
 

 

 

 

 

 

 

 

 

Hierarchical Clustering of 

Bacterial Protein Sequences 

Susanna R. Grigson 

 

Supervised by Jody C. McKerral, Robert A. Edwards, Jim G. 

Mitchell, Vlad Ejov 

College of Science and Engineering, Flinders University 

 

 

 

 

  

 

 

Vacation Research Scholarships are funded jointly by the Department of Education, Skills and Employment 

and the Australian Mathematical Sciences Institute.  



 

1 

 

Abstract 

Proteins are crucial for biological and molecular functions in living organisms. Due to the ever-

expanding gap between the number of proteins being discovered and their functional 

characterisation, protein function inference remains a fundamental challenge in computational 

biology. Currently, protein functions are classified in hierarchical ontologies constructed from 

experimental observations. Recent advancements in natural language processing and machine 

learning have inspired the development of the Protvec method for embedding amino acid sequences 

as vectors in a protein space. While Protvec successfully groups proteins with shared functions, the 

underlying mechanisms facilitating these groupings remain unclear. By analysing the most informative 

vectors in Protvec models we determine that Protvec groups proteins with similar functions by 

learning biologically meaningful information. Through embedding protein sequences using Protvec, 

we identify discrepancies between existing classification procedures and systematic groupings relative 

to the biophysical and biochemical properties of proteins. By extending Protvec to group sequences 

with unidentified functions, we propose an alternative approach to select optimal candidate proteins 

to characterise experimentally. Protein sequence embeddings and hierarchical clustering may be 

beneficial for reorganising and completing classification frameworks used to label bacterial proteins.   

Introduction   

Proteins are biomacromolecules composed of strings of amino acids which enable biological functions 

essential for an organism to sustain life. The type and order of amino acids constituting a protein are 

encoded by the nucleotides in an organism’s DNA. Interactions between amino acids determine the 

three-dimensional structure of the protein, dictating its specific biological function.  

With the advent of low-cost, high throughput DNA sequencing technology, the amino acid 

sequences of millions of bacterial proteins have been obtained (Levy & Myers 2016). As the knowledge 

of protein sequence function is not increasing at the same rate, wide gaps persist between the number 

of known protein sequences and known protein functions (Koboldt et al. 2013). Traditional methods 

determine protein function using experimental procedures. Although reliable, this process is slow and 

expensive, therefore not feasible for characterising millions of unknown proteins. Alternatively, 

protein function can be inferred using sequence similarity to proteins with known functions.  As single-
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celled organisms are the most abundant of all organisms, bacteria have a rich and diverse range of 

proteins (Olanrewaju, Glick & Babalola 2017).  

To organise the available protein functional information, computational biologists have 

devised hierarchies known as ontologies to label protein sequences which are likely to share similar 

functions. These ontologies group proteins using laboratory experiments and human expert 

annotation. The Subsystems ontology (Overbeek et al. 2014)  is a popular ontology used to label 

protein sequences and contains four levels: superclass, class, subclass and subsystem.  

Recently, methods from natural language processing have been utilised to represent amino 

acid sequences. Asgari and Mofrad (2015) devised Protvec models based on the Word2Vec algorithm 

which create word-embeddings by learning word associations from a large corpus of text (Mikolov et 

al. 2013).   Protvec splits amino acid sequences into overlapping subsequences of length 𝑘 to obtain 

‘words’ known as 𝑘-mers. Using a skip-gram neural network which iterates through lists of words 

analysing the likelihood of neighbouring words, a distributed representation is created where 

interactions of 𝑘-mers with other 𝑘-mers is stored. This allows each possible 𝑘-mer to be represented 

as a 100-dimensional vector which is updated as the model cycles through training data. Using the 

resulting Protvec model, proteins can be embedded as 100-dimensional vectors by taking the sum of 

𝑘-mer vectors for all 𝑘-mers present in the sequence. As protein function is encoded by the amino 

acid sequence of a protein, the region in the embedding space where the sequence is embedded is 

related to its biological role. Therefore, Protvec could be used to mathematically group proteins with 

similar functions. In many cases dissimilar protein sequences have similar biological roles as the 

location of a few key amino acids within sequences determine protein function. Protvec observes 

patterns within amino acid sequences rather than relying on sequence similarity.  

It remains unclear whether hierarchies created using protein embeddings and hierarchical 

clustering approaches will partition sequences differently to existing classification methods. However, 

if successful, Protvec models grouping protein sequences with unidentified functions could be used to 

resolve the fundamental challenge of protein function inference.  

This project aims to hierarchically cluster protein amino acid sequences embedded using 

Protvec models. Through evaluating models trained with protein sequence data from different 
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bacterial groups, protein sequence properties that drive the embedding of amino acid sequences 

within the protein space are identified. These models were used to mathematically group proteins 

with shared biological roles, identifying inconsistencies between existing protein classification 

schemes. Finally, by grouping proteins with unknown functions, we indicate a promising approach to 

improve protein function prediction and to reduce the disparity between known protein sequences 

and known protein functions. The ability to accurately predict protein function has the potential to 

accelerate research in fields including human health and biotechnology (Burley et al. 2018).  

Methods 

Protvec model training 

Protvec models were trained with 8743 protein sequences in the carbohydrate metabolism class for 

the bacterial groups, Bacillus and Bacteroides. These sequences were obtained from the Genome 

Taxonomy Database (GTDB), a database containing a diverse range of prokaryotic sequences (Parks et 

al. 2020). The sequences contained the standard 20 amino acids represented by the letters 

{R, I, E, M, W, D, P, K, C, F, G, T, L, Y, Q, V, A, S, N, H}. Using the Python genism package, sequences 

were converted to overlapping 𝑘-mers of length 𝑘=3, resulting in 203 unique 3-mers. These 3-mers 

were trained through a skip-gram neural network to create a model containing a 100-dimensional 

vector for each 3-mer. The resulting models were compared with the Protvec model trained with 

324,018 protein sequences from the Swiss-Prot database in previous work (Asgari, McHardy & Mofrad 

2019).  

Protein Space Analysis  

Comparisons were made between the trained Protvec models. Singular value decomposition was used 

to factorise each of the models, 𝑀 into three matrices 𝑈, 𝑆 and 𝑉  satisfying,  𝑀 = 𝑈𝑆𝑉𝑇 where 𝑆 is a 

diagonal matrix of the singular values.  

The 100 3-mer vectors with the greatest Euclidean distance from the origin in the Bacillus and 

Bacteroides models were isolated. The occurrence of each amino acid in these 3-mers was plotted to 

identify whether the 3-mer vectors which contribute the most to sequence embeddings are associated 

with particular amino acids.  
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Protvec Sequence Embedding  

26,547 Bacillus and 16,764 Bacteroides carbohydrate metabolism sequences were obtained from the 

Pathosystems Resource Integration Center to test the Protvec models (PATRIC) (Wattam et al. 2014). 

Sequences which also occurred in GTDB and used to train the Protvec models were excluded. 

Additionally, sequences with a length below 30 amino acids and greater than 1024 amino acids were 

removed. These parameters have been used in previous studies  as proteins shorter than 30 amino 

acids are unlikely to form a structure allowing a biological function and proteins longer than 1024 

amino acids are uncommon (Abu-Doleh, Al-Jarrah & Alkhateeb 2012; Rives et al. 2019; Villegas-

Morcillo et al. 2020; Yang et al. 2018).  

Sequences that also occurred in GTDB and were used to train the Protvec models were 

excluded. Additionally, sequences with a length below 30 amino acids and greater than 1024 amino 

acids were removed. These parameters have been used in previous studies  as proteins shorter than 

30 amino acids are unlikely to form a structure allowing a biological function and proteins longer 

than 1024 amino acids are uncommon (Abu-Doleh, Al-Jarrah & Alkhateeb 2012; Rives et al. 2019; 

Villegas-Morcillo et al. 2020; Yang et al. 2018). 

 

Fig. 1 Procedure to embed sequences using Protvec models.  
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Sequence embeddings were visualised using Principal Component Analysis (PCA) and t-

distributed stochastic neighbourhood embedding (t-SNE) (Van der Maaten & Hinton 2008). Prior to 

visualisation, all sequence vectors were standardised using Z-score normalisation using the python 

scikit-learn package (Pedregosa et al. 2011). Sequences were coloured by their subclass in the 

Subsystems ontology.  

K-mer Frequency 

As an alternative to embedding sequences using Protvec models, the Bacillus and Bacteroides 

carbohydrate metabolism test sets were embedded using the frequency of each 𝑘-mer within the 

amino acid sequences. Sequences were converted to the murphy10 reduced amino acid alphabet 

containing the letters {F, E, C, G, L, S, A, K, H, P}  (Murphy, Wallqvist & Levy 2000) and represented as 

overlapping 𝑘-mers of length 𝑘=3. Using the reduced alphabet, the number of possible 3-mers was 

reduced from 203 to 103, lowering computational requirements.  

To embed sequences using 𝑘-mer frequency, an identity matrix of size 𝑛 =  103 was created 

with the rows and columns corresponding to each possible 3-mer. This allowed each 3-mer to be 

represented as zero vector with a 1 at a unique position (Fig. 2).  Amino acid sequences were 

embedded as vectors of length 103, where each position denotes the presence or absence of a 3-mer. 

Embedding vectors were obtained by converting  amino acid sequences to overlapping 3-mers, 

matching each 3-mer to its corresponding vector in the identity matrix and taking the sum of these 

vectors. To adjust for sequences containing different numbers of 3-mers, the sequence vectors were 

normalised by dividing each sequence vector by the length of the sequence. The resulting embeddings 

were visualised using PCA and t-SNE.  

Fig. 2: Matrix used to embed amino acid sequences using 𝑘-mer frequency.  
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Number of Clusters 

The number of clusters in the sequence embeddings was estimated by creating  clusters for different 

values of 𝐾 and calculating the within-cluster sum of squares (𝑊𝑆𝑆) and the between cluster sum of 

squares (𝐵𝑆𝑆).  

𝑊𝑆𝑆(𝐾) =  ∑ ∑ 𝑧𝑖𝑘(𝑥𝑖 − 𝑥𝑘)2𝑛𝑘
𝑖=1

𝐾
𝑘=1   

𝐵𝑆𝑆(𝐾) =  ∑
𝑛𝑘

𝑛
(𝑥𝑘 − 𝑥)2𝐾

𝑘=1   

Where 𝑛 is the total number of elements, 𝐾 is the number of clusters, 𝑛𝑘is the number of elements in 

the 𝑘th cluster, 𝑥𝑘 is the mean of the 𝑘th cluster , 𝑥  is the sample mean and 𝑧𝑖𝑘 is an indicator function, 

𝑧𝑖𝑘 =  { 0   𝑥𝑖 ∉𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘 
1   𝑥𝑖 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘

  

Using 𝑊𝑆𝑆 and 𝐵𝑆𝑆 the Calinski-Harabasz index (𝐶𝐻) was calculated (Caliński & Harabasz 1974).  

𝐶𝐻(𝐾) =  
𝑊𝑆𝑆(𝐾)

𝐵𝑆𝑆(𝐾)

(𝑛 − 𝑘)

(𝑘 − 1)
 

The Calinski-Harabasz index was plotted for Bacillus and Bacteroides carbohydrate metabolism 

sequences embedded with the Protvec models for 𝑘 = 2: 100.  

Dendrograms 

The Euclidean and Manhattan distances were calculated between each of the sequences embedded 

with the Protvec models. Hierarchies were constructed using 1,000 randomly selected sequences from 

each embedding. These hierarchies were constructed using agglomerative (bottom-up) and divisive 

(top-down) clustering. Comparisons were made with Subsystems classifications of these sequences by 

constructing tanglegrams. Tanglegrams were untangled using the step2side method to minimise 

entanglement between the dendrograms. The resulting hierarchies were visualised using the R 

dendextend package (Galili 2015).  

Clustering Unknowns 

Bacillus protein sequences without functional annotations in Subsystems were obtained from the 

PATRIC database. Sequences were dereplicated at 70% sequence identity using CD-HIT (Fu et al. 2012). 

Sequences with a length less than 120 amino acids were removed. This is the average number of amino 

acids required to form a protein domain, thus, ensuring each sequence encodes at least one function 

(Xu & Nussinov 1998). Additionally, sequences longer than 1024 amino acids and sequences containing 

‘X’ were removed. A random subset of 425,000 unknown sequences were used to train a Protvec 
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model. Using this model, a separate test set of 25,000 unknown sequences were embedded. The 

embedded sequences were visualised using t-SNE and clustered using 𝑘-means clustering. The optimal 

number of clusters was determined using the within sum of square errors.  

Results   

To understand the properties of Protvec models driving the embedding of protein sequences, the 

singular values of the 3-mer vectors in each Protvec model were calculated and plotted (Fig. 3). The 

singular values of the Bacillus and Bacteroides models were similar in value, indicating little clustering 

behaviour between the 3-mers. In comparison, the Swiss-Prot model had 12 singular values ranging 

between 100 and 250. This indicates that a series of multiple coarse-grained clusters are present 

between the 3-mer vectors. These results are visible in the PCA of the 3-mers of each of the models 

(Fig. 3). Using 𝑘-means clustering the Swiss-Prot vectors form 3 distinct clusters (App. 1). These 

clusters are caused by the presence of ‘X’ which denotes an unknown amino acid and ‘C’ which 

encodes the amino acid cysteine.   

 

 Fig 3. Singular values and PCA of Protvec models trained with Swiss-Prot sequences, Bacillus carbohydrate metabolism 

sequences and Bacteroides carbohydrate metabolism sequences.  
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To further investigate the distribution of 3-mer vectors, the Euclidean distance of each 3-mer 

vector to the origin was determined for the Bacillus and the Bacteroides Protvec models. The 100 

vectors with the greatest distance from the origin for both models had a high occurrence of the amino 

acids tryptophan (W), cysteine (C), methionine (M) and histidine (H) (Fig 3A, 3B). These amino acids 

have high values in the Blocks Substitution Matrix (BLOSUM) used to score protein sequence 

alignments (Fig 3C). The values in this matrix provide data on the conservation  amino acids between 

proteins (McGinnis & Madden 2004). Additionally, the distributions of these amino acids are different 

between the Protvec models trained with sequences from different bacterial groups.   

Fig 3. Number of occurrences of each amino acid the 100 𝑘-mers with the greatest Euclidean distance from the origin in 

A: The Bacillus Protvec model and B: The Bacteroides Protvec model. C: The BLOSUM62 matrix used to score protein 

alignments with the 4 most abundant amino acids in A and B highlighted.  

 

Bacillus carbohydrate metabolism sequences embedded using Protvec models and 𝑘-mer 

frequency demonstrated grouping of sequences belonging to the same subclass (Fig. 4). Greater noise 

was present for the embedding using the Swiss-Prot Protvec model compared to the Bacillus trained 

model. Despite this, some poorly differentiated sequences remain clustered at the centre of the t-SNE 

visualisation for sequences embedded using the Bacilllus Protvec model. The 𝑘-mer frequency 



 

9 

 

embedding was similar to the Bacillus Protvec embedding, though some sequences did not form 

clusters in the t-SNE of the k-mer frequency embedding.  Similar patterns were observed for 

Bacteroides carbohydrate metabolism sequences embedded using 𝑘-mer frequency and the Protvec 

models trained with Bacteroides and Swiss-Prot sequences (App. 2).  

Fig 4: Bacillus carbohydrate metabolism sequences embedded using a Protvec model trained with Bacillus Carbohydrate 

metabolism sequences, Protvec model trained with Swiss-Prot and 𝑘-mer frequency of the embedded sequences. 

Sequences are coloured by subclass and visualised with PCA and tSNE (perplexity = 30, learning rate = 100).  

 

To mathematically determine the number of groups present in the carbohydrate metabolism 

subclass, carbohydrate metabolism sequences were embedded and the number of clusters formed 
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calculated. Using Bacillus sequences embedded with the Protvec Bacillus model, the Calinski-Harabasz 

index peaks when the embedding is partitioned into 48 clusters, indicating that the within cluster 

variance is minimised and the between cluster variance is maximised (Fig 5A). The human built 

Subsystems ontology groups the same sequences into 29 subsystems. This implies that the 

mathematical grouping of protein sequences organises sequences differently than currently used 

approaches to label proteins. The same sequences embedded with the Swiss-Prot Protvec model did 

not form discrete clusters. The Calinski-Harabasz index does not reach a peak and there is no clear 

elbow visible for the within cluster sum of squares (Fig 5C, 5D). The Calinski-Harabasz index and within 

cluster sum of squares was also calculated for Bacteroides sequences embedded with Swiss-Prot and 

the Bacteroides trained Protvec model (App. 3).    

Fig 5. Calinski-Harabasz index of 5,000 Bacillus carbohydrate metabolism sequences embedded with A: Protvec model 

trained with Bacillus carbohydrate metabolism sequences and B: Protvec model trained with Swiss-Prot. 500 bootstrap 

iterations were used for each value of 𝑘.  

 

The hierarchical organisation of Bacillus sequences embedded with the Bacillus Protvec 

model using Euclidean distance and agglomerative clustering was resolved differently than the same 

sequences under the Subsystems ontology (Fig. 6). In many cases, sequences which clustered 

together in the embedding hierarchy also clustered within the same subsystem in the Subsystems 

ontology. However, the higher-level structure was not preserved between hierarchies as distantly 

related groups in the hierarchy built using the embedded sequences belonged to different subclasses 

in the Subsystems hierarchy. In some cases, subsystems contain two distinct groups of sequences 

which belong to different regions of the protein sequence embedding. Hierarchies were also 

constructed using divisive clustering (App. 4) and using Manhattan distance (App. 5) though these 

demonstrated less similarity with the Subsystems classifications.   
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Fig 6 A: Tanglegram of 1,000 Bacillus carbohydrate metabolism protein sequences. Hierarchy on the left is built using 

agglomerative clustering on the Euclidean distances between sequences embedded using a Protvec model trained with 

Bacillus sequences. Hierarchy on the right is the classification of sequences in the existing subsystems ontology.   

 
 

To determine whether sequence embeddings can be used to group sequences with unknown 

functions, Bacillus protein sequences with unknown functions were embedded with the Protvec 

model also trained with unknown Bacillus sequences. The within cluster sum of squares plot has an 

elbow an 12 clusters, indicating that there were 12 groups of unknown sequences in the embedding 

set (Fig 7B). Using 𝑘-means with 12 clusters, the embedded sequences formed discrete groups (Fig 

7A). Sequences belonging to the same cluster experience low sequence similarity as indicated by the 

percentage identity between the clustered sequences (App. 6). Whilst the function of the sequences 

within these groups unknown, sequences within the same cluster likely share similar biological roles.  
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Fig 7. A: 𝑘 -means clustering of Bacillus sequences from PATRIC without functional annotations in Subsystems. Sequences 

were embedded using a Protvec model trained with 500,000 unknown Bacillus sequences. The 100 sequences with the 

smallest Euclidean distance to the centroid of each cluster are shown. B: Within sum of square errors of 5,000 Bacillus 

sequences from PATRIC without functional annotations in the Subsystems ontology for 1-100 clusters.  

Discussion 

This work investigated how biological sequence embeddings operate to group proteins with similar 

functions. Previous studies focus on developing embedding methods for proteins sequences but do 

not interpret the underlying mathematics which enable proteins to be grouped respective of their 

biological roles (Nambiar et al. 2020; Villegas-Morcillo et al. 2020). Instead, these studies use 

embeddings to develop tools for protein prediction tasks. As existing classification frameworks are 

based on experimental observations, they may label sequences differently to mathematical 

approaches utilising statistics and linear algebra. Therefore, protein embeddings are helpful for 

evaluating hierarchies used to classify protein function.   

The BLOSUM matrix has been developed to determine the similarity between proteins by 

aligning amino acid sequences and calculating a quality score for the alignment. Substitution between 

dissimilar amino acids results in a penalty and conservation of similar amino acids increases the score. 

The amino acids tryptophan, cysteine, histidine and methionine played the greatest role in driving 

proteins to different regions of the protein space. This is consistent with the BLOSUM matrix which 

allocates high scores when cysteine, tryptophan, and histidine residues are conserved between 
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proteins (Eddy 2004). Furthermore, methionine and cysteine are the only sulphur containing amino 

acids allowing the formation of disulphide bonds which play a critical role in protein folding (Lim, Kim 

& Levine 2019). The observation that these amino acids drive sequence embedding means that 

Protvec operates by considering conserved amino acids and amino acids important for protein folding. 

Protvec learns biologically meaningful information rather than relying on the similarity of protein 

sequences.  

Training Protvec with sequences from different bacterial groups altered the amino acid 

composition of the 𝑘-mers driving the sequence embedding. Additionally, embedding sequences with 

the Swiss-Prot model trained with a diverse set of sequences did not form distinct groups of clusters. 

Applications of Word2Vec in natural language processing have determined that generic word vectors 

constructed from generalised corpuses are less effective than domain specific word vector models 

(Chiu et al. 2016; Ghosh et al. 2016). Therefore, Protvec models trained using a diverse set of 

sequences may not distinguish between closely related proteins. Ideally, Protvec models should be 

trained with sequences similar to the intended embedding set to ensure that model vectors embed 

sequences based on the specific properties of the embedding sequences. Alternatively, 𝑘-mer 

frequency embeddings do not require this consideration as training is not required to embed 

sequences.  

Bacillus carbohydrate metabolism sequences embedded using the Bacillus Protvec model 

produced 48 discrete clusters. Under the Subsystems classification system, these sequences belonged 

to 29 different groups. This implies that Subsystems does not contain all the labels required to classify 

these sequences completely. As Subsystems was constructed from experimental observations, this 

introduces error to the labelling accuracy (Laukens, Naulaerts & Berghe 2015; Overbeek et al. 2014). 

Some subsystems within the Subsystems ontology likely contain proteins with more than one function 

and therefore could be partitioned into separate groups.  

The dendrograms built using sequence embeddings can be used to evaluate how closely 

hierarchies built using embeddings resemble the Subsystems Ontology. Several groups of sequences 

which were clustered together in the Bacillus carbohydrate metabolism dendrogram belonged to the 

same subsystem in the Subsystems ontology. Despite this, sequences belonging to different 

subsystems within the same subclass were mapped to different sections of the embedding hierarchy. 
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This indicates that low-level groupings in subsystems are somewhat consistent with those derived 

from sequence embeddings but are incorrectly divided into the overarching hierarchies. Therefore, 

existing classification schemes including Subsystems may not sufficiently group protein sequences by 

their biological roles. Improved ontology design should follow a systematic approach. This could be 

achieved using the mathematical properties of protein sequences rather than experimental 

observations.  

Tools have been developed which predict the function of proteins by utilising Protvec models 

(Cai, Wang & Deng 2020). As one-third of bacterial proteins are too dissimilar to proteins which have 

been previously characterised (Price et al. 2018), their function cannot be accurately predicted using 

these methods. Training and embedding unknown Bacillus sequences using Protvec revealed 12 

clusters of proteins with unknown functions. These clusters may contain further ‘subclusters’ which 

could be identified by using Protvec to train and embed sequences from each cluster. As Protvec 

groups proteins with similar functions, the sequences in each of these clusters likely share similar 

biological functions. Consequently, prime experimental candidates could be selected from each 

cluster and characterised to inform the function of the sequences in the unknown clusters. As 

characterising proteins is expensive and labour intensive, grouping proteins with unknown functions 

is an efficient strategy for determining the function of unknown proteins (Seo et al. 2018). By 

characterising unknown proteins grouped using sequence embeddings, additional labels could be 

included in protein classification schemes to decrease the number of proteins with unknown 

functions.   

Recent advances in natural language processing have developed more advanced algorithms 

for word embeddings. This includes Embeddings from Language Models (ELMo) and transformer 

models such as Bidirectional Encoder Representations from Transformers (BERT).  These methods 

have been successfully used to embed protein sequences (Heinzinger et al. 2019; Nambiar et al. 2020). 

Future work could utilise these embedding methods to construct hierarchies and group unknown 

sequences.  

 

 



 

15 

 

Conclusion  

This study embedded bacterial protein sequences using word embeddings to evaluate protein 

sequence classification. Dissection of Protvec models revealed that Protvec models embed amino acid 

sequences using biologically meaningful information. By grouping proteins with shared functions in a 

vector space, inconsistencies were identified between the existing Subsystems ontology used to label 

proteins and hierarchical classifications utilising sequence embeddings. Further, amino acid sequences 

with unknown biological functions were organised into groups based on the underlying mathematical 

properties of protein sequences, providing an alternative approach for resolving the fundamental 

challenge of protein function inference. Redesigning protein classification schemes using a systematic 

approach would help overcome the limitations of currently used experimental approaches.  

 

Code accessible at https://github.com/susiegriggo/ProtvecHierachy  
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Appendices 

 
Appendix 1: A: 𝑘-means clustering of Swiss-Prot 3-mer vectors, B: Amino acid frequency of the 𝑘-mers in the yellow cluster 

in A, C: Amino acid frequency of the 𝑘-mers in the teal cluster in A.  
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Appendix 2: Bacteroides carbohydrate metabolism sequences embedded using a Protvec model trained with Bacteroides 

Carbohydrate metabolism sequences, Protvec model trained with Swiss-Prot and 𝑘-mer frequency of the embedded 

sequences. Sequences are coloured by subclass and visualised with PCA and tSNE (perplexity = 30, learning rate = 100).  
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Appendix 3: Calinski-Harabasz index of 5,000 Bacteroides carbohydrate metabolism sequences embedded with A: Protvec 

model trained with Bacteroides carbohydrate metabolism sequences and B: Protvec model trained with Swiss-Prot. Within 

Cluster Sum of Squares of 5,000 Bacillus carbohydrate metabolism sequences embedded with B: Protvec model trained 

with Bacteroides carbohydrate metabolism sequences and D: Protvec model trained with Swiss-Prot. 500 bootstrap 

iterations were used for each value of 𝑘. 
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Appendix 4: Tanglegram of 1,000 Bacillus carbohydrate metabolism protein sequences. Hierarchy on the left is built using 

divisive clustering on the Euclidean distances between sequences embedded using a Protvec model trained with Bacillus 

sequences. Hierarchy on the right is the classification of sequences in the existing subsystems ontology 
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Appendix 5: Tanglegram of 1,000 Bacillus carbohydrate metabolism protein sequences. Hierarchy on the left is built using 

agglomerative clustering on the Manhattan distances between sequences embedded using a Protvec model trained with 

Bacillus sequences. Hierarchy on the right is the classification of sequences in the existing subsystems ontology.  
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Appendix 6: Heatmap of percent identity matrix of the unknown Bacillus sequences clustered in Fig. 7 using Clustal Omega 

(Sievers & Higgins 2014).  Axes labels denote sequences from each cluster in Fig.7.  

 

 

 

 


