family of entropies given by

S(q)
α (ρ

(q)
R ) =

trR

[
q2S

z
Rρ

(q)
R

]
1− α

log
(

trR

[
q2S

z
R

(
ρ
(q)
R

)α])
, α > 0, α 6= 1.

The following proposition, which is analogous to Proposition 4.5, establishes the above definition as a viable

q-analogue of Rényi entropy.

Proposition 4.12. If the q-deformed Rényi entanglement entropies S
(q)
α (ρ

(q)
R ) are known for all α, then the q-deformed

entanglement spectrum can be recovered modulo degeneracies.

Proof. The extra Sz-dependent terms appearing in the above definitions force us to specify our physical system in

order to understand the effect of such terms. The physical system at hand is a q-deformed quantum spin chain, so in

general the auxiliary spin on each site belongs to the representation

V(q)
0 ⊕ V(q)

1
2

⊕ V(q)
1 ⊕ · · · ⊕ V(q)

S (35)

of Uq[sl(2)] for some S, where V(q)
j is the spin-j irreducible representation of Uq[sl(2)]. Make an imaginary cut in the

chain, as one does to measure entanglement. As in (33), there exists a Schmidt decomposition

|ψ〉q =

S∑
j=0

′
j∑

m=−j
λ|j,m〉q (|j,m〉q)L ⊗ (|j,m〉q)R, (36)

where (|j,m〉q)L and (|j,m〉q)R are orthonormal basis states for the left and right halves labelled by the states of

auxiliary spins adjacent to the cut, and the primed sum
∑ ′

indicates increments by 1/2 instead of 1 in the index.

This expression is the q-deformed version of (33). Now we only work in these basis states, which are ordered as

|0, 0〉q ,
∣∣∣∣12 ,−1

2

〉
q

,

∣∣∣∣12 , 1

2

〉
q

, . . . , |S,−S〉q , . . . , |S, S〉q . (37)

In this basis, Sz is acts as a diagonal matrix:

Sz = diag

(
0,−1

2
,

1

2
,−1, 0, 1, . . . ,−S,−S + 1, . . . , S

)
. (38)

Using this fact while applying the definition of q-deformed reduced density matrix gives

ρ
(q)
R = trL(q−2S

z
L |ψ〉q 〈ψ|q) = · · · =

S∑
j=0

′
j∑

m=−j
q−2mλ2|j,m〉q (|j,m〉q)R(〈j,m|q)R. (39)

Therefore, from the definition, the q-deformed entanglement spectrum is{
− log(ξ|j,m〉q ) : j = 0,

1

2
, 1, . . . , S; m = −j,−j + 1, . . . , j

}
, (40)
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where ξ|j,m〉q := q−2mλ2|j,m〉q
. Now suppose we know all q-deformed Rényi entropies S

(q)
α (ρ

(q)
R ) and we wish to recover

(40). From (38) and (39), we compute

trR

[
q2S

z
(
ρ
(q)
R

)α]
=

S∑
j=0

′
j∑

m=−j
q2m

(
ξ|j,m〉q

)α
,

trR

[
q2S

z

ρ
(q)
R

]
=

S∑
j=0

′
j∑

m=−j
λ2|j,m〉q = 1,

(41)

since the λ|j,m〉q are Schmidt decomposition coefficients. We proceed as in the proof of Proposition 4.5. Write

f(α) := exp
{

(1− α)S(q)
α

(
ρ
(q)
R

)}
=

S∑
j=0

′
j∑

m=−j
q2m

(
ξ|j,m〉q

)α
, (42)

which is known because S
(q)
α (ρ

(q)
R ) is. Analytically continue f to the complex plane and write

f̂(ω) =

∫ ∞
−∞

f(it)e−iωtdt

=

S∑
j=0

′
j∑

m=−j
q2m

∫ ∞
−∞

exp
{
i
[
log
(
ξ|j,m〉q

)
− ω

]
t
}
dt

=

S∑
j=0

′
j∑

m=−j
q2mδ

(
log
(
ξ|j,m〉q

)
− ω

)
,

(43)

which is also known. The entanglement spectrum (40) can be read off the peaks of the Dirac delta functions.

Unlike the undeformed case (Proposition 4.5), the degeneracies of the q-deformed entanglement spectrum cannot

be read off due to the q2m prefactors. Nevertheless, this feature has been deformed away in a somewhat orderly

manner. The final expression in (43) is a weighted sum of delta functions, and the weights for each spin sector (i.e.

each j) sum to q2j +q2j−2 + . . .+q−2j = [2j+1]q. This is known as the quantum dimension of j which is an important

invariant associated with the representation Vj . We had already discussed this observation for the undeformed case

towards the end of Section 4.2, in which the quantum and standard dimensions coincide.

5. Conclusion

We have developed evidence supporting a classification of q-deformed AKLT ground states into two distinct symmetry-

protected topological phases depending on the spin parity, in analogy to the undeformed case. We have also put forward

a notion of q-deformed Rényi entropy. In view of the vast amount of current research on quantum spin systems, what

we have studied here admits natural generalisations that warrant further exploration. The q-deformed AKLT model is

a special case of the q-deformed bilinear-biquadratic spin chain, and it would be interesting to investigate SPT phases

in that setting. There is also the ambition of studying two- or three-dimensional quantum systems, as well as those

with more general quantum group symmetries. Of course, proving the existence of SPT phases analytically remains

an important task from the mathematical standpoint.
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Appendix A Theory of Spin Angular Momentum

Mathematically, the theory of spin angular momentum in quantum mechanics is the representation theory of the Lie

group SU(2) (equivalently, that of the Lie algebra su(2)). We motivate and introduce the theory while borrowing

notation commonly seen in the physics literature. An excellent reference for further reading is Hall [2013].

Definition A.1. The orientation-preserving group of 3D rotations, or SO(3), is the group of 3×3 orthogonal matrices

with determinant 1. Since it is a closed subgroup of GL(3,C), it is a three-dimensional matrix Lie group.

A spin is a state vector in a Hilbert space H on which rotations act. Hence we are compelled to find a unitary

representation (π,H) of the Lie group SO(3).7 However, instead of stipulating that the representation is linear (as

one usually means by a representation), we only impose a weaker condition that the representation be projective, i.e.

π : SO(3)→ U(H), π(g1g2) = eiθπ(g1)π(g2),

where U(H) is the group of unitary transformations on H, and θ ∈ R is a phase which may depend on g1 and g2. This

is because two vectors in H which only differ by a phase are deemed to be physically equivalent in quantum mechanics.

That said, we still prefer the convenience of linear representations, so the following facts are incredibly useful.

Lemma A.2. If G is a finite-dimensional matrix Lie group with universal cover G̃, there is a one-to-one correspon-

dence {
irreducible, projective, unitary

representations of G

}
∼↔


irreducible, linear, unitary

representations of G̃

with determinant 1

 .

Lemma A.3. The Lie group SO(3) is a finite-dimensional matrix Lie group, and its universal cover is the Lie group

SU(2) of 2× 2 unitary matrices with determinant 1.

Thus the projective unitary representations of SO(3) are studied by looking at the linear unitary representations

of SU(2). This is the premise of using representations of SU(2) to study spin angular momentum. From here on, a spin

will be a state vector in a unitary representation of SU(2), and we will drop the descriptor ‘linear’. Let us now look

at the irreducible unitary representations of SU(2). It is well-known that Lie group representations are conveniently

studied via representations of its Lie algebra. For the SU(2) case we have the following.

Lemma A.4. There are one-to-one correspondences8

{
irreducible unitary

representations of SU(2)

}
∼↔


irreducible hermitian

representations of the

real Lie algebra su(2)

 ∼↔


irreducible

representations of the

complex Lie algebra su(2)

 .

We are therefore instructed to look at the representations falling into the right-hand set. In the following, we define

the complex Lie algebra su(2) and classify its irreducible representations.

Definition A.5. The Lie algebra su(2) is the complex algebra generated by the elements Sz, S+ and S− which satisfy

the commutation relations

[Sz,S±] = ±S± and [S+,S−] = 2Sz.

It is also endowed with a ∗-structure by setting (Sz)∗ = Sz and (S±)∗ = S∓.

7The unitarity requirement is due to Wigner’s Theorem.
8The complexified Lie algebra su(2) is often denoted sl(2,C) in the mathematical literature.
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Remark. The physics convention is used here; the mathematics convention differs by some multiplicative factors (but

is nevertheless equivalent). We could have also defined su(2) as the set of 2 × 2 hermitian traceless matrices, but we

prefer to picture su(2) as an abstract Lie algebra with matrix representations of various dimensions.

Theorem A.6. Up to unitary equivalence, there is exactly one irreducible representation of the complex Lie algebra

su(2), and hence one irreducible unitary representation of SU(2), for each finite dimension d ≥ 1.

Having classified the irreducible representations of SU(2), we now infuse some physics terminology.

Definition A.7. Let s be a nonnegative integer or half-integer. The (2s + 1)-dimensional irreducible representation

of su(2) is referred to as the spin-s representation. A state vector in this representation is said to have (total)

spin s, or simply called a spin-s.

Definition A.8. The (quadratic) Casimir element of su(2) is the element

S2 = S+S− + Sz(Sz − 1),

and can be checked to commute with all generators of su(2).

The Casimir element finds use in determining an orthonormal basis for the spin-s representation. We state the

result below:

Theorem A.9. A basis of spin-s states for the spin-s representation is given by |s,m〉, where m = −s,−s+ 1, . . . , s.

These are defined by the requirement that they are unit vectors (hence making an orthonormal basis), and that

S2 |s,m〉 = s(s+ 1) |m〉 , Sz |s,m〉 = m |m〉 .

We then also have

S± |s,m〉 =
√

(s∓m)(s±m+ 1) |s,m± 1〉 .

Definition A.10. We say that the z-component of the spin state |s,m〉 is equal to m.

Denote the spin-j representation of su(2) by Vj . Let us now consider the tensor product of two representations of

su(2), say Vj ⊗ Vk. This corresponds to the coupling of two spin angular momenta, and the space Vj ⊗ Vk is again a

representation of su(2) (although not an irreducible one). The operators are lifted the obvious way:

A ∈ End(Vj), B ∈ End(Vk) ⇒ A⊗B = A⊗ I + I⊗B, (A1)

where I is the identity map. It turns out that the tensor product has a nice decomposition into irreducibles:

Theorem A.11. With the above notation, Vj ⊗Vk decomposes as a direct sum of irreducible representations of su(2)

by

Vj ⊗ Vk = V|j−k| ⊕ V|j−k|+1 ⊕ · · · ⊕ Vj+k.

Definition A.12. In the context of a decomposition into irreducibles as above, we call each Vs the spin-s sector.

Finally, to make this workable we must know how to actually project a coupled spin state into its spin sectors.

This is taken care of by the Clebsch-Gordan coefficients, defined below.

Definition A.13. Let |j1,m1〉 ∈ Vj1 and |j2,m2〉 ∈ Vj2 be spin-j1 and spin-j2 basis states respectively. By Theorem

A.11, we have a decomposition

Vj1 ⊗ Vj2 = V|j1−j2| ⊕ V|j1−j2|+1 ⊕ · · · ⊕ Vj1+j2 ,
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and by Theorem A.9 this has an orthonormal basis

||j1 − j2|,−|j1 − j2|〉 , ||j1 − j2|,−|j1 − j2|+ 1〉 , . . . , ||j1 − j2|, |j1 − j2|〉 ,
...

|j1 + j2,−(j1 + j2)〉 , |j1 + j2,−(j1 + j2) + 1〉 , . . . , |j1 + j2, j1 + j2〉 ,

where we have omitted the ‘0⊕’ and ‘⊕0’ terms for brevity. The projection of the state |j1,m1〉 ⊗ |j2,m2〉 ∈ Vj1 ⊗Vj2
onto one of these basis vectors, say |J,M〉, is called an (SU(2)) Clebsch-Gordan coefficient and is denoted

〈 j1,m1 ; j2,m2 | J,M 〉 = proj|J,M〉 (|j1,m1〉 ⊗ |j2,m2〉) .

The Clebsch-Gordan coefficients are all real-valued.

The Clebsch-Gordan coefficients have no simple closed form in general. However they are tabulated for small values

of the j’s and m’s, and in any case there are many symmetry and recursion relations between them.

For the quantum group Uq[sl(2)], the Clebsch-Gordan coefficients are different due to the modified commutation

relations and coproduct; see equations (18) and (19) in the main text. The procedure of obtaining the coefficients is

unchanged, and many of the recursion and symmetry relations admit q-analogues. We denote the Uq[sl(2)] Clebsch-

Gordan coefficients by 〈 j1,m1 ; j2,m2 | J,M 〉q.

Appendix B Matrix Product States

The matrix product state formalism is extremely useful but rather technical. For an elaborate non-technical intro-

duction, we recommend Orús [2014]. Otherwise, Schollwöck [2011] provides a comprehensive walkthrough. In what

follows, take our physical system to be a spin chain on a one-dimensional lattice, where each site has state space V.

Definition B.1. Suppose the length of the spin chain is L with periodic boundary conditions. Practically, we think of

the lattice as infinite with a repeating unit of L sites. A matrix product state (MPS) is a quantum state |ψ〉 on the

lattice that can be written as

|ψ〉 = tr
[
M[1]M[2] · · ·M[L]

]
where each M[i] is a tensor of rank 3, and is viewed as a matrix whose entries are vectors in V. We call the M[i] the

MPS tensors for the state.

Remark. In this definition, the multiplication of rank-3 tensors is ordinary matrix multiplication except where multi-

plication of vectors is replaced by the tensor product. The tensor M[i] is associated to the ith site of the lattice.

Remark. For states with Uq[sl(2)] symmetry, we may relate state vectors to MPS tensors by

|ψ〉q = tr
[
q2S

z

M[1]M[2] · · ·M[L]
]
,

where Sz is the spin-z operator, one of the generators of Uq[sl(2)].9

Definition B.2. A state on the lattice is one-site translationally invariant if all the M[i] are equal.

Remark. In this case, the single MPS tensorM describes the entire system, up to the length of the spin chain. If the

period L is specified, then Definition B.1 can be used to recover the state vector. In many applications, like in this

report, it is customary to think of the length as infinite and to ignore specifying the length of the period altogether.
9The implication of this are subtle and we will mostly be ignoring them, given that we are mainly concerned with infinite chains.
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Example B.3. The spin-1 AKLT ground state is specified by the single MPS tensor

M =
1√
3

[
− |0〉

√
2 |1〉

−
√

2 |−1〉 |0〉

]
,

since it is translationally invariant. Here the one-site state space V is the spin-1 representation of SU(2) with or-

thonormal basis {|1〉 , |0〉 , |−1〉}. If the length of the chain is 2 with periodic boundary conditions, then the spin-1

AKLT ground state has state vector

|ψ〉 = tr
[
M2

]
=

1

3
tr

[
|0〉 ⊗ |0〉 − 2 |1〉 ⊗ |−1〉 −

√
2 |0〉 ⊗ |1〉+

√
2 |1〉 ⊗ |0〉√

2 |−1〉 ⊗ |0〉 −
√

2 |0〉 ⊗ |−1〉 −2 |−1〉 ⊗ |1〉+ |0〉 ⊗ |0〉

]

=
2

3
(|0〉 ⊗ |0〉 − 2 |1〉 ⊗ |−1〉 − 2 |−1〉 ⊗ |1〉).

Example B.4 (Obtaining MPS tensors from state constructions). We demonstrate, without proof, how the derivation

of an MPS tensor can be performed in conjunction with the physical construction of a state on the lattice using auxiliary

spins. Indeed this is how the MPS tensors in the main text were obtained. As an example, we derive the MPS tensor

for the spin-1 AKLT ground state |AKLT1〉 whose physical construction is illustrated in Figure 1 of the main text.

Consider the two auxiliary spin- 12s on a physical site together with the left auxiliary spin- 12 on its right-hand physical

site. Of the three auxiliary spins, the two on the right are coupled into a singlet:

|singlet1〉 =
1√
2

(|↑〉 |↓〉 − |↓〉 |↑〉). (B1)

This induces two orthonormal states for the three-auxiliary-site unit, labelled by the leftmost auxiliary spin:

ˆ|α〉 :=
1√
2

(|α ↑〉 |↓〉 − |α ↓〉 |↑〉), |α〉 ∈ {|↑〉 , |↓〉}. (B2)

To complete the construction, we project the two left auxiliary spins to the spin-1 sector. The projection operator is

proj1 = |1〉 〈↑↑|+ |0〉 〈↑↓|+ 〈↓↑|√
2

+ |−1〉 〈↓↓| , (B3)

which is derived from the SU(2) Clebsch-Gordan coefficients. Applying this to (B2) yields the two states

proj1
ˆ|↑〉 =

1√
2
|1〉 |↓〉 − 1

2
|0〉 |↑〉 , proj1

ˆ|↓〉 =
1

2
|0〉 |↓〉 − 1√

2
|−1〉 |↑〉 .

Writing these states in the basis B = {|↑〉 , |↓〉} for the rightmost auxiliary spin as rows of a matrix directly gives the

MPS tensor:

M =

|↑〉 |↓〉[ ]
|↑〉 [proj1

ˆ|↑〉]B
|↓〉 [proj1

ˆ|↓〉]B =

|↑〉 |↓〉[ ]
|↑〉 − 1

2 |0〉
1√
2
|1〉

|↓〉 − 1√
2
|−1〉 1

2 |0〉 .

Right-normalising the tensor (see Definition 4.6) yields a tensor that agrees with (2) in the main text. This procedure
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was used to obtain all MPS tensors appearing in the report, with (B1) and (B3) generalised to arbitrary spins:

|singletS〉 =
1√

2S + 1

S∑
M=−S

(−1)M+S |S,−M〉 |S,M〉 ,

projS =

S∑
M=−S

|S,M〉

 ∑
(m1,m2)

〈 j1,m1 ; j2,m2 | S,M 〉 〈j1,m1| 〈j2,m2|

 ,

where j1 and j2 are the total spins of the auxiliary spins, and the inner sum is taken over pairs (m1,m2) satisfying

the triangle condition m1 +m2 = −M . For states with Uq[sl(2)] symmetry, we use

|singletS〉q =
1√

[2S + 1]q

S∑
M=−S

(−1)M+Sq−M |S,−M〉q |S,M〉q ,

proj
(q)
S =

S∑
M=−S

|S,M〉q

 ∑
(m1,m2)

〈 j1,m1 ; j2,m2 | S,M 〉q 〈j1,m1|q 〈j2,m2|q

 .

Definition B.5. Given an MPS tensor M, the transfer matrix is the matrix given by

E =
∑
σ

Mσ ⊗Mσ,

where σ indexes the basis states of the physical state space V, and ⊗ is the Kronecker product of matrices.

Example B.6. Let us compute the transfer matrix for the spin-1 AKLT ground state to clear up this mysterious

definition. The notation Mσ involves ‘shifting the view’ of an MPS tensor, interpreting it as a collection of scalar

matrices rather than a single matrix with vector-valued entries. In our example, we have the single MPS tensor

M =
1√
3

[
− |0〉

√
2 |1〉

−
√

2 |−1〉 |0〉

]
,

which can be deconstructed into three separate scalar matrices:

M1 =
1√
3

[
0
√

2

0 0

]
, M0 =

1√
3

[
−1 0

0 1

]
, M−1 =

1√
3

[
0 0

−
√

2 0

]
.

The transfer matrix is therefore calculated by

E =
∑

σ∈{1,0,−1}

Mσ ⊗Mσ =
1

3


0 0 0 2

0 0 0 0

0 0 0 0

0 0 0 0


︸ ︷︷ ︸

M1⊗M1

+
1

3


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


︸ ︷︷ ︸

M0⊗M0

+
1

3


0 0 0 0

0 0 0 0

0 0 0 0

2 0 0 0


︸ ︷︷ ︸
M−1⊗M−1

=
1

3


1 0 0 2

0 −1 0 0

0 0 −1 0

2 0 0 1

 .

The transfer matrix is a central object in the computation of many physical parameters associated with a state.

Many computations can be executed by taking iterated powers and/or traces of the transfer matrix. For this reason,

one would like to diagonalise the transfer matrix and solve for its spectrum. The following is one example.

Definition B.7. The spin-spin correlation between two spins at sites a and b of a periodic spin chain with length

L is the number

〈SzaSzb 〉 = E[SzaS
z
b ],
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where Sz is the component of spin angular momentum along the z-axis, and E[·] denotes an expectation value.

This corresponds to a shifted covariance of Sza and Szb , and measures the signed interaction between the spins at

distance |a− b|. The transfer matrix makes this computation quite handy:

Proposition B.8. Assume that the spin chain is one-site translationally invariant with MPS tensor M. Using the

transfer matrix E, the spin-spin correlation between sites a and b (assuming a < b) can be computed using the formula

〈SzaSzb 〉 = tr[EL+a−b−1CE(b−a−1)C]

for some matrix C (which is easily derived, but omitted here to keep to the point).

Related to the spin-spin correlation is the following quantity which finds widespread use in the study of one-

dimensional spin chains.

Definition B.9. The correlation length of a state in a spin chain is the number ξ such that

lim
|a−b|→∞

〈SzaSzb 〉 ∼ e
− |a−b|ξ ,

if it exists.

Proposition B.10. For a one-site translationally invariant MPS with MPS tensor M, the correlation length is

ξ =
1

ln |λ0/λ1|
,

where λi are the eigenvalues of the transfer matrix E labelled by the requirement that |λ0| ≥ |λ1| ≥ . . . ≥ |λn|. If

|λ0| = |λ1|, then we say the correlation length is infinite.

Remark. Heuristically, the correlation length is the largest distance on the chain at which two spins are interacting

with one another. The correlation length is intimately related to continuous phase transitions, in that an infinite

correlation length marks a critical point in the state diagram of a system, i.e. a point on the boundary between two

phases.
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